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The optimal resource allocation in the large-scale intelligent device-to-device (D2D) communication system is of great im-
portance for improving system spectrum efficiency and ensuring communication quality. In this study, the D2D resource al-
location is modelled as an ultrahigh-dimensional optimization (UHDO) problem with thousands of binary dimensionalities.
Then, for efficiently optimizing this UHDO problem, the coupling relationships among those dimensionalities are compre-
hensively analysed, and several efficient variable-grouping strategies are developed, i.e., cellular user grouping (CU-grouping),
D2D pair grouping (DP-grouping), and random grouping (R-grouping). In addition, a novel evolutionary algorithm called the
cooperatively coevolving particle swarm optimization with variable-grouping (VGCC-PSO) is developed, in which a novel
mutation operation is introduced for ensuring fast satisfaction of constraints. Finally, the proposed UHDO-based allocation
model and VGCC-PSO algorithm as well as the grouping and mutation strategies are verified by a comprehensive set of case
studies. Simulation results show that the developed VGCC-PSO algorithm performs the best in optimizing the UHDO model with
up to 6000 dimensionalities. According to our study, the proposed methodology can effectively overcome the “curse of di-

mensionality” and optimally allocate the resources with high accuracy and robustness.

1. Introduction

Due to the fast development of cellular communication
networks, the complexity of net structure and user number
explosively increases in recent years. As a result, the device-
to-device (D2D) communication technology is developed
and plays an increasingly important role in the modern 5G
cellular networks [1, 2]. However, due to the fast growing
cellular users and high requirement for quality of service
(QoS), the lack of spectrum resource becomes one of the
main reasons which severely restricts the development of
modern communication network [3, 4].

In the D2D communication system, two types of user
equipment nearby (namely, D2D-pair and DP) can directly
communicate under the control of enhanced-Node B (eNB)

[5]. However, the direct communication of DP always re-
quires to reuse the physical resource blocks (PRBs) of the
traditional cellular users (CUs). In order to obtain promising
performance on spectrum efficiency and communication
quality, the aforementioned PRB of CU should be optimally
allocated to each DP. As a result, the resource allocation
model and optimization algorithm are hot topics in the field
of D2D communication in recent years [6-9]. For example,
Li et al. developed a nonconvex mixed-integer nonlinear
programming (MINLP) problem-based model to minimize
the mobile power consumption to obtain efficient resource
allocation solution and also ensured the QoS and high
communication rate at the same time [10]. Su et al. proposed
an approach to maximize the total D2D groups capacity by
considering the requirement of QoS and energy causality
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constraints. Simulation results verified the effectiveness of
their methodology [11]. In order to reduce the cross-tier
interference in D2D communication, Khazali et al. proposed
a fractional frequency reuse (FFR)-based spectrum parti-
tioning scheme. In Khazali et al.’s study, they also modelled
the spectral efficiency as an optimization problem, which can
be effectively solved by employing iterative algorithms [12].
Mohamad et al. proposed a dynamic sectorization method in
which eNB can vary the number of sectors dynamically and
allocated the resource block to D2D users. According to
their study, the signal-to-interference-noise-ratio (SINR)
and the network overall performance were improved [13].
Amin et al. proposed a resource allocation algorithm based
on the so-called Q-learning, in which the multiagent learners
from multiple D2D users were created, and the system
throughput was determined by the state-learning of Q value
list. According to their study, the system throughput was
effectively maximized by controlling the D2D users’ power,
and a fine QoS of cellular users was also ensured [14].

In this study, the resource allocation problem in an
intelligent D2D communication system with large number
of users is addressed. To be specific, by describing the
communication constraints as penalty functions, the
aforementioned resource allocation is modelled as a binary
optimization problem with ultrahigh dimensionality, called
the binary large-scale global optimization (BLSGO) problem
in this study. Then, considering the consequent “curse of
dimensionality,” the coupling relationships among the
thousands of dimensionalities are comprehensively analysed
and some efficient variable-grouping strategies are devel-
oped, i.e., the cellular user grouping (CU-grouping), D2D
pair grouping (DP-grouping), and random grouping (R-
grouping). In addition, a novel swarm-intelligence-based
algorithm, namely, cooperatively coevolving particle swarm
optimization with variable-grouping (VGCC-PSO) is de-
veloped, in which an efficient mutation operation is also
introduced for rapidly escaping the punishment of penalty
function and speeding up the convergence process. Finally,
the proposed model and optimization methodologies are
comprehensively verified by case studies.

The contributions of this paper can be summarized as
follows. Firstly, the BLSGO-based resource allocation model
for the intelligent D2D communication system is estab-
lished. Secondly, the variable-grouping strategies including
the CU-grouping, DP-grouping, and R-grouping are de-
veloped. Finally, a novel VGCC-PSO algorithm is proposed
and employed to optimize the aforementioned BLSGO-
based model.

The rest of this paper is organized as follows. In Section
2, the ultrahigh dimensional resource allocation model is
developed. The corresponding constraints and penalty
functions as well as the encoding scheme for defining op-
timization vector are also discussed in this section. In
Section 3, the variable-coupling relationships are compre-
hensively analysed, and the VGCC-PSO with different
variable-grouping strategies and mutation operation is de-
veloped. Then, in Section 4, the effectiveness of the proposed
variable-grouping strategies and mutation operation is
tested. In Section 5, the proposed model and optimization
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methodologies are verified by a comprehensive set of case
studies. Finally, this paper is concluded in Section 6.

2. Ultrahigh-Dimensional Resource
Allocation Model

2.1. Resource Allocation in D2D Communication. In an in-
telligent D2D communication system, the allocation of PRB
is of great importance for improving system spectrum ef-
ficiency and ensuring communication quality. In order to
optimally allocate the CU resources to DP, an efficient offline
model for evaluating the cost of each allocation solution is
required [15].

For a cellular network of LTE-advance systems, assume the
eNB locates at the center of a region, in which all the CUs and
DPs are randomly distributed. Denote C={CU,|n=1,2,...,N}
as the set of CU, and denote D= {DP,,,|m=1,2, ..., M} as the set
of DP. The resource allocation principle employed in this study
is defined as follows: on the one hand, the PRB of each CU
should be reused by only one DP; on the other hand, each DP
can reuse more than one CUs’ PRB (but at least one). Schematic
of the evaluated D2D communication system is illustrated as
Figure 1.

In the D2D communication system, an efficient resource
allocation solution is to maximize the system energy effi-
ciency by allocating all the CUs’ PRB to each DP while
satisfying some constraints. The energy efficiency to be
maximized can be formulized as follows:

M N
N = Zm:l Zn:l Xmn * Rm,n
e

M N >
Zm:l Zn:l X © Pm,n + Pc

where 7, represents the system energy efficiency; x,,, ,, is the
binary variable, x,,,,=1 denotes the PRB of CU,, which is
reused by DP,,,, x,,, , = 0 denotes the opposite, R,, ,, which is
formulized as equation (2), represents the transmission
speed of DP,, when reusing the PRB of CU,,, P,,, ,, represents
the transmission power of DP,, when reusing the PRB of
CU,; and P. represents the circuit power consumption of
DP,,

(1)

pP,__-H
R,,.= log2(1 —mn m ), (2)

+
P,-H,, +n

where H,, represents the channel gain from DP transmitter
DT,, to DP receiver DR,,;; P, represents the transmission
power of CU,; H,, ,, represents the channel gain from DT, to
CU,; and n, represents the channel noise power under the
effect of white Gaussian noise.

According to reference [16], the maximization of energy
efficiency 7, is equal to the minimization of the following
equation:

M N .
Frin= 2. Y @)

m=1 n=1 m n

where H,, represents the channel gain from CU,, to eNB and
H, ,, represents the channel gain from CU, to DR,,. The
channel gains here (H,, H,,, H,,,» and H,,,) are all cal-
culated as H=10"F-"SHP/10 ywhere PL represents the path
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FIGURE 1: Schematic of the D2D communication system.

loss and SHD represents the lognormal fading between each
transmitter and receiver.

As mentioned above, the PRB of each CU should be
reused by only one DP and each DP should be allocated with
one or more CUs’ PRB. As a result, the overall allocation
model can be formulized as the following constrained op-
timization problem:

M N
. Hnm 'Hmn
mlnf = Xmn * TEE TR
o mz:mzi H, -H,
X € {0) 1}

M

S.t. 3 mzzl
N
2

2.2. Encoding Scheme. As shown in equation (4), the pa-
rameters to be optimized for obtaining optimal resource
allocation are the N x M binary variables x,,,,, in=1,2, ...,
M;n=1,2,...,N).In this study, the direct encoding scheme
is employed, i.e., all the N x M binary variables x,,, are
directly employed to combine the optimization vector X,
which is formulized as follows:

x :(x1,1’x1,2:~-- .,xM,N). (5)

Note that each x,,, (m=1,2,...,M;n=1,2,...,N) in
equation (5) is a binary variable, which indicates whether
CU,, is reused by DP,,. Obviously, dimensionality of the
optimization vector X is equal to N x M. This implies that
the problem dimensionality (or complexity) will become
extremely high when N and M are large. For example, as-
sume that a D2D communication system contains 100 CU
(i.e., N=100) and 20 DP (i.e., M = 20). Then, dimensionality
of the model will become N x M =2000. Obviously, com-
plexity of this 2000-dimensional problem is extremely high
because of the “curse of dimensionality.” As a result, an
effective optimization algorithm is required to solve this
BLSGO problem.

s-xl)N) LR ’xM,l’xM,Z’ .o

Note that in this study, the continuous evolutionary
algorithm, namely, VGCC-PSO is developed and employed
to optimize the variables listed in equation (5). As a result, all
the binary variables x,,, , are bounded within the interval [0,
100]. The encoding scheme is defined as follows: for the
variable x,, ,, encode x,,, to 0 when it belongs to [0, 50) in
VGCC-PSO; otherwise, when x,, ,, belongs to [50, 100] in
VGCC-PSO, encode it to 1.

2.3.  Ultrahigh-Dimensional Model for D2D Resource
Allocation. In order to optimize the variables in equation (5)
using swarm-intelligence-based algorithms, the constraints
listed in equation (4) are transformed into penalty function
in our model. That is to say, the constrained problem shown
in equation (4) is transformed into an unconstrained

problem by defining the following penalty function:
fp=A- (N, +N,), (6)

where A represents the penalty factor which is used to
control the penalty intensity; N; denotes the number of CU
which does not satisfy the second constraint in equation (4),
ie., fo:lxm,n =1, (n=1, 2, ..., N); and N, denotes the
number of DP which does not satisfy the third constraint in
equation (4), i.e., ZnNzlxm,n >1,(m=1, 2, ..., M). Note that
for a certain solution ¥, the values of N; and N, can be
calculated by decoding each dimensionality of X.

By introducing the penalty function, the overall resource
allocation model can be formulized as

. g Hmm'Hm,n
r){llnf=Zme’n-ﬁ+/l~(Nl+N2). (7)

m=1n=1

3. Optimization Methodology

In the field of numerical optimization, different kinds of
optimization methodologies are developed and employed in
solving real-world engineering problems, e.g., the linear
programming methods [17], neural network methods [18],
evolutionary algorithms [19], and so on. In this study, the
cooperatively coevolving algorithms are developed for
solving the aforementioned UHDO-based resource alloca-
tion model.

3.1. Cooperatively Coevolving. The cooperatively coevolving
(CC) is a general algorithm framework proposed for solving
the high-dimensional optimization problem [20-22]. In
basic CC, the D-dimensional problem is decomposed into
several subproblems based on the philosophy of “divide and
conquer.” Each of these low-dimensional subproblems is
solved by a certain algorithm in turn. Then, a D-dimensional
individual, namely, context vector is defined to connect
these subproblems and ensure the coevolving process. The
CC framework has been integrated with different evolu-
tionary algorithms and obtained promising performance on
solving high-dimensional problems [20, 23, 24]. Principle of
the basic CC framework can be illustrated as the following
steps:



(1) For a D-dimensional problem P, initialize the D-
dimensional population with Np individuals. Then,
decompose the original problem P into K sub-
problems SP; (i=1, 2, ..., K), i.e.,, P=[SPy, SP,, ...,
SPx]. Note that the dimensionality of each sub-
problem SP; is equal to D/K. For a D-dimensional
individual x, x=(x', % ..., xK), where x' represents
the corresponding variables that belong to the ith
subproblem.

(2) Define the context vector as the current global best
individual y. Then, the ith subproblem in CC is
defined as

minfi (x,9), xc¢€ RS, (8)
where  fi(x,y)=f(yh, ...,y Lx vyt o 9K)
and R® represents the solution space. Start an evo-
lution circle, in which all the subproblems are op-
timized with a certain algorithm. The context vector
y is updated in every iteration.

(3) Proceed another cycle if the stopping criteria are not
satisfied;  otherwise, stop the cooperative
coevolution.

Note that, in CC framework, in order to decrease the
complexity of high-dimensional problem, the original problem
is decomposed into several less difficult subproblems to be
solved separately. According to reference [25], the basic CC
framework is effective only if any two subproblems have no
interaction. In another word, the variable-grouping strategy
(means the subordinate relationship between variables and
subproblems) significantly affects the performance of CC.

3.2. Variable-Grouping Strategy. In order to effectively op-
timize the ultrahigh-dimensional problem using CC, the
coupled (or called nonseparable) variables should be
grouped into the same subproblem and coevolved for
enough iterations [25]. With regard to the resource allo-
cation model as listed in equation (4), all the optimization
variables x,, , (im=1,2, ..., M;n=1,2, ..., N) are grouped
using the following strategies.

3.2.1. Random Grouping (R-Grouping). In R-grouping, all
the variables are randomly disorganized and grouped into
different subproblems. To be specific, flow of R-grouping
mechanism is as the following steps:

(i) Firstly, orders of the entire D =N x M dimen-
sionalities in the original model are randomly
disorganized.

(ii) Secondly, these disorganized dimensionalities are
decomposed into K = D/s sub-problems. Obviously,
each subproblem has s dimensionalities, where the
group size s is randomly generated within a pre-
defined set S.

(iii) Finally, the group size s is dynamically changed
during the coevolving process as the following
principle: for each coevolving iteration, randomly
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selected a new s in § if the global optimum is not
updated; otherwise, keep the current s value
unchanged.

Schematic of the R-grouping mechanism is illustrated in
Figure 2.

3.2.2. Cellular User Grouping (CU-Grouping). As discussed
in Section 2.2, each optimization variable represents the
reusing relationship between a certain CU,, and a certain
DP,. In CU-grouping, the variables reflecting the rela-
tionships between one certain CU, and every DP are
grouped into a subproblem and are employed to coevolve for
enough iterations. To be specific, the variables for CUy, i.e.,
X1,1> X215 - - -» Xar1> are regarded as the first subproblem, then
the variables for CU,, i.e., X1 5, X2, - . ., Xar, are regarded as
the second subproblem, and so on. Note that in CU-
grouping, as each subproblem (or called group) has M di-
mensionalities, i.e., s=M, the number of subproblems K is
equal to D/s = N.

Schematic of the CU-grouping mechanism is illustrated
in Figure 3.

3.2.3. D2D Pair Grouping (DP-Grouping). Similarly, in DP-
grouping, the variables reflecting the relationships between
every CU,, and one certain DP are grouped into a subproblem.
To be specific, the variables for DPy, i.e., x1 1, X1 2, - . ., X1 n» ar€
regarded as the first subproblem, then the variables for DP,,
ie, X1, X2, - . » Xo.n, are regarded as the second subproblem,
and so on. Note that in DP-grouping, as each subproblem has
N dimensionalities, i.e., s = N, the number of subproblems K is
equal to D/s = M.

Schematic of the DP-grouping mechanism is illustrated
in Figure 4.

3.3. Mutation Operation. According to the encoding
scheme developed in Section 2.2, it can be easily concluded
that the binary variable x,,, is not related to its specific
value within the solution space but is directly decided by
whether it is greater than the boundary 50. As a result, the
encoding scheme will significantly increase the solution
space and complicate the original model. In order to
overcome this problem, a novel mutation operation is
developed and imposed on all the context vectors of
VGCC-PSO.

As discussed in Section 2, the PRB of each CU should be
reused by only one DP, and each DP can reuse more than
one CUs’ PRB (but at least one). That is to say, in a feasible
solution, there is at most one variable in x; ,,, X3, - . -, Xa1n
(n=1,2,..., N)which is greater than 0 at each time (denoted
as Constraint I). In addition, there is at least one variable in
X Xmzs -« » Xmn (m=1,2, ..., M) which is greater than 0
at each time (denoted as Constraint IT). As Constraints I and
IT are closely related to the entire variables, most of the
solutions in solution space will be infeasible because of these
constraints. In order to reduce the model complexity caused
by these so many infeasible solutions, the feasible solutions
satisfying Constraint I and Constraint II are directly
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FIGURE 2: Schematic of R-grouping.
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FIGURE 4: Schematic of DP-grouping.

employed as the context vector and inserted into VGCC-
PSO population. The proposed mutation operation for
context vector is illustrated as the following steps:

Step 1. Define parameters P, and P, satisfying
P, <P,pand P,,, P, € [0,1] to control the mutation
probabilities.

ml>

Step 2. In each iteration, for each of the context vectors
in VGCC-PSO, say the ith context vector in the tth
iteration CV;(t), randomly generate a mutation vari-
able P,(t) with the interval [0, 1]. Then, mutate CV; ()
according to the following principles:

(i) If P(t) < P,,;1, keep CV;(t) unchanged

(ii) If P,,, < P;(t) < P,,, each of the components [x; ,,,
Xo -+ Xl (=1, 2, .., N) is randomly mu-
tated to [7g, 795 - - o> 70> 1> [T0s + « - 70> T1> T0)5 -« - -5 [T0s
715 Tos -+ » Tol and [71, o, 7os - - - o, in which each 7,
is randomly generated within [0, 50) and each r, is
randomly generated within [50, 100]

(iii) Otherwise (i.e., P;(t)>P,,), check each of the
components [X,, 1, X2 - - » Xmn] (M=1,2,..., M)
if all the variables are lower than 50, i.e., x,,, 1, X2,

. o XN are encoded to 0, then randomly set one
variable (e.g., x,,,.,) to 1

Step 3. Denote the mutated context vector CV;(t) as
CVimut (£). Update CV(t) using CV; e (2) if better.

Note that the proposed mutation mechanism is only
imposed on the context vectors rather than the entire in-
dividuals in current population. The reason is that, on the
one hand, the mutated context vectors can better guide the
other individuals to rapidly satisfy the constraints and thus

significantly reduce the scope of solution space. On the other
hand, the population diversity will be not destroyed in
mutation process.

3.4. VGCC-PSO Algorithm. In this study, a novel evolu-
tionary algorithm, namely, VGCC-PSO is developed for
optimizing the BLSGO-based allocation model. In VGCC-
PSO, the aforementioned variable-grouping strategies and
mutation operation are integrated for overcoming the ul-
trahigh dimensionality characteristic of the model.

In VGCC-PSO, the basic CC framework described in
Section 3.1 is imposed on the PSO algorithm. Then, the
R-grouping, CU-grouping, and DP-grouping mechanisms
are randomly selected in each iteration as the following
steps:

Step 1. Set the selection probabilities Pp (for
R-grouping), Pcy (for CU-grouping), and Ppp (for DP-
grouping), satisfying
Py, Peus Pop € [0,1],
Pr+Pcy + Ppp = 1.

(9)

Step 2. In each iteration, randomly generate a variable

P, € [0,1]. Then, select a grouping strategy according

to the following equation:
select R-grouping, ~ if 0<p, <Py,

select CU-grouping, if Pp<p, <Pp+Pcy,

select DP-grouping, if Pp+Pcy<p,<l

(10)



In addition, in VGCC-PSO, the mutation operation
described in Section 3.3 is imposed on each of the context
vectors in each iteration. Pseudo code of VGCC-PSO is
given in Algorithm 1.

4. Verification for Variable-Grouping Strategies
and Mutation Operation

In this section, efficiency of the proposed variable-grouping
strategies and mutation operation is verified by simulation
experiments. In the following simulation, the numbers of
CU and DP are set to 80 and 20, respectively. The location of
each CU, DT, and DR is randomly generated within a
hexagon region with the radius of 700 m. As suggested in
reference [5], the communication model and parameters
employed in the following simulation are chosen in ac-
cordance with 3GPP LTE regulation for the OFDMA system.
In addition, the path loss model is defined as follows:

1 eNB-UE: PL = 33.65 + 23.47 log 10 (d[m]),
UE-UE: PL = 36.67 + 19.54 log 10 (d[m]).

According to the encoding scheme described in Section
2.2, the model dimensionality D in this case is equal to
N x M = 1600. In this section, the VGCC-PSO algorithm is
employed for optimizing this 1600-dimensional problem. In
order to verify effectiveness of the proposed variable-
grouping strategy and mutation operation, the basic PSO
without CC framework, variable-grouping strategy, and
mutation operation (denoted as PSO), the CC-based PSO
(i.e., without variable-grouping strategy and mutation op-
eration, denoted as CCPSO), the CC-based PSO only in-
tegrated with mutation operation (i.e., without variable-
grouping strategy, denoted as CCPSO,y,,), and the CC-based
PSO only integrated with variable-grouping strategy (i.e.,
without mutation operation, denoted as CCPSO,,) are
employed for comparison.

For all the compared algorithms, the dynamic group size
S in R-grouping is set as S = {10, 20, 50, 100, 200}. According
to our numerical experiments, the selection probabilities for
variable-grouping strategies Pg, Pcy, and Ppp are suggested
to be set as follows: Pr=0.4, Pcy=0.3, and Ppp=0.3. The
penalty factor A in equation (6) is set to 10000. The prob-
abilities in mutation operation P,,; and P,,, are set to 0.3 and
0.6, respectively. The maximum number of fitness evalua-
tions (FE.y) is set to 1 x 10°. The population size is set to 50,
and the number of context vectors is set to 5. Results of the
simulation experiments are compared in Figure 5 and Table
1.

According to the simulation results, the proposed
VGCC-PSO algorithm performs the best and obtains the
minimum fitness function value of 12.7027. Compared with
the CC-based algorithms, the basic PSO without CC
framework fails to optimize the 1600-dimensional problem
and obtains the worst performance of 631.2110, which is
significantly larger than its competitors. This implies that by
decomposing the original problem into several low-di-
mensional subproblems, the CC framework is very efficient
on overcoming the ultrahigh dimensional characteristic.
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By integrating the CC framework, the result obtained by
CCPSO is significantly better than that of PSO but worse
than the best performer VGCC-PSO. Obviously, the gap
between CCPSO and VGCC-PSO shows the efficacy of the
developed variable-grouping strategies and mutation op-
eration. To be specific, by integrating the variable-grouping
strategies, the CCPSO,, obtains the final result of 17.4469,
which significantly outperforms 49.3261 obtained by
CCPSO. Rationale behind the achievement is that by inte-
grating the CU-grouping and DP-grouping strategies, the
coupled variables are given higher probability to be grouped
into the same subproblem and coevolved for enough
iterations.

By integrating the mutation operation, CCPSO,,,, ob-
tains the final result of 27.9705, which outperforms 49.3261
obtained by CCPSO. In addition, according to the con-
vergence graph shown in Figure 5, the mutation operation
can help the algorithm to fast satisty the constraints and
avoid the punishment brought by penalty function. As
discussed above, the developed variable-grouping strategies
and mutation operation are efficient on improving the
performance of the evolutionary algorithm on solving ul-
trahigh dimensional problem. To be specific, the variable-
grouping strategies can improve the global exploration
ability and optimization accuracy, while the mutation op-
eration can significantly accelerate the convergence or sat-
isfaction speed of constraints.

5. Simulation Experiments and Analysis

In this section, the performance of VGCC-PSO is empiri-
cally evaluated on a comprehensive set of case studies.
Parameters setting of VGCC-PSO is the same with Section 4.
In addition, some state-of-the-art evolutionary algorithms
are employed for comparison, including the CPSO-Sk [26],
CPSO-Sk_rg-aw [27], CCPSO2 [28], and CCDE [29]. Pa-
rameter settings of these algorithms are following their
original studies. The detailed model parameters for each case
are listed in Table 2.

Simulation results of the case studies are listed in Table 3,
in which the best performance is set in bold. The conver-
gence graphs for each case are plotted in Figure 6.

As shown in Table 3, the proposed VGCC-PSO obtains
the best performance for all the cases. To be specific, for the
low-dimensional models (i.e., Cases 1 and 2), the out-
performance of VGCC-PSO is not significant compared
with that of CCDE, CCPSO2, and CPSO-Sx_g_aw. However,
when scale of the D2D communication system becomes
large (i.e., the numbers of CU and DP increase to several
decades and the model dimensionality increases to more
than 1000 in Cases 3 to 6), VGCC-PSO can obtain its ef-
ficiency and significantly outperforms the competitors be-
cause of the integration of variable-grouping mechanism
and mutation operation. For example, in Cases 3 and 4,
VGCC-PSO obtains the final results of 18.8794 and 13.1455
for the 1200-dimensional and 2000-dimensional problems,
respectively. However, the results obtained by other algo-
rithms are 35.0793 and 23.2162 for CCDE, 30.0329 and
27.0283 for CCPSO2, and 130.2828 and 115.9234 for CPSO-
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Algorithm: VGCC-PSO
Initialize a D-dimensional population with Np particles. Initialize p context vectors with the best p particles.
repeat
Randomly generate a variable P, then select a variable-grouping strategy using equation (10).
Decompose the original optimization vector into K subproblems according to the selected variable-grouping strategy.
Denote the jth subproblem as P;.
for each subproblem P; do
Coevolve the corresponding dimensionalities of P; using the CC-based PSO as discussed in our previous work [22].
end
Update the personal best of each particle, and update the context vectors according to reference [22].
for each context vector CV; do
Mutate CV; to CV; . according to the principles developed in Section 3.3.
if f (CVimu) <f(CV;) then
Update CV; using CV_ ..
end
Update the global best with the best context vector.
until the stopping criteria are satisfied

ALGoriTHM 1: Pseudo code of VGCC-PSO.
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FIGURE 5: Convergence graphs for optimizing the 1600-dimensional model.
TaBLE 1: Optimization results of the compared algorithms.
Algorithm Optimization result
VGCC-PSO 12.7027
CCPSO 49.3261
PSO 631.2110
CCPSO,,q 17.4469
CCPSO, 27.9705
TaBLE 2: Parameter settings of resource allocation models.
Case number Number of CU Number of DP Model dimensionality Dynamic group size in R-grouping
Case 1 30 8 240 {5, 10, 12, 20, 40}
Case 2 50 10 500 {5, 10, 20, 25, 50}
Case 3 60 20 1200 {10, 20, 50, 100, 200}
Case 4 80 25 2000 {20, 50, 100, 200, 400}
Case 5 100 40 4000 {20, 50, 100, 200, 500}

Case 6 120 50 6000 {50, 100, 200, 600, 1000}
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TaBLE 3: Simulation results for Case 1 to 6.
Algorithm Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
VGCC-PSO 10.5182 10.0771 18.8794 13.1455 30.0673 48.7768
CCDE 22.9087 21.6069 35.0793 23.2162 42.0547 87.0291
CCPSO2 24.2608 34.4517 30.0329 27.0283 96.0441 77.4215
CPSO-Sk 146.3635 264.6194 613.8953 431.4242 2098.5629 1602.9015
CPSO-Sk_rg-aw 24.1810 62.8635 130.2828 115.9234 315.2044 321.8840
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FiGure 6: Convergence graphs for Case 1 to 6: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5; (f) Case 6.

Sk-rg-aw- Note that the results obtained by CPSO-Sk for Cases
3 and 4 are 613.8953 and 431.4242, which implies that
CPSO-Sk losses its efficacy and fails to optimize these ul-
trahigh dimensional problems.

In Cases 5 and 6, the model dimensionality increases to
4000 and 6000, and VGCC-PSO is still able to effectively
optimize the model and obtains the final results of 30.0673
and 48.7768, which significantly outperforms 42.0547 and
87.0291 by CCDE, 96.0441 and 77.4215 by CCPSO2,
315.2044 and 321.8840 by CPSO-S g > and 2098.5629 and
1602.9015 by CPSO-Sk. Note that the final results listed in
Table 3 are all lower than the penalty factor A which is set to
10000 in the simulations. This indicates that because of the
application of CC framework, all the algorithms can satisfy
the constraints and avoid punishment for each of the ul-
trahigh-dimensional cases.

6. Conclusion

In this study, the ultrahigh dimensional model for resource
allocation in a large-scale intelligent D2D communication
system is established, and a novel optimization methodol-
ogy, namely, VGCC-PSO is also developed for optimizing
the BLSGO-based model.

For a large-scale D2D communication system with N
CUs and M DPs, by defining the binary encoding scheme
and penalty function, the resource allocation problem is
modelled as an unconstrained optimization problem with
ultrahigh dimensionalities of N x M. In order to effectively
optimize the ultrahigh dimensional model, the CC frame-
work is applied to decompose the original problem and
coevolve each subproblem according to the philosophy of
“divide and conquer.”
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For further improving the optimization performance,
some efficient variable-grouping strategies like the
R-grouping, CU-grouping, and DP-grouping are developed
to rearrange and co-optimize the large number of optimi-
zation variables. In addition, a novel mutation operation is
also developed to accelerate the convergence speed. Simu-
lation results show the effectiveness of these algorithm
mechanisms; the integration of variable-grouping strategies
can improve global exploration ability and final optimization
accuracy, while the mutation operation can significantly
accelerate the satisfaction of constraints.

Finally, by integrating the CC framework, variable-
grouping strategies, and mutation operation, the proposed
VGCC-PSO algorithm is empirically evaluated on a com-
prehensive set of case studies, and some state-of-the-art
algorithms are also employed for comparison. Simulation
results show that VGCC-PSO performs the best in opti-
mizing the ultrahigh-dimensional model with up to 6000
dimensionalities. In a word, the proposed methodology can
effectively overcome the “curse of dimensionality” and
optimally allocate the resources in the large-scale intelligent
D2D communication system with high accuracy and
robustness.
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