
Ultrahigh dimensional variable selection:

Beyond the linear model

Jianqing Fan

Princeton University

With Richard Samworth and Yichao Wu; Rui Song

http://www.princeton.edu/∼jqfan

May 16, 2009

Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 1 / 43

http://www.princeton.edu/~jqfan


Outline

1 Introduction

2 Large-scale screening

3 Moderate-scale Selection

4 Iterative feature selection

5 Numerical Studies

Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 2 / 43



Introduction

Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 3 / 43



Introduction

High-dim variable selection characterizes many contemporary

statistical problems.

Bioinformatic: disease classification using microarray, proteomics,

fMRI data.

Document or text classification: E-mail spam.

Association studies between phenotypes and SNPs.
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Growth of Dimensionality

�Dimensionality grows rapidly with interactions

Portfolio selection and network modeling: 2,000 stocks involves

over 2m unknown parameters in the covariance matrix.

50%

50%

0%

Gene-gene inteaction: interactions of 5000 genes result in 12.5m

features.
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Aims of High-dimensional Regression and Classification

� To construct as effective a method as possible to predict future

observations.

� To gain insight into the relationship between features and response

for scientific purposes, as well as, hopefully, to construct an

improved prediction method.

Bickel (2008) discussion of the SIS paper (JRSS-B).
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Challenges with Ultrahigh Dimensionality

�Computational cost �Estimation accuracy. �Stability

Key idea: Large-scale screening and moderate-scale searching.
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Large-scale sreening
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Independence learning

Regression: Feature ranking by correlation learning (Fan and Lv, 2008,

JRSS-B). When Y = ±1, this implies

Classification: Feature ranking by two-sample t-tests or other tests

(Tibshirani, et al, 03; Fan and Fan, 2008).

SIS: By an appropriate thresholding (e.g., n variables), relevant

features are in the selected set (Fan and Lv, 08), relying on

joint-normality assumption.

Other independent learning: Hall, Titterington and Xue (2009) derive

such a method from empirical likelihood point of view.
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Model setting

GLIM: fY (y |X = x ;θ) = exp
{
(yθ−b(θ))/φ+ c(y ,φ)

}
with

canonial link : b′−1(µ) = θ = xT β.

Objective: Find sparse β to minimize Q(β) = ∑n
i=1 L(Yi ,x

T
i β).

� GLIM: L(Yi ,x
T
i β) = b(xT

i β)−Yix
T
i β.

� Classification: Y = ±1.

⋆SVM L(Yi ,x
T
i β) = (1−Yix

T
i β)+.

⋆AdaBoost L(Yi ,x
T
i β) = exp(−Yix

T
i β).

� Robustness: L(Yi ,x
T
i β) = |Yi −xT

i β|.
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Questions

1 How to screen discrete variables (Genome-wide association)?

2 Do they have sure screening property?

3 What is the size of selected model in order to have SIS?

The arguments in Fan and Lv (2008) can not be applied here.
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Independence learning

Marginal utility: Letting L̂0 = minβ0
n−1 ∑n

i=1 L(Yi ,β0), define

L̂j = L̂0 − min
β0,βj

n−1
n

∑
i=1

L(Yi ,β0 +Xijβj) Wilks.

or β̂
M
j (Wald), assuming EX 2

j = 1.

Feature ranking: Select features w/ largest marginal utilities:

M̂νn = {j : L̂j ≥ νn}, M̂
w

γn
= {j : β̂M

j ≥ γn}

Dim. reduction: From pn = O(exp(na)) to O(nb):

200 10000
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Theoretical Basis – Population Aspect I

Marginal utility: L⋆
j = Eℓ(Y ,βM

0 )−minEℓ(Y ,β0 +βjXj).

Likelihood ratio (Fan and Song, 09)

Theorem 1: L⋆
j = 0 ⇐⇒ cov(Y ,Xj) = cov(b′(XT β⋆),Xj) = 0

⇐⇒ βM
j = 0.

For Gaussian covariates, conclusion holds if |cov(XT β⋆,Xj)| = 0, i.e.

independence.
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Theoretical Basis – Population Aspect II

True model: M⋆ = {j : β⋆
j 6= 0}, where β⋆ = argminEL(Y ,XT β).

Theorem 2: If |cov(b′(XT β⋆),Xj)| ≥ c1n−κ for j ∈ M⋆, then

min
j∈M⋆

|βM
j | ≥ c1n−κ, min

j∈M⋆

|L⋆
j | ≥ c2n−2κ.

If {Xj , j /∈ M⋆} is independent of {Xi , i ∈ M⋆}, then L⋆
j = 0.

For Gaussian covariates, conclusion holds if

|cov(XTβ⋆,Xj)| ≥ c1n−κ, min condition even for LS.
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Sampling Aspect: Sure independence screening

Theorem 3: If νn = cn−2κ for κ < 1/2, and logsn = o(n1−2κ), then

P
(

M⋆ ⊂ M̂νn

)
→ 1 exponentially fast

No conditions on covariance matrix!

� This is a SIS property w/ size controlled.

� Note that L̂j −L⋆
j = O(logp/n1/2) and minimum signal O(n−2κ).

How to deal with it? —Appeal to the ranking invariance under

monotonic transform.

� Screening using Wald stat β̂
M
j has SIS property.
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Screening by MMLE

Let M̂ w
γn

= {|β̂M
j | ≥ γn}.

1 P(maxj |β̂M
j − β̂M

j | > c3n−κ) = o(1), if logpn = o(n1−2κ).

2 P(M⋆ ⊂ M̂ w
γn

) → 1, if γn = c0n−κ , c0 < c1/2.

3 What is the selected model size? We establish

‖βM‖2 = O(‖Σβ⋆‖2) = O{λmax(Σ) β⋆T Σβ⋆} = O(λmax(Σ)).

4 The #{|βM
j | ≥ γn} is OP{γ−2

n λmax(Σ)}, and so is the selected

model size.
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Sampling Aspect: Controlling number of features

Theorem 4: If logpn = o(n1−2κ),

P[|M̂νn
| ≤ O{n2κλmax(Σ)}] → 1.

�Establish ‖L⋆‖2 = O(‖βM‖2) = O(‖Σβ⋆‖2).

�The number of selected covariates depends on the population

covariance. It is actually bounded by

O(γ−2
n ‖Σβ⋆‖2) = O{n2κλmax(Σ)}.
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Moderate-scale selection
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Moderate-scale of Model Selectors

�Penalized lik.: n−1 ∑n
i=1 L(Yi ,β0 +xT

i,dβ)+∑d
j=1 pλ(|βj |).

Simultaneously estimate coefs and choose variables.

Lasso (Tibshirani, 96), LARS (Efron et al., 04),

Adaptive Lasso(Zou, 06), Approx sparse (Huang and Zhang, 06).

SCAD (Fan & Li, 01, 06; Fan & Peng, 04)

LQA (Fan & Li, 01), MM (Hunter & Li, 05),

LA (Li and Zou, 07), and PLUS (Zhang, 07).
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�Dantzig selector (Candes & Tao, 07)

minβ∈Rpn ‖β‖1 subject to

∥∥X
T

r

∥∥
∞ ≤ λpn

σ

with λpn > 0, r = y−Xβ and σ noise level. ≈ Lasso (Bickel, et al, 2008)

Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 19 / 43



Moderate-scale of Model Selectors

�Penalized lik.: n−1 ∑n
i=1 L(Yi ,β0 +xT

i,dβ)+∑d
j=1 pλ(|βj |).

Simultaneously estimate coefs and choose variables.

Lasso (Tibshirani, 96), LARS (Efron et al., 04),

Adaptive Lasso(Zou, 06), Approx sparse (Huang and Zhang, 06).

SCAD (Fan & Li, 01, 06; Fan & Peng, 04)

LQA (Fan & Li, 01), MM (Hunter & Li, 05),

LA (Li and Zou, 07), and PLUS (Zhang, 07).

−10 −5 0 5 10

0
5

1
0

1
5

2
0

SCADMM1

beta

p
e
n
a
lt
y

�Dantzig selector (Candes & Tao, 07)

minβ∈Rpn ‖β‖1 subject to

∥∥X
T

r

∥∥
∞ ≤ λpn

σ

with λpn > 0, r = y−Xβ and σ noise level. ≈ Lasso (Bickel, et al, 2008)

Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 19 / 43



Moderate-scale of Model Selectors

�Penalized lik.: n−1 ∑n
i=1 L(Yi ,β0 +xT

i,dβ)+∑d
j=1 pλ(|βj |).

Simultaneously estimate coefs and choose variables.

Lasso (Tibshirani, 96), LARS (Efron et al., 04),

Adaptive Lasso(Zou, 06), Approx sparse (Huang and Zhang, 06).

SCAD (Fan & Li, 01, 06; Fan & Peng, 04)

LQA (Fan & Li, 01), MM (Hunter & Li, 05),

LA (Li and Zou, 07), and PLUS (Zhang, 07).

−10 −5 0 5 10

0
5

1
0

1
5

2
0

SCADMM1

beta

p
e
n
a
lt
y

�Dantzig selector (Candes & Tao, 07)

minβ∈Rpn ‖β‖1 subject to

∥∥X
T

r

∥∥
∞ ≤ λpn

σ

with λpn > 0, r = y−Xβ and σ noise level. ≈ Lasso (Bickel, et al, 2008)

Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 19 / 43



Connections among penalized least-squares

�PLS: ‖y−Xβ‖2 +∑pn
i=1 pλ(|βi |).

LLA: with initial value β0 (Zou & Li, 08),

‖y−Xβ‖2 +
pn

∑
i=1

{pλ(|βi,0|)+pλ(|βi,0|)′(|βi |− |βi,0|)}.
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SCADMM1

beta

p
e
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Weighted L1: ‖y−Xβ‖2 +∑pn
i=1 w(|βi,0|)|βi |.

Fan and Li (01) stressed the unbiasedness.

Convergence: Objective function decreasing.
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Risk Comparisons of popularized least-sqaures

�Penalized least-squares: (Z −θ)2 +pλ(|θ|)
�R(θ̂,θ) = Eθ(θ̂−θ)2 with Z ∼ N(θ,1)

�λ = 2 for hard thresholding

−10 −5 0 5 10
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0.5

1

1.5
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3
SCAD
Hard
Soft

θ
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Iterative feature selection
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Drawback of Independence Screening

False negative: The features such that cov(Xj ,X
T β⋆) = 0 can not be

selected, but this can be a signature variable.

Example: If {Xj}J
j=1 has common correlation ρ, then

cov(XJ+1,X1 + · · ·+XJ −JρXJ+1) = 0.

False positive: Rank too high predictors jointly unimportant but

marginally important:

cov(XJ+1,X1 + · · ·+XJ −0.2Xp+1) = Jρ.
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Iterative feature selection

1 �(Large-scale screening): Apply SIS to pick a set A1;

�(Moderate-scale selection): Employ a penalized likelihood to

select a subset M1 of these indices.

2 (Large-scale screening): Rank features according to the

additional (conditional) contribution:

L
(2)
j = min

β0,βM1
,βj

n−1
n

∑
i=1

L(Yi ,β0 +xT
i,M1

βM1
+Xijβj).

—Resulting in new feature sets A2.

—An improvement over Fan and Lv (08) who set βM1
= β̂M1

from

previous fit.
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Iterative feature selection (II)

3 (Moderate-scale selection): Minimize wrt βM1
, βA2

n

∑
i=1

L(Yi ,β0 +xT
i,M1

βM1
+xT

i,A2
βA2

)+ ∑
j∈M1∪A2

pλ(|βj |).

—Resulting in M2

—Allow deletion, improvement over ISIS (Fan and Lv, 08).

4 Repeat Steps 1–3 until |Mℓ| = d (prescribed) or Mℓ = Mℓ−1.

d
n

p
n

SIS

SCAD

DS

DS
SCAD

AdaLasso
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Reduction of false selection rates

Variant 1: �Randomly split samples to obtain Â(1) and Â(2).

�Take Â = Â(1)∩ Â(2).

Intuition: If both have SIS property, so does Â with lower FSR.

Theorem 1: With prescribed d ,

P(|Â ∩M
c
⋆ | ≥ r) ≤

(d
r

)2

(p−|M⋆|
r

) ≤ 1

r !

( d2

p−|M⋆|
)r

,

—Blessing of dimensionality!

Variant 2: Recruit as many variables into equal-sized sets Ã(1) and

Ã(2) as required such that |Â | = d (prescribed).
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Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 26 / 43



Numerical Studies
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Design of Simulations

Contexts: ⋆Logistic ⋆Poission ⋆L1-reg; ⋆Multiclass SVM

Covariates: p = 1000, Xi ∼ N(0,1).

1 X1, . . . ,Xp ∼i.i.d. N(0,1)

2 corr(Xi ,X4) = 1/
√

2 and otherwise corr(Xi ,Xj) = 1/2.

3 The same except corr(Xi ,Xp+1) = 0.
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Logistic regression, independent covariate

β1 = 1.24, β2 = −1.34, β3 = −1.35, β4 = −1.80, β5 = −1.58, β6 = −1.60.

Bayes test error: 0.1368. n = 400, Nsim = 100.

SIS ISIS Var2-SIS LASSO NSC

med(‖β− β̂‖1) 1.11 1.25 1.21 8.48 N/A

med(‖β− β̂‖2
2) 0.49 0.52 0.52 1.70 N/A

True positive 0.99 0.84 0.91 1.00 0.34

Med. model size 6 6 6 94 3

2Q(β̂0, β̂) (training) 237 247 243 164 N/A

AIC 250 260 256 353 N/A

BIC 278 285 282 725 N/A

2Q(β̂0, β̂) (test) 272 273 273 319 N/A

0-1 test error 0.14 0.14 0.14 0.17 0.36
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Logistic regression, difficult case — false negative

β1 = 4, β2 = 4, β3 = 4, β4 = −6
√

2, cov(X4,X
T β⋆) = 0.

Signature variable: Bayes error: 0.107 and .344 w/ and w/o X4.

Van-SIS ISIS Var2-ISIS LASSO NSC

med(‖β− β̂‖1) 20.1 1.94 1.85 21.6 N/A

med(‖β− β̂‖2
2) 9.41 1.05 0.98 9.11 N/A

True positive 0.00 1.00 1.00 0.00 0.21

Med. model size 16 4 4 91 16.5

2Q(β̂0, β̂)(training) 307 187 187 127 N/A

AIC 334 196 195 311 N/A

BIC 386 212 212 672 N/A

2Q(β̂0, β̂) (test) 344 204 204 259 N/A

0-1 test error .193 .109 .109 0.141 0.377
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Logistic, the most difficult case

β1 = 4, β2 = 4, β3 = 4, β4 = −6
√

2, βp+1 = 4/3, cov(X4,X
T β⋆) = 0.

Bayes error: 0.1040.

Van-SIS ISIS Var2-ISIS LASSO NSC

med(‖β− β̂‖1) 20.6 2.69 3.24 23.2 N/A

med(‖β− β̂‖2
2) 9.46 1.36 1.59 9.11 N/A

True Positive 0.00 0.90 0.98 0.00 0.17

Med. model size 16 5 5 102 10

2Q(β̂0, β̂)(training) 269 188 188 109 N/A

AIC 289 198 199 311 N/A

BIC 337 218 219 714 N/A

2Q(β̂0, β̂) (test) 361 225 226 276 N/A

0-1 test error .193 .112 .112 .146 .387
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Possion, independent covariates

β0 = 5, β1 = −0.54, β2 = 0.53, β3 = −0.50, β4 = −0.49, β5 = −0.41,

β6 = 0.52, n = 200, Nsim = 100.

SIS ISIS Var2-ISIS LASSO

med(‖β− β̂‖1) .070 .124 .122 .197

med(‖β− β̂‖2
2) .023 .032 .033 .054

True Positive .76 1.00 1.00 1.00

Med. model size 12 18 17 27

2Q(β̂0, β̂)(training) 1561 1502 1510 1534

AIC 1586 1538 1542 1587

BIC 1627 1597 1595 1674

2Q(β̂0, β̂) (test) 1558 1594 1589 1645
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Poisson Regression, difficult case

β0 = 5, β1 = 0.6, β2 = 0.6, β3 = 0.6, β4 = −0.9
√

2

cov(X4,X
T β⋆) = 0.

ISIS Var2-ISIS LASSO

med(‖β− β̂‖1) .271 .225 3.07

med(‖β− β̂‖2
2) .072 .068 1.29

True positive 1.00 .97 0.00

Median final model size 18 16 174

2Q(β̂0, β̂)(training) 1494 1509 1364

AIC 1531 1541 1718

BIC 1590 1596 2293

2Q(β̂0, β̂)(test) 1629 1615 2213
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Poisson Regression, the most difficult case

β0 = 5, β1 = 0.6, β2 = 0.6, β3 = 0.6, β4 = −0.9
√

2, βp+1 = −0.15

cov(X4,X
T β⋆) = 0.

Van-ISIS Var2-ISIS LASSO

med(‖β− β̂‖1) .254 .232 3.09

med(‖β− β̂‖2
2) .068 .068 1.29

True positive .97 .91 0.00

Median final model size 18 16 174

2Q(β̂0, β̂) (training) 1500 1516 1367

AIC 1536 1547 1715

BIC 1595 1600 2294

2Q(β̂0, β̂) (test) 1640 1631 2389
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Neuroblastoma Data (MAQC-II)

1 251 patients of the German Neuroblastoma Trials NB90-NB2004,

diagnosed between 1989 and 2004, aged from 0 to 296 months

(median 15 months).

2 Neuroblastoma is a common paediatric solid cancer (15%)

3 251 customized oligonucleotide microarray with p = 10,707.

4 focus on “3-year Event Free Survival”, —whether each patient

survived 3 years after the diagnosis of neuroblastoma (n = 239 w/

49 “+” and 190 “−”).

5 Aims: To study which genes are responsible for neuroblastoma and

its risk association.
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Results

Training set and endpoints:

1 “3-y EFS”: Random n = 125 subjects (25 “+” and 100 “−”).

2 “Gender”: Random 120 males and 50 females. Total: 246.

Testing set: The remainder are used as the testing set.

Object Method SIS ISIS var2-ISIS LASSO NSC Total

3-y EFS No. pred. 5 23 12 57 9413 10,707

Test error 19 22 21 22 24 114

Gender No. pred. 6 2 2 42 3 10,707

Test error 4 4 4 5 4 126
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Multi-category Classification
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The ISIS method

Linear classifier: argmaxk fk(x), where fk(x) ≡ β0k +xT βk .

Loss: L(Y , f(x;B)) = ∑j 6=Y [1+ fj(x)]+

Marginal utility of the j-feature (Lee et al, 2004; Liu, et al, 2007):

Lj = minB ∑n
i=1 L(Yi , f(Xij ,B))+ 1

2 ∑k β2
jk (identifiability)
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Simulation Experiments

Design: X̃1, . . . , X̃4 U[−
√

3,
√

3], and X̃5, . . . , X̃p ∼ N(0,1).

Case 1: Xj = X̃j for j = 1, . . . ,p

Case 2: X1 = X̃1 −
√

2X̃5, X2 = X̃2 +
√

2X̃5, X3 = X̃3 −
√

2X̃5,

X4 = X̃4 +
√

2X̃5,

Xj =
√

3X̃j for j = 5, . . . ,p.

Response: 4 categories �P(Y = k |X̃ = x̃) ∝ exp{fk(x̃)},

f1(x̃) = −ax̃1 +ax̃4, f2(x̃) = ax̃1 −ax̃2,

f3(x̃) = ax̃2 −ax̃3 and f4(x̃) = ax̃3 −ax̃4 with a = 5/
√

3.
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Simulation results, n = 400

SIS ISIS Var2-ISIS LASSO NSC

Case 1

True positive 1.00 1.00 1.00 0.00 0.68

Median modal size 2.5 4 5 19 4

0-1 test error 0.306 .301 .292 .330 .452

Standard error .007 .006 .006 .008 .021

Case 2

True positive .10 1.00 1.00 .33 .30

Median modal size 4 11 9 54 9

0-1 test error .436 .304 .298 .430 .624

Standard error .007 .007 .006 .004 .008

Test errors: based on 200n cases.
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Children Cancer Data

Classification: ⋆neuroblastoma (NB),

⋆rhabdomyosarcoma (RMS), ⋆non-Hodgkin lymphoma (NHL),

⋆Ewing family of tumors (EWS).

Data: cDNA microarrays with 2308 genes (from 6567).

� Training: 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS)

� Testing: 20 (6 NBs, 5 RMSs, 3 NHLs, and 6 EWS)

Results: All methods have zero testing errors.

Method ISIS var2-ISIS LASSO NSC

# selected genes 15 14 71 343
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Summary and Conclusion

1 Propose large scale-screening and moderate-selection

◮ Use conditional independence screening.

◮ Allow variable deletion in the process.

◮ Estimation accuracy, comp expediency, algorithmic stability.

2 Applicable to many contexts: ⋆GLIM; ⋆Robust; ⋆Machine

learning

3 Demonstrate its utility via extensive simulation. Handle well the

most difficulty case.

4 Provide theoretical foundation to independence learning.
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The End

Happy Birthday!

Jianqing Fan (Princeton University) High-dimensional variable selection Yale University 43 / 43


