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Abstract

This paper is concerned with the problem of feature screening for multi-class linear discriminant 

analysis under ultrahigh dimensional setting. We allow the number of classes to be relatively large. 

As a result, the total number of relevant features is larger than usual. This makes the related 

classification problem much more challenging than the conventional one, where the number of 

classes is small (very often two). To solve the problem, we propose a novel pairwise sure 

independence screening method for linear discriminant analysis with an ultrahigh dimensional 

predictor. The proposed procedure is directly applicable to the situation with many classes. We 

further prove that the proposed method is screening consistent. Simulation studies are conducted 

to assess the finite sample performance of the new procedure. We also demonstrate the proposed 

methodology via an empirical analysis of a real life example on handwritten Chinese character 

recognition.
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1. INTRODUCTION

Linear discriminant analysis (LDA) has often been used for classification in practice. With 

the rapid advance in technology, ultrahigh dimensional data become increasingly available 

and LDA for these data has drawn many attentions. In the ultrahigh dimensional setting, the 

sample size is typically much smaller than the predictor (or feature) dimension. Accordingly, 

the inverse of the predictor covariance matrix, which plays an essential role in LDA, is hard 

to be estimated accurately. What’s more, the prediction accuracy of the ordinary LDA can be 

as poor as random guessing when the predictor dimension is sufficiently high (Bickel and 

Levina, 2004). As a result, Bickel and Levina (2004) advocated the use of the independence 

classification rule, which corresponds to the LDA with a diagonally estimated sample 
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covariance matrix. Nevertheless, the asymptotic performance of the independence rule still 

can be as poor as random guessing in the presence of ultrahigh dimensional predictors (Fan 

and Fan, 2008). In order to solve the problem of ultrahigh dimensional LDA, feature 

screening becomes necessary for practical implementation.

Researches exist on feature screening in LDA with ultrahigh dimensional predictors. Fan 

and Fan (2008) argued that features used in the final LDA should be carefully selected, and 

proposed the method of feature annealed independence rule (FAIR). A similar problem was 

further investigated by Shao et al. (2011) from the perspective of risk optimality. They 

proposed a method of sparse LDA, which leads to sparse estimates for both the mean and 

covariance parameters, and showed that the resulting prediction accuracy is asymptotically 

optimal. For better interpretability and computationally efficiency, a linear programming 

discriminant (LPD) rule was studied by Cai and Liu (2011), a regularized optimal affine 

discriminant (ROAD) method was developed by Fan et al. (2012), and a direct approach was 

proposed by Mai et al. (2012). All those methods are computationally efficient, have 

excellent theoretical properties, and thus lead to much improved prediction performance.

All aforementioned methods were mainly developed for LDA with two classes, and their 

extension to multi-class problem is not immediately clear. For example, Fan et al. (2012) has 

pointed out that the implementation and theoretical properties of ROAD under multi-class 

setting are interesting topics for future research. In fact, multi-class LDA is important in 

practice and we find that the number of classes could be relatively large. For instance, in the 

context of text mining (Weiss et al., 2005), each sample corresponds to one text document 

and the sample size is the total number of documents. When a large number of documents 

are available, they can be classified into many categories according to the topics (e.g., news, 

business, sports, entertainment, and so forth). What’s more, the predictors in text mining can 

be ultrahigh dimensional since the amount of keywords (or features) used in the documents 

is huge. Most keywords may not be relevant to the class membership. As a result, document 

classification can be formulated as a classification problem with ultrahigh dimensional 

feature and a large number of classes.

For multi-class LDA problem, Tibshirani et al. (2003) proposed the nearest shrunken 

centroid method for class prediction in DNA microarray studies. Witten and Tibshirani 

(2011) further investigated the problem using penalized LDA (PLDA), which leads to 

interpretable discriminant vectors. At the same time, Clemmensen et al. (2011) developed a 

sparse version of LDA using an ℓ1 penalty, which allows classification and feature selection 

to be performed simultaneously. When the number of classes is relatively large, the total 

number of two-class pairs (i.e., two-class LDA problems) could be substantial. Thus, the 

total number of relevant features diverges to infinity at a rate faster than usual, even if only a 

few of relevant features contribute to each two-class pair. This motivates us to propose a 

novel variable screening method, which makes a good use of the pairwise sparsity structure.

Our proposed method is distinctive from the existing methods in the following respects: (a) 

We propose to solve the ultrahigh dimensional multi-class LDA problem by pairwise LDA, 

and (b) We propose a feature screening method for pairwise LDA, and establish the strong 

screening consistency of the proposed procedure under appropriate conditions. Results from 
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(a) enable us to decompose the multi-class LDA problem into many two-class LDA 

problems. The feature screening method in (b) enables us to conduct two-class LDA with 

ultrahigh dimensional features. Furthermore, The strong screening consistency in (b) ensures 

the proposed screening procedure enjoys the sure screening property in the terminology of 

Fan and Lv (2008). It further guarantees that overfitting effect can be well controlled. In this 

paper, we further study the post-screening estimation problem and show that the proposed 

post-screening estimator for the coefficients in LDA is uniformly consistent over all possible 

pairs. We also investigate data-driven methods to automatically select the tuning parameters 

involved in the proposed screening procedures. Our numerical studies show that an EBIC 

type criterion (Chen and Chen, 2008) performs quite well with a moderate sample size. To 

further support the usefulness of this method, its screening consistency property is 

rigorously established.

The rest of the article is organized as follows. In Section 2, we propose a pairwise sure 

independence screening procedure and establish its theoretical properties. Simulation studies 

and a real data example are presented in Section 3. A concluding discussion is given in 

Section 4. All technical proofs are presented in the Appendix.

2. PAIRWISE SURE INDEPENDENCE SCREENING

Let (Yi, Xi) be the observation collected from the ith (1 ≤ i ≤ n) subject, where n is the total 

sample size and Yi is the class label taking values in {1, 2, …, K}. Yis are assumed to be 

independent and identically distributed according to probability P(Yi = k) = πk > 0 for every 

1 ≤ k ≤ K. For the sake of notation simplicity, it is assumed throughout the rest of this paper 

that πk = 1/K. As a result, the sample size for different classes are likely to be comparable 

but unlikely to be identical. Furthermore, Xi = (Xi1, …, Xip)⊤ ∈ ℝp is the associated p-

dimensional feature vector. Conditional on Yi = k, Xi follows a multivariate normal 

distribution with mean μk = (μk1, … μkp) ⊤ ∈ ℝp and covariance . 

Without loss of generality, we assume that the p-dimensional feature vector has been 

standardized so that σjj = 1. Let (Y0, X0) be an independent copy of (Yi, Xi). Then, 

conditioning on X0 = (X01, …, X0p)⊤ ∈ ℝp, the posterior probability of Y0 is

where the constants independent of k are ignored. If X0 is known but Y0 is not observed, we 

can then predict Y0 by maximizing the posterior probability. That is,

(2.1)

Theoretically, prediction or classification by (2.1) is a very natural choice. However, it is 

practically infeasible if X is ultrahigh dimensional. This is because estimating the inverse of 

the covariance matrix (i.e., Σ−1) is challenging (Shao et al., 2011). We are thus motivated to 

search for alternative solutions.
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2.1. Pairwise LDA

Since the exponential function is strictly monotone increasing, it follows by the definition of 

k* in (2.1) that for k ≠ k*,

Then the optimal class prediction k* can be equivalently expressed by the following set of 

pairwise inequalities

(2.2)

where  for every 1 ≤ k*, k ≤ K. In fact, 

(2.2) is nothing but a standard linear discriminant function, as defined for an usual two-class 

LDA problem. Consequently, k* can be equivalently defined as

(2.3)

With ultrahigh dimensional predictors, the dimension of the coefficient vector βk*k is also 

ultrahigh but expected to enjoy certain sparse structure. We can define 

to collect those indices associated with nonzero coefficients for class pair (k, k*). Denote by 

 the size of  (i.e., the number of features contained in ). Accordingly, the 

original classification function (2.3) can be re-written as

(2.4)

where  is the subvector of X0 according to , 

while  and  are defined similarly. Operationally, we need to estimate 

first and then conduct LDA based on . As to be demonstrated in the next section, 

can be estimated by thresholding the estimate of μk − μk′. The key difference between (2.1) 

and (2.4) is that the problem involved in (2.4) is low dimensional, while the one in (2.1) is 

ultrahigh. In other words, the original ultrahigh dimensional LDA problem with many 

classes is decomposed into many low dimensional ones. This makes the problem 

computationally feasible.

Remark 1—As one can see in (2.4), we convert a multi-class LDA problem into a set of 

two-class LDA problems. This makes our method different from Fan and Fan (2008) and 

Fan et al. (2012), which were solely developed for two-class LDA problem.
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Remark 2—Here we follow Cai and Liu (2011), Mai et al. (2012), and Fan et al. (2012) to 

impose sparsity assumption on βk*k = Σ−1 (μk* − μk) for the convenience of our 

classification method (i.e., LDA). This leads to optimal LDA classification rule. In contrast, 

one can also impose the sparsity assumption on (μk* − μk) as in Fan and Fan (2008), which 

leads to the independence classification rule.

2.2. Screening Method

Motivated by (2.4), we propose here a novel pairwise variable screening method. Our 

method is inspired by the seminal theory of sure independence screening (Fan and Lv, 2008, 

SIS). For convenience, we refer to our method as pairwise sure independence screening 

(PSIS). To fix the idea, consider a given class pair (k1,k2). Then, ideally one should search 

for important variables by estimating . However, this is practically infeasible because

(2.5)

involves Σ−1, which cannot be estimated accurately when the predictor dimension is 

ultrahigh. Similar problem was also encountered in usual linear regression by Fan and Lv 

(2008), where the parameter of interest is the regression coefficient

(2.6)

Here Ỹ ∈ ℝ1 is the response of interest and  is the predictor. However, if the 

predictor  is ultrahigh dimensional,  cannot be estimated accurately. To solve 

the problem, Fan and Lv (2008) creatively replaced  in (2.6) by an identity 

matrix. This enables them to focus on  only. They further showed rigorously that 

the resulting model estimator is screening consistent. This motivates us to similarly replace 

Σ−1 in (2.5) by an identity matrix. Consequently, this drives us to focus on  for variable 

screening. We can similarly prove that the resulting model estimator is screening consistent; 

see Section 2.3.

More specifically, we directly search for promising variables by investigating 

, where  and . We know 

immediately that . For convenience, we further write 

 and its associated estimator as 

 Write . For a given constant 

, we then estimate  by

(2.7)
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As one can see,  depends on both (k1, k2) and . For simplicity, we omit the 

subscript  in . Practically, how to decide the value of  is an important issue 

and is to be discussed in detail in Section 2.5.

2.3 Theoretical Properties

In this section, we study the theoretical properties of the PSIS method. Obviously, we wish 

to have  for every 1 ≤ k1, k2 ≤ K with large probability. In fact, this can be 

satisfied trivially if we always define , that is the full model. 

However, such a solution makes the computation of (2.4) back to an ultrahigh dimensional 

problem and thus is practically useless. As a result, the size of  need to be 

simultaneously controlled. Theoretically, this means that a desirable variable screening 

method should have the following two very nice properties

(2.8)

(2.9)

as n → ∞, where mmax should be a number much smaller than the average class sample 

size n/K. We refer to both (2.8) and (2.9) as strong screening consistency.

To establish (2.8) and (2.9) for the PSIS estimator , the following technical conditions 

are needed.

(C1) (Divergence Speed) Assume that  for some constant  and 0 < 

ξ1 < 1.

(C2) (Pairwise Sparsity) Assume that there exist constants c0 > 0 and 0 ≤ ξ0 < 1, such 

that .

(C3) (Coefficient Regularity) Define . Assume 

 for some constant c1 > 0 and κ0 ≥ 0, where 4κ0 + 3ξ0 + ξ1 < 1.

By (C1) we know that the feature dimension p is allowed to grow exponentially fast with the 

sample size n. Define , which collects all the relevant features across all 

class pairs. Then, by (C2), we know its size  is bounded by . This 

suggests that the overall model structure is relatively sparse as compared with the feature 

dimension, that is . By (C2), we further know that the size of the pairwise model 

might be even smaller and is . Condition (C3) requires that the between-class mean 

difference for those relevant features must stay away from 0 with a good margin. This is a 

crucial condition that assures the screening consistency property. Under usual regression 

setups, this is similar to assuming that the marginal correlation coefficient between the 
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response and a relevant predictor must be well bounded away from 0; see, for example, Fan 

and Lv (2008), Fan et al. (2011), and Zhu et al. (2011).

Theorem 1—Under Conditions (C1) to (C3), assume that for some positive constant τmax, 

λmax(Σ) < τmax < ∞, where λmax(Σ) is the largest eigenvalue of Σ. Then, as n → ∞, there 

exists a set of constants  for every 1 ≤ k1, k2 ≤ K, such that

(2.10)

(2.11)

where  and m0 is some positive constant.

The proof of Theorem 1 is given in Appendix A. The first conclusion reveals that under 

appropriate conditions, by pairwise sure independence screening, all the relevant features 

can be selected consistently and uniformly, that is  for every pair (k1, k2) 

with 1 ≤ k1, k2 ≤ K. As a result, the proposed method enjoys the so-called screening 

consistency property. However, it is remarkable that very often we have . In 

fact, the conclusion (2.10) can be satisfied trivially if no constraint is put on . For 

example, as discussed before, we can always set . In this case, the true model 

 is obviously and seriously overfitted. However, by the second conclusion, we know 

that the overfitting effect suffered by the PSIS estimator is limited, because the maximal size 

of  is expected to be much smaller than n/K, if λmax(Σ) is bounded. In this case, mmax 

is of the order . Then by (C3) we know that  as n → ∞. This 

suggests that maximal size of  should be much smaller than the average class sample 

size n/K asymptotically.

Remark 3—By Theorem 1, we know that the maximal size of  (i.e., mmax) is mainly 

influenced by two factors. First, it is influenced by the true pairwise model size, that is 

. As ξ0 increases, the true pairwise model size gets larger, which inevitably 

calls for larger sized model estimates for screening consistency. Second, the signal strength 

γmin, as controlled by κ0, is also important. Larger γmin (i.e., smaller κ0) makes model 

identification easier and thus smaller sized model estimate is needed.

Remark 4—Conditions (C1), (C2) and (C3) are not the weakest conditions to establish 

Theorem 1, but they are used to facilitate the technical proof. One may impose some relaxed 

conditions to establish results in Theorem 1. For instance, the sparsity assumption may be 

relaxed to be an approximate one. Specifically, one may re-define 

for some positive sequence ♭n → 0 as n → ∞. Imposing Condition (C2) on this newly 
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defined set , and assuming that  and  for some 

fixed constants Cmax > 0 and sufficiently small δ0 > 0, it can be shown that the screening 

consistency properties as given in Theorem 1 is still valid.

2.4. Post Screening Estimation

In this section, we investigate how the strong screening consistency property about , 

that is (2.10) and (2.11), can be reflected in the estimation of  after feature screening. 

More specifically, for a given , we can estimate  by 

, where  for any  and 

. Note that 

 and  is the inverse of , 

which is a submatrix of the covariance of the estimated covariance  corresponding to 

. Here, the estimator  is given by

(2.12)

where  is the corresponding estimator 

based on data from the kth class.

Remark 5—It is remarkable that in order to have  invertible we need to have 

. On the other hand, with a finite data, it is possible to have 

. This is particularly true if the sample size is small. If that happens, we 

would include only the top (n−K) relevant features in  to facilitate computation. 

According to Theorem 1, we know that this is extremely unlikely to happen if the sample 

size is reasonably large. Our extensive simulation experience corroborates this theoretical 

finding quite well.

Recall λmax(A) stands for the largest eigenvalue of an arbitrary semipositive definite matrix 

A. Similarly, define λmin(A) to be the smallest one. We then have the following theorem 

about the the asymptotic property of the post screening estimator.

Theorem 2—Assume (C1)–(C3). Further assume that 0 < τmin < λmin(Σ) ≤ λmax(Σ) < τmax 

< ∞ for some constants τmin and τmax. Then .

The proof of Theorem 2 is given in Appendix B. By Theorem 2 we know that the post-

screening estimator  is consistent for , uniformly over 1 ≤ k1, k2 ≤ K. This 
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property ensures the outstanding performance of the subsequent classification. More 

specifically, for a new observation X0, we can predict Y0 by , where

(2.13)

As we shall demonstrate in Section 3, the prediction accuracy of  is very comparable to that 

of k* in (2.4), that is the theoretically optimal prediction result obtained under the true 

parameters (that is , , and ).

2.5. Tuning Parameter Selection

For practical implementation, the selection of the tuning parameter  is important. 

Different  might lead to different . When every possible value of  is 

considered, a solution path  is generated. Subsequently, the 

problem of tuning parameter selection about  is converted into a model selection 

problem about . Under a classical regression setup with a fixed predictor 

dimension, this has been extensively studied. See, for example, AIC (Akaike, 1973), BIC 

(Schwarz, 1978), EBIC (Chen and Chen, 2008), and recent work (Wang, 2009).

However, it is not immediately clear how to apply those selection criteria (e.g., AIC, BIC, 

and EBIC) here, because the likelihood function of our problem involves Σ−1, which cannot 

be estimated accurately due to high dimensinoality. To solve the problem, we enforce a 

working independence structure on Σ. Specifically, we temporarily assume within this 

subsection that Σ is diagonal, which is equivalent to assuming that different Xijs are 

independent with each other for a fixed i but different j. It is remarkable that such an 

assumption is made here solely for the sake of computational convenience and has nothing 

to do with the true predictor covariance. Under this assumption, we can easily extend those 

classical model selection criteria (e.g., AIC, BIC, EBIC) to our situation. Extensive 

simulation experiments suggest that the resulting EBIC criterion of Chen and Chen (2008) 

leads to excellent finite sample performance. Furthermore, EBIC’s screening consistency 

property (Fan and Lv, 2008) can be established rigorously for a general Σ matrix, even 

though it was developed under a working independence assumption. Subsequently, we 

would focus on the EBIC criterion only.

For simplicity, we consider two arbitrary classes, that is k ∈ {k1, k2}. We further use 

 to denote the sample size from class k1 and k2. Recall that  is the true 

model which collects indices for nonzero components in . We denote  as an arbitrary 

candidate model with size . Next, we impose the aforementioned working independence 

assumption. Accordingly, the negative two times maximum log likelihood function is given 

by
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where some irrelevant constants are omitted and , 

, where  and  are defined in 

(2.12), . Note that for each , we need two 

different mean parameters (i.e.,  and ). Thus, each  consumes 2 degrees of 

freedom. In contrast, for each , only 1 degree of freedom is needed. Thus, the overall 

degrees of freedom for  is given by , because , 

where . We then follow the idea of EBIC (Chen and Chen, 2008) and propose 

the following model selection criterion as

We then select the optimal model as . Its screening 

consistency property is given by the following theorem.

Theorem 3—Assume conditions (C1)–(C3) hold and λmax(Σ) is finite. It follows that

The proof of Theorem 3 is given in Appendix C. Our extensive numerical experiences 

suggest that  performs quite well. See next section for numerical evidence.

3. NUMERICAL STUDIES

3.1. Simulation Models

We present five examples here. The first three examples examine the proposed methods with 

different covariance structures. The fourth example investigates its sensitivity towards the 

normality assumption. The last example considers a case with very unbalanced πk 

distribution.

Example 1. (Independent Covariance Structure)—We first consider a simple 

example with independent features. The simulation setup is similar to the second example in 

Guo et al. (2007). More specifically, we first generate Yi ∈ {1, …, K} according to P(Yi = k) 

= 1/K. Given Yi = k, Xi is generated from a multivariate normal distribution with E(Xi|Yi = 

k) = μk, where μk = (0, …, 0, μkk, 0, …, 0)⊤ ∈ ℝp is a p-dimensional vector with μkk = μ. 

Furthermore, the conditional covariance is given by cov(Xi|Yi = k) = Σ = Ip, where Ip is a p 

× p identity matrix. It is easily verified that , and thus 

.
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Example 2. (Autoregressive Covariance Structure)—In this example, we consider 

an autoregressive covariance structure. The data are generated in a similar manner as 

Example 1 but with two differences. Firstly, Σ is fixed as . Note that 

 is very sparse with ω11 = ωpp = 4/3, ωjj = 5/3 for 1 < j < p, ωj(j+1) = 

ω(j+1)j = −2/3 for 1 ≤ j < p, and  whenever |j1 − j2| > 1. Secondly, the mean vector μk 

is set to be μk = μΣ(k), where Σ(k) stands for the kth column vector of Σ. Accordingly, it 

follows that  with .

Example 3. (Compound Symmetric Covariance Structure)—In this example, we 

explore another important covariance structure. The data are generated in a similar manner 

as in Example 1. However, the covariance is changed to , which is a 

compound symmetric structure with diagonal components being 1 but all others being 0.5. 

One can verify that  with . Furthermore, we know that 

λmax(Σ) = 0.5(p+1). It is then of great interest to examine how the proposed procedure is 

sensitive when the largest eigenvalue of the covariance matrix is diverging.

Example 4. (Normality Assumption)—In this example, we investigate the sensitivity of 

the proposed procedure to the normality assumption. To this end, Yi ∈ {1, …, K} is 

generated according to P(Yi = k) = 1/K. Given Yi = k, we then generate the predictors as Xi 

= μkI(Yi = k) + Zi, where μk = (0, …, 0, μkk, 0, …, 0)⊤ ∈ ℝp with μkk = μ. Furthermore, each 

component of the random vector Zi = (Zi1, · · ·, Zip)⊤ ∈ ℝp is independently simulated from 

a centralized standard exponential distribution, that is exp(1) − 1. Again, we have 

 and .

Example 5. (Unbalanced Case)—In the last example, we consider a case with very 

unbalanced πk distribution. Specifically, we fix π1 = 1/5 and πk = 4/{5(K − 1)} for k = 2, 

…, K. As one can see, π1 = P (Yi = 1) is the dominating case and it remains as a constant 

1/5 as K → ∞. In contrast, πk → 0 as K → ∞ for every k > 1. Given the class label Yi, Xi 

is then generated similarly as in Example 1. Once again,  and 

.

3.2. Assessment Criteria

For each simulation model, we fix μ = 5 and p = 10, 000. Various (n, K) combinations are 

considered. They are particularly selected so that the average class sample size (n/K) 

increases as n → ∞. For each (n, K) combination, the experiment is randomly replicated (or 

repeated) 1,000 times. For each replication, two independent datasets are generated. One is 

used for training while the other is reserved for testing. The sample size of the training 

dataset is given by n, as mentioned previously. That of the testing is fixed to be 500. Let 

 be the model estimator obtained in the rth replication. We then consider the following 

measures to gauge the performances (Wang et al., 2007; Wang, 2009, 2012).
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First, for each class pair (k1, k2) and each simulation replication r, define, respectively, the 

model size (MS), percentage of correct zeros (CZ), incorrect zeros (IZ), coverage probability 

(CP), and the root of the sum squared error (RSSE) as follows:

where  is the post-screening estimator obtained in the rth simulation replication 

according to Section 2.4. We then average the above performance measures across not only 

every simulation replication (that is 1 ≤ r ≤ 1, 000) but also every class pair (that is 1 ≤ k1, k2 

≤ K). This leads to the final performance measures, denoted MS, CZ, IZ, CP, and RSSE, 

respectively.

In addition, we consider the maximum MS (MMS), uniform CP (UCP), and maximum 

RSSE (MRSSE) measures as follows:

Lastly, the classification accuracy (i.e., CA = the percentage of the samples satisfying ) 

of the post-screening estimator is evaluated according to (2.13) on the testing dataset. It is 

calculated for each experiment and then averaged across the 1,000 random replications. For 

comparison, the ideal classifier, that is k* as given in (2.1), is also evaluated. The ratio of the 

averaged CA values with  over k* is computed and is referred to as the relative 

classification accuracy (RCA). Lastly, the averaged CPU time (CPU) consumed by our 

method is also reported in seconds. The detailed simulation results are summarized in Table 

1.

3.3. Simulation Results

Because the patterns are qualitatively similar across different models, we only focus on 

Model 1 for interpretation. First of all, we find that most MS and MMS are bounded below 5 

and some could be very close to the target . Accordingly, the estimated models 

demonstrated excellent ability to produce correct sparse solutions with CZ values always 

staying at 100%. As a result, the uniform bounded property of (2.11) should hold for the 

estimated models. Meanwhile, the uniform coverage property of (2.10) should also hold 
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because the reported CP and UCP values quickly increase towards 100% as n increases. 

Accordingly, the strong screening consistency property, as defined by (2.10) and (2.11), 

should hold for the estimated models. Lastly, the corresponding post screening estimator is 

uniformly consistent, with both RSSE and MRSSE steadily decreasing towards 0, as n 

increases. This leads to excellent classification performance, with RCA values above 99% in 

most cases. To gauge computational speed, the average CPU time used by each PSIS 

replication is also reported in the last column. We find it increases quickly as K increases. 

This is expected because the the number of pairs need to be classified increases as a 

quadratic function in K.

For the sake of comparison, the methods of neural network (NNet), support vector machine 

(SVM), and the penalized linear discriminant analysis (Witten and Tibshirani, 2011, PLDA) 

are also evaluated by CA in a similar manner as for PSIS. They are implemented by the 

existing R-packages (i.e., nnet, e1701, and penalizedLDA). To save computational time in R, 

they are replicated 100 times for each example with p = 2, 000 and (n, K) = (400, 10). The 

detailed results are given in Table 2. We find that the performance of NNet and SVM are 

quite poor with classification accuracy no more than 30%. In contrast, that of the PLDA is 

much better. In some cases (i.e., Models 1, 4 and 5), its performance is extremely 

comparable with that of the PSIS. However, for other cases, it is clearly outperformed by 

PSIS.

3.4. Handwritten Chinese Characters

To illustrate the practical usefulness of the proposed method, we present here a real example 

about automatic recognition of handwritten Chinese characters. For illustration, we consider 

a total of K = 10 frequently used Chinese characters, with each character representing one 

class. We hire some volunteers to write down these characters. For each Chinese character, a 

total of 35 handwritten samples are obtained. We randomly split the 35 samples into two 

sets. The first set contains 30 samples for training and the other contains the remaining 5 for 

testing. Furthermore, each sample has been converted into 25 × 25 pixel data in grayscale, 

which results in a high dimensional predictor with p = 25 × 25 = 625. See Figure 1 for some 

handwritten samples. Accordingly, the effective sample size used for model training is n = 

10×30 = 300, which is much smaller than the predictor dimension p = 625.

We then apply the proposed PSIS method in conjunction with the EBIC criterion to the 

training dataset. This leads to the model estimate  for every 1 ≤ k1, k2 ≤ K. 

Accordingly, the post screening estimator  can be obtained, whose forecasting accuracy 

is evaluated on the testing data. We randomly repeat this procedure 1,000 times, which leads 

to 1,000 different partition of the training and testing samples. For every random replication, 

various performance measures are computed. Those measures are then averaged over 1,000 

experiments and reported in Table 3. For the sake comparison, the methods of NNet, SVM 

and PLDA are also evaluated. The detailed results are given in Table 3. We find that for 

PSIS, the average model size is 15.61. The total number of selected features is 60.69. In 

contrast, that of the PLDA is 173.41. In terms of classification accuracy, PSIS performs best 

with CA=93.86%, followed by 87.68% of PLDA, 85.41% of NNet and 78.40% of SVM.
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Remark 6—It is remarkable that the Chinese characters considered in this case are similar 

to each other. That makes the coefficient  very sparse for every class pair. 

However, if two Chinese characters are drastically different, the number of relevant pixels 

could be much larger. This makes  less sparse and thus the proposed PSIS method 

becomes less effective. As a result, it is important to first cluster a huge number of Chinese 

characters into different groups, so that the characters within each group are sufficiently 

similar to each other. However, how to conduct this preliminary clustering analysis 

effectively and correctly is a very interesting research topic currently under investigation. 

Our preliminary numerical experiences seem to be extremely encouraging.

4. CONCLUDING REMARKS

In this paper, we developed a new feature screening method for ultrahigh dimensional LDA 

with many classes. We propose a pairwise method for variable screening. This leads to 

pairwise classification with competitive performances. We rigorously show that the proposed 

procedure enjoys the strong screening consistency property, which implies that screening 

consistency holds uniformly over a large number of classes. It is remarkable that this 

property is established with uniformly bounded model sizes across every class pair under 

appropriate conditions. We further show that the post-screening estimator is uniformly 

consistent.

The newly proposed method is based on normality assumption. The traditional multivariate 

skewness and kurtosis (Mardia, 1970) involves the inverse of sample covariance matrix, and 

therefore they cannot be directly applied for test of ultrahigh dimensional normality. 

Multivariate Ghosh’s T3-plot developed in Fang et al. (1998) provides a graphical tool for 

detecting the ultrahigh non-multinormality. The test of multinormality based on low-

dimensional projection (Liang et al., 2000) may be used for test of ultrahigh dimensional 

normality.

In order to solve a multi-class LDA problem, there exist at least two competing choices. One 

is to solve the problem jointly, i.e., evaluate the posterior probability for each class according 

to the joint likelihood. As an alternative, one can also solve the problem in a pairwise 

manner as what has been proposed here. Then, it is natural to ask which solution is better 

under an ultrahigh dimensional setup? Such an important theoretical question was never 

rigorously addressed in the past literature, according to our best knowledge. We then fulfil 

this gap by demonstrating both theoretically and numerically that pairwise classification is 

optimal under appropriate conditions. With this solid theoretical foundation, one can 

imagine immediately that essentially any well developed two-class sparse LDA methods 

(Fan and Fan, 2008; Cai and Liu, 2011; Fan et al., 2012; Mai et al., 2012) can be readily 

extended to multi-class LDA problems. The resulting classification performances are also 

likely to be optimal. We regard that this is one of our major contributions in this work.

To conclude this article, we would like to discuss here some interesting topics for future 

research. First, as demonstrated by the simulation study, as K increases, the demanded CPU 

time also increases at a quadratic rate. This places a serious challenge for PSIS with very 

large K. Then, how to reduce the computational complexity without sacrificing forecasting 
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accuracy is our first important topic for future research. Second, when K is large, the 

common covariance assumption becomes questionable. It is more likely to have unequal 

covariances. That leads to pairwise quadratic discriminant analysis (QDA). Then, how to 

conduct consistent variable screening for pairwise QDA is another interesting topic. 

Numerically, it seems that our current pairwise screening method can be directly applied. 

However, theoretically whether this can be justified would be the key research question. 

Third, our current theoretical results, given in Theorems 1 and 2, are all based on asymptotic 

analysis without explicit convergence rate for . However, as pointed out by one referee, 

the convergence rate should be useful if one wants to understand the asymptotic behavior of 

the risk of the Bayes classifier. This is particularly true if 

. In this case the risk of the Bayes classifier goes to 0. 

Lastly, another referee pointed out that it may be of interest to investigate finite sample 

theoretical properties. Theoretical study on the risk of the Bayes classifier and finite sample 

properties of the proposed procedure is out of the scope of this paper. They both are 

interesting topics for future research.
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Appendix A. Proof of Theorem 1

The proof of Theorem 1 consists of four steps. In Step 1, we show that the sample size of the 

kth class nk is of order Op(n/K). In Step 2, we show that  is a uniformly consistent 

estimator for . In Step 3, we show that with probability tending to one, 

uniformly over every 1 ≤ k1, k2 ≤ K. In Step 4, we further show that the size of  can 

be uniformly bounded.

Step 1

For every 1 ≤ k ≤ K, define Rk = (nk − nK−1)/(nK−1). We then have nk = nK−1(1 + Rk). 

Define R = maxk|Rk| and we then have

(A.1)

Subsequently, we will show R is an op(1). Specifically, recall that  and 

define Zi = I(Yi = k) − πk. We then have EZi = 0, , and |Zi| ≤ M with M = 1. 

As a result, by Bernstein’s inequality, it follows that
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where ɛ > 0 is an arbitrary positive constant. Similar inequality also can be obtained for −Zi. 

Note that ΣiZi = nk − nπk, and πk = 1/K. We then have that

Recall that R = maxk |Rk| = maxk (nk − n/K)/(nK−1), we then have

as n → ∞. As a result, we have R = op(1). This accomplishes the first step.

Step 2

Since , we know that  is distributed as a normal variable with 

mean μkj and variance σjj/nk. For the normal distribution, we have the following tail 

probability inequality (Fan and Fan, 2008): , where Φ(·) 

is the cumulative function of a standard normal distribution. For simplicity, from now on, we 

use ℙ(·) to denote the conditional probability with nks given. Next, let  be a positive 

constant of order , we have

The above quantity is further bounded by 

, where M1 and M2 are some positive 

constants depending on vn. The last inequality is due to (A.1) in the first step. By definition, 

we know that . As a 

result,

(A.2)
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for some constants C1 and C2. Thus, it follows that

(A.3)

as n → ∞, where C0 is some constant and the last convergence result is due to Condition 

(C3) and also the fact that R = op(1) in Step 1. Consequently, we have that

(A.4)

as n → ∞. This accomplishes the second step.

Step 3

Define , where γmin is defined in Condition (C3). 

Accordingly, we want to show that  should uniformly cover  with probability 

tending to one. Otherwise, there must exist a pair (k1, k2), and at least one 

missed by . By the definition of , we must have . However, 

by Condition (C3), if , then . These together suggest that 

. As a result, if , we must have 

. Define , by (A.4) and Condition (C3) we 

know that 

, as n 

→ ∞. This suggests that  as n → ∞. This 

finishes the third step.

Step 4

We next verify that the size of  can be uniformly bounded. First, by (C1) to (C3), we 

have , where 

 This immediately suggests that

(A.5)

Further define . Then, 

. By (C3), then 
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, where m0 is some fixed constant. Because 

mmax is independent of k1 and k2, we know that . Thus, Theorem 1 

follows by proving that, with probability tending to one,  for any pair (k1, 

k2). Assume that there exists a pair (k1, k2) such that , we then must have 

. This means there must exist at least one  but . Because 

, we know that . On the other hand, because , we must 

have . We know immediately that , and then 

. By (A.4) with  and Condition (C3) we 

have , as n → ∞. This suggests that 

 as n → ∞. This completes the proof of the last step and hence of 

Theorem 1.

Appendix B. Proof of Theorem 2

Recall that  and  are the submatrices of  and Σ, respectively. In order 

to prove Theorem 2, we need the following lemma.

Lemma 1

Under Conditions of Theorem 2, then with probability tending to one,

(A.6)

(A.7)

Proof

Note that the second conclusion (A.7) can be easily verified if (A.6) is correct. As a result, 

we focus on (A.6) only. To this end, let r = (r1, …, rp)⊤ be an arbitrary p-dimensional vector, 

and  be its subvector corresponding to set . Then the desired conclusion (A.6) 

can be implied by

(A.8)
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where . It follows by Theorem 1 that, with probability tending to one, we must 

have , where mmax is defined in Appendix A. Then, following the 

similar arguments in Wang (2009), the left side of the above inequality has an upper bound

(A.9)

Next, by Lemma A3 in Bickel and Levina (2008) we have

where N1 and N2 are some constants. Applying this inequality to the right hand side of (A.

9), it can be further bounded from above by

(A.10)

as n → ∞, where N0 and N3 are some constants. The last convergence result is due to the 

second conclusion in Theorem 1 and Condition (C3). This proves (A.8) and completes the 

proof of Lemma 1.

Lemma 2

For any overfitted model  with arbitrary two classes k1 ≠ k2, we should have 

.

Proof

Recall  is the true model for class pair (k1, k2). We know immediately that , 

where  and  is the full model. Furthermore, we decompose 

Σ according to  and  as Σ = (Σ11, Σ12; Σ21, Σ22). We know immediately that 

 and . Similarly, we write  Next, 

write Σ−1 = (Γ11, Γ12; Γ21, Γ22) Since , we then have
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(A.11)

(A.12)

Furthermore, we have ΣΣ−1 = I, where I stands for an identity matrix with a compatible 

dimension. We then have

(A.13)

(A.14)

It is interesting to note that the following equality as , where the 

above four equations are due to equations (A.11), (A.13), (A.12) and (A.14) respectively. As 

a result,  and this completes the proof.

Now we prove Theorem 2. Let . Then, it follows by 

definition that the subvector  Using (2.10), we have that, with probability 

tending to one,  for every k1 ≠ k2. This implies that  with 

probability tending to one. Then by Lemma 2, with probability tending to one, the 

convergence rate of  is identical to that of
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(A.15)

(A.16)

Recall that ‖A‖ in (A.16) is the spectral norm of matrix A, defined as . 

Subsequently, we want to demonstrate that both quantities in (A.15) and (A.16) are op(1). 

First, by Lemma 1, we know that  with probability 

tending to one. As a result, we know that  in 

probability. Furthermore, by the result of (A.4) together with (2.11), we have that 

, under Conditions to (C3). As a result, the 

quantity involved in (A.15) is of op(1). We thus only need to focus on (A.16). To this end, 

note that by (A.5) we have

(A.17)

Furthermore, 

Then
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The last equality is due to Lemma 1. Combine this result with (A.17), we know that the 

quantity in (A.16) is a op(1). This together with (A.15) demonstrates that 

, and also completes the proof.

Appendix C. Proof of Theorem 3

We want to prove that  uniformly over all the possible class pairs with 

probability tending to one. Otherwise, there must exit one pair (k1, k2), such that 

. By conditions (C1)–(C3) and Theorem 1, we know that there exists a 

model  such that  and , where Cm is 

some positive constant. Because the models contained in the solution path  is mutually 

nested with each other. We then must have . Moreover, by the definition of 

, we must have . Write . We 

then have . As a result

(A.18)

where . Because ,  and 

, we know j* exists and is well defined. The above inequality is also due to 

the fact that  by definition. Then further lower bound the right hand side of 

the above quantity by

(A.19)

because max , Condition (C1) and the fact that 

. By the definition of  and , one can verify that
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Following similar technique in the proof of Theorem 1, one can easily show that 

 and . All 

these suggest that the right hand side of (A.19) can be further lower bounded by

(A.20)

due to the fact that  is uniformly consistent for μkj; see the proof of Theorem 1. Here C* 

is some positive constant. By condition (C3), we know that the first term in (A.20) is a 

positive quantity with order , which dominates the second term in (A.20), that is 

. Once again this is due to the condition (C3). We know then that the right 

hand side of (A.20) must be positive with probability tending to one. This suggests that (A.

18) should happen with probability tending to zero. As a result, we must have 

 uniformly over all class pairs with probability tending to one. This proves 

the theorem conclusion.
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Figure 1. 
Handwritten Version of the Ten Chinese Characters
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Table 2

Different Classification Methods with (n, K) = (400, 10) and p = 2000.

Example SVM NNet PLDA PSIS

1 11.75 14.43 99.64 99.81

2 12.61 15.12 80.10 98.71

3 11.29 13.75 41.03 99.86

4 12.06 14.75 96.44 97.04

5 19.97 22.23 99.70 99.83
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Table 3

Detailed Results for Chinese characters data set

Method Classification Accuracy (%) Total Number of Selected Features Average Model Size

PSIS 93.86 60.69 15.61

PLDA 87.68 173.41 –

NNet 85.41 – –

SVM 78.40 – –
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