Ultrahigh dimensional variable selection: Beyond the linear model

Jianqing Fan

Princeton University

With Richard Samworth and Yichao Wu; Rui Song

http://www.princeton.edu/~jqfan

May 16, 2009

500

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 1 / 43

▶ < Ξ >

- Introduction
- Large-scale screening
- Moderate-scale Selection
- Iterative feature selection
- Numerical Studies

500

Jianqing Fan (Princeton University)

-

Introduction

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

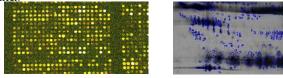
3 Yale University 3/43

∃⇒

イロト イロト イヨト

High-dim variable selection characterizes many contemporary statistical problems.

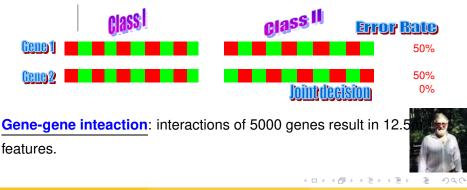
• Bioinformatic: disease classification using microarray, proteomics, fMRI data.



- Document or text classification: E-mail spam.
- Association studies between phenotypes and SNPs.

Dimensionality grows rapidly with interactions

Portfolio selection and network modeling: 2,000 stocks involves over 2m unknown parameters in the covariance matrix.

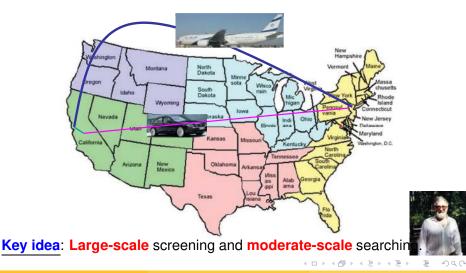


- To construct as effective a method as possible to predict future observations.
- To gain insight into the relationship between features and response for scientific purposes, as well as, hopefully, to construct an improved prediction method.

Bickel (2008) discussion of the SIS paper (JRSS-B).

Challenges with Ultrahigh Dimensionality

Computational cost Estimation accuracy. Stability



Jianqing Fan (Princeton University)

Large-scale sreening

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 8 / 43

Э

<ロト < 回ト < 回ト < 三ト

Regression: Feature ranking by **correlation learning** (Fan and Lv, 2008, JRSS-B). When $Y = \pm 1$, this implies

<u>Classification</u>: Feature ranking by two-sample t-tests or other tests (Tibshirani, et al, 03; Fan and Fan, 2008).

<u>SIS</u>: By an appropriate thresholding (e.g., *n* variables), **relevant features are in the selected set** (Fan and Lv, 08), relying on joint-normality assumption.

Other independent learning: Hall, Titterington and Xue (2009 such a method from empirical likelihood point of view.

San

イロト イタト イヨト イヨト

Regression: Feature ranking by **correlation learning** (Fan and Lv, 2008, JRSS-B). When $Y = \pm 1$, this implies

<u>Classification</u>: Feature ranking by two-sample t-tests or other tests (Tibshirani, et al, 03; Fan and Fan, 2008).

<u>SIS</u>: By an appropriate thresholding (e.g., *n* variables), **relevant features are in the selected set** (Fan and Lv, 08), relying on joint-normality assumption.

Other independent learning: Hall, Titterington and Xue (2009 such a method from empirical likelihood point of view.

San

Jianqing Fan (Princeton University)

イロト イロト イヨト イヨト

Regression: Feature ranking by **correlation learning** (Fan and Lv, 2008, JRSS-B). When $Y = \pm 1$, this implies

<u>Classification</u>: Feature ranking by two-sample t-tests or other tests (Tibshirani, et al, 03; Fan and Fan, 2008).

<u>SIS</u>: By an appropriate thresholding (e.g., *n* variables), **relevant features are in the selected set** (Fan and Lv, 08), relying on joint-normality assumption.

Other independent learning: Hall, Titterington and Xue (2009) such a method from empirical likelihood point of view.

San

イロト イロト イヨト イヨト

Model setting

GLIM:
$$f_{\mathsf{Y}}(y|X=x; \mathbf{ heta}) = \expig\{(y\mathbf{ heta} - b(\mathbf{ heta}))/\mathbf{\phi} + c(y, \mathbf{\phi})ig\}$$
 with

canonial link : $b'^{-1}(\mu) = \theta = \mathbf{x}^T \beta$.

Objective: Find sparse β to minimize $Q(\beta) = \sum_{i=1}^{n} L(Y_i, \mathbf{x}_i^T \beta)$.

GLIM:
$$L(Y_i, \mathbf{x}_i^T \beta) = b(\mathbf{x}_i^T \beta) - Y_i \mathbf{x}_i^T \beta$$
.

Classification: $Y = \pm 1$. \bigstar SVM $L(Y_i, \mathbf{x}_i^T \beta) = (1 - Y_i \mathbf{x}_i^T \beta)_+$. \bigstar AdaBoost $L(Y_i, \mathbf{x}_i^T \beta) = \exp(-Y_i \mathbf{x}_i^T \beta)$. Robustness: $L(Y_i, \mathbf{x}_i^T \beta) = |Y_i - \mathbf{x}_i^T \beta|$.

Jianqing Fan (Princeton University)

GLIM:
$$f_{Y}(y|X=x; heta) = \expig\{(y heta-b(heta))/\phi + c(y, \phi)ig\}$$
 with

canonial link :
$$b'^{-1}(\mu) = \theta = \mathbf{x}^T \beta$$
.

Objective: Find sparse β to minimize $Q(\beta) = \sum_{i=1}^{n} L(Y_i, \mathbf{x}_i^T \beta)$.

GLIM:
$$L(Y_i, \mathbf{x}_i^T \beta) = b(\mathbf{x}_i^T \beta) - Y_i \mathbf{x}_i^T \beta$$
.

Classification:
$$Y = \pm 1$$
.
 \bigstar SVM $L(Y_i, \mathbf{x}_i^T \beta) = (1 - Y_i \mathbf{x}_i^T \beta)_+$.
 \bigstar AdaBoost $L(Y_i, \mathbf{x}_i^T \beta) = \exp(-Y_i \mathbf{x}_i^T \beta)$.
Robustness: $L(Y_i, \mathbf{x}_i^T \beta) = |Y_i - \mathbf{x}_i^T \beta|$.

Jianqing Fan (Princeton University)

How to screen discrete variables (Genome-wide association)?

O they have sure screening property?

What is the size of selected model in order to have SIS?

The arguments in Fan and Lv (2008) can not be applied here.

Image: A matrix

I = 1

- How to screen discrete variables (Genome-wide association)?
- O they have sure screening property?
- What is the size of selected model in order to have SIS?

The arguments in Fan and Lv (2008) can not be applied here.

▶ < ∃ ▶

- How to screen discrete variables (Genome-wide association)?
- O they have sure screening property?
- What is the size of selected model in order to have SIS?

The arguments in Fan and Lv (2008) can not be applied here.

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 11 / 43

Independence learning

Marginal utility: Letting $\hat{L}_0 = \min_{\beta_0} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0)$, define

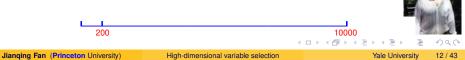
$$\hat{L}_j = \hat{L}_0 - \min_{\beta_0,\beta_j} n^{-1} \sum_{i=1}^n L(Y_i,\beta_0 + X_{ij}\beta_j) \quad \text{Wilks.}$$

or $\hat{\beta}_{j}^{M}$ (Wald), assuming $EX_{j}^{2} = 1$.

Feature ranking: Select features w/ largest marginal utilities:

$$\widehat{\mathcal{M}}_{\mathbf{v}_n} = \{ j : \hat{L}_j \ge \mathbf{v}_n \}, \qquad \widehat{\mathcal{M}}_{\gamma_n}^w = \{ j : \hat{\beta}_j^M \ge \gamma_n \}$$

<u>Dim. reduction</u>: From $p_n = O(\exp(n^a))$ to $O(n^b)$:



Independence learning

Marginal utility: Letting $\hat{L}_0 = \min_{\beta_0} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0)$, define

$$\hat{L}_j = \hat{L}_0 - \min_{\beta_0,\beta_j} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0 + X_{ij}\beta_j)$$
 Wilks.

or $\hat{\beta}_{j}^{M}$ (Wald), assuming $EX_{j}^{2} = 1$.

Feature ranking: Select features w/ largest marginal utilities:

$$\widehat{\mathcal{M}}_{\mathbf{v}_n} = \{j : \hat{L}_j \ge \mathbf{v}_n\}, \qquad \widehat{\mathcal{M}}_{\gamma_n}^w = \{j : \hat{\beta}_j^M \ge \gamma_n\}$$

<u>Dim. reduction</u>: From $p_n = O(\exp(n^a))$ to $O(n^b)$:

Jianqing Fan (Princeton University)

Marginal utility:
$$L_j^{\star} = E\ell(Y, \beta_0^M) - \min E\ell(Y, \beta_0 + \beta_j X_j).$$

Likelihood ratio (Fan and Song, 09)

Theorem 1:
$$L_j^* = 0 \iff \operatorname{cov}(Y, X_j) = \operatorname{cov}(b'(\mathbf{X}^T \beta^*), X_j) = 0$$

 $\iff \beta_j^M = 0.$

For Gaussian covariates, conclusion holds if $|cov(\mathbf{X}^T \boldsymbol{\beta}^*, X_j)| = 0$ independence.

<u>**True model</u>**: $\mathcal{M}_{\star} = \{j : \beta_j^{\star} \neq 0\}$, where $\beta^{\star} = \operatorname{argmin} EL(Y, \mathbf{X}^T \beta)$.</u>

<u>Theorem 2</u>: If $|\operatorname{cov}(b'(\mathbf{X}^T\beta^*), X_j)| \ge c_1 n^{-\kappa}$ for $j \in \mathcal{M}_{\star}$, then

$$\min_{j \in \mathcal{M}_{\star}} |\beta_j^M| \ge c_1 n^{-\kappa}, \qquad \min_{j \in \mathcal{M}_{\star}} |L_j^{\star}| \ge c_2 n^{-2\kappa}$$

If $\{X_j, j \notin \mathcal{M}_{\star}\}$ is independent of $\{X_i, i \in \mathcal{M}_{\star}\}$, then $L_j^{\star} = 0$.

For Gaussian covariates, conclusion holds if

 $|\operatorname{cov}(X^T\beta^*, X_j)| \ge c_1 n^{-\kappa}$, min condition even for LS.

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 14 / 43

イロト イタト イヨト イヨト

<u>True model</u>: $\mathcal{M}_{\star} = \{j : \beta_j^{\star} \neq 0\}$, where $\beta^{\star} = \operatorname{argmin} EL(Y, \mathbf{X}^T \beta)$.

<u>Theorem 2</u>: If $|\operatorname{cov}(b'(\mathbf{X}^T\beta^*), X_j)| \ge c_1 n^{-\kappa}$ for $j \in \mathcal{M}_{\star}$, then

$$\min_{j \in \mathcal{M}_{\star}} |\beta_j^{\mathsf{M}}| \ge c_1 n^{-\kappa}, \qquad \min_{j \in \mathcal{M}_{\star}} |\mathsf{L}_j^{\star}| \ge c_2 n^{-2\kappa}.$$

If $\{X_j, j \notin \mathcal{M}_{\star}\}$ is independent of $\{X_i, i \in \mathcal{M}_{\star}\}$, then $L_j^{\star} = 0$.

For Gaussian covariates, conclusion holds if

 $|\operatorname{cov}(\mathbf{X}^{\mathsf{T}}\boldsymbol{\beta}^{\star},\mathbf{X}_{j})| \geq c_{1}n^{-\kappa},$ min condition even for LS.

Jianqing Fan (Princeton University)

イロト イタト イヨト イヨト

Sampling Aspect: Sure independence screening

<u>Theorem 3</u>: If $v_n = cn^{-2\kappa}$ for $\kappa < 1/2$, and $\log s_n = o(n^{1-2\kappa})$, then

 $P\left(\mathcal{M}_{\star} \subset \widehat{\mathcal{M}}_{v_n}\right) \to 1$ exponentially fast

No conditions on covariance matrix!

This is a SIS property w/ size controlled.

Note that L
_j - L^{*}_j = O(log p/n^{1/2}) and minimum signal O(n^{-2κ}).
 How to deal with it? —Appeal to the ranking invariance under monotonic transform.

Screening using **Wald stat** $\hat{\beta}_j^M$ has SIS property.

Jianqing Fan (Princeton University)

Yale University 15 / 43

イロト イロト イヨト イヨト

Sampling Aspect: Sure independence screening

<u>Theorem 3</u>: If $v_n = cn^{-2\kappa}$ for $\kappa < 1/2$, and $\log s_n = o(n^{1-2\kappa})$, then

 $P\left(\mathcal{M}_{\star} \subset \widehat{\mathcal{M}}_{v_n}\right) \to 1$ exponentially fast

No conditions on covariance matrix!

This is a SIS property w/ size controlled.

Note that L
_j - L^{*}_j = O(log p/n^{1/2}) and minimum signal O(n^{-2κ}).
 How to deal with it? —Appeal to the ranking invariance under monotonic transform.

Screening using **Wald stat** $\hat{\beta}_j^M$ has SIS property.

イロト イロト イヨト イヨト

Sampling Aspect: Sure independence screening

<u>Theorem 3</u>: If $v_n = cn^{-2\kappa}$ for $\kappa < 1/2$, and $\log s_n = o(n^{1-2\kappa})$, then

$$P\left(\mathcal{M}_{\star} \subset \widehat{\mathcal{M}}_{V_n}\right) \to 1$$
 exponentially fast

No conditions on covariance matrix!

- This is a SIS property w/ size controlled.
- Note that Â_j L^{*}_j = O(log p/n^{1/2}) and minimum signal O(n^{-2κ}).
 How to deal with it? —Appeal to the ranking invariance under monotonic transform.
- Screening using Wald stat $\hat{\beta}_j^M$ has SIS property.

イロト イポト イヨト イヨト

Screening by MMLE

Let
$$\widehat{\mathcal{M}}_{\gamma_n}^w = \{ |\hat{\beta}_j^M| \ge \gamma_n \}.$$

• $P(\max_j |\hat{\beta}_j^M - \hat{\beta}_j^M| > c_3 n^{-\kappa}) = o(1), \text{ if } \log p_n = o(n^{1-2\kappa}).$

What is the selected model size? We establish

 $\|\boldsymbol{\beta}^{\mathsf{M}}\|^{2} = \mathsf{O}(\|\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\|^{2}) = O\{\lambda_{max}(\boldsymbol{\Sigma}) \ \boldsymbol{\beta}^{\star T}\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\} = O(\lambda_{max}(\boldsymbol{\Sigma})).$

• The $\#\{|\beta_j^M| \ge \gamma_n\}$ is $O_P\{\gamma_n^{-2}\lambda_{max}(\Sigma)\}$, and so is the **selected** model size.

200

Jianqing Fan (Princeton University)

ヘロト ヘロト ヘヨト ヘヨト

Screening by MMLE

Let
$$\widehat{\mathcal{M}}_{\gamma_n}^w = \{|\widehat{\beta}_j^M| \ge \gamma_n\}.$$

• $P(\max_j |\widehat{\beta}_j^M - \widehat{\beta}_j^M| > c_3 n^{-\kappa}) = o(1), \text{ if } \log p_n = o(n^{1-2\kappa}).$

What is the selected model size? We establish

 $\|\boldsymbol{\beta}^{\mathsf{M}}\|^{2} = \mathsf{O}(\|\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\|^{2}) = O\{\lambda_{max}(\boldsymbol{\Sigma}) \ \boldsymbol{\beta}^{\star \mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{\beta}^{\star}\} = O(\lambda_{max}(\boldsymbol{\Sigma})).$

• The $\#\{|\beta_j^M| \ge \gamma_n\}$ is $O_P\{\gamma_n^{-2}\lambda_{max}(\Sigma)\}$, and so is the selected model size.

200

Jianqing Fan (Princeton University)

イロト イポト イヨト イヨト

Screening by MMLE

Let
$$\widehat{\mathcal{M}}_{\gamma_n}^w = \{|\widehat{\beta}_j^M| \ge \gamma_n\}.$$

• $P(\max_j |\widehat{\beta}_j^M - \widehat{\beta}_j^M| > c_3 n^{-\kappa}) = o(1), \text{ if } \log p_n = o(n^{1-2\kappa}).$

What is the selected model size? We establish

 $\|\beta^{\mathsf{M}}\|^{2} = \mathsf{O}(\|\Sigma\beta^{\star}\|^{2}) = \mathsf{O}\{\lambda_{max}(\Sigma) \ \beta^{\star T}\Sigma\beta^{\star}\} = \mathsf{O}(\lambda_{max}(\Sigma)).$

• The $\#\{|\beta_j^M| \ge \gamma_n\}$ is $O_P\{\gamma_n^{-2}\lambda_{max}(\Sigma)\}$, and so is the selection model size.

Jianqing Fan (Princeton University)

ヘロト ヘロト ヘヨト ヘ

Sampling Aspect: Controlling number of features

<u>Theorem 4</u>: If $\log p_n = o(n^{1-2\kappa})$,

$$\mathbf{P}[|\widehat{\mathcal{M}}_{v_{n}}| \leq \mathbf{O}\{\mathbf{n}^{\mathbf{2}\kappa}\lambda_{max}(\Sigma)\}] \to \mathbf{1}.$$

Establish
$$\|\mathbf{L}^{\star}\|^2 = O(\|\beta^M\|^2) = O(\|\Sigma\beta^{\star}\|^2).$$

The number of selected covariates depends on the population covariance. It is actually bounded by

 $\mathbf{O}(\gamma_{\mathbf{n}}^{-2} \| \Sigma \beta^{\star} \|^{2}) = \mathbf{O}\{\mathbf{n}^{2\kappa} \lambda_{\max}(\Sigma)\}.$

San

Jianqing Fan (Princeton University)

イロト イポト イヨト

Sampling Aspect: Controlling number of features

<u>**Theorem 4**</u>: If $\log p_n = o(n^{1-2\kappa})$,

$$\mathbf{P}[|\widehat{\mathcal{M}}_{v_{\mathbf{n}}}| \leq \mathbf{O}\{\mathbf{n}^{\mathbf{2}\kappa}\lambda_{\max}(\Sigma)\}] \to \mathbf{1}.$$

Establish
$$\|\mathbf{L}^{\star}\|^2 = O(\|\beta^M\|^2) = O(\|\Sigma\beta^{\star}\|^2).$$

The number of selected covariates depends on the population covariance. It is actually bounded by

$$\mathbf{O}(\gamma_{\mathbf{n}}^{-2} \| \Sigma \beta^{\star} \|^{2}) = \mathbf{O}\{\mathbf{n}^{2\kappa} \lambda_{\max}(\Sigma)\}.$$

Jianqing Fan (Princeton University)

► < Ξ > <</p>

Moderate-scale selection

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 18 / 43

1

▶ < ∃ ▶

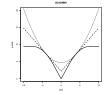
< D > < B

Moderate-scale of Model Selectors

Penalized lik.: $n^{-1} \sum_{i=1}^{n} L(Y_i, \beta_0 + \mathbf{x}_{i,d}^T \beta) + \sum_{i=1}^{d} p_{\lambda}(|\beta_i|).$ Simultaneously estimate coefs and choose variables.

Lasso (Tibshirani, 96), LARS (Efron et al., 04),

• SCAD (Fan & Li, 01, 06; Fan & Peng, 04)

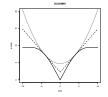


Jianging Fan (Princeton University)

Moderate-scale of Model Selectors

Penalized lik.: $n^{-1} \sum_{i=1}^{n} L(Y_i, \beta_0 + \mathbf{x}_{i,d}^T \beta) + \sum_{i=1}^{d} p_{\lambda}(|\beta_i|).$ Simultaneously estimate coefs and choose variables.

- Lasso (Tibshirani, 96), LARS (Efron et al., 04), Adaptive Lasso(Zou, 06), Approx sparse (Huang and Zhang, 06).
- SCAD (Fan & Li, 01, 06; Fan & Peng, 04) LQA (Fan & Li, 01), MM (Hunter & Li, 05), LA (Li and Zou, 07), and PLUS (Zhang, 07).



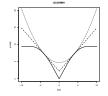
Jianging Fan (Princeton University)

Moderate-scale of Model Selectors

Penalized lik.: $n^{-1} \sum_{i=1}^{n} L(Y_i, \beta_0 + \mathbf{x}_{i,d}^T \beta) + \sum_{j=1}^{d} p_{\lambda}(|\beta_j|)$. Simultaneously estimate coefs and choose variables.

- Lasso (Tibshirani, 96), LARS (Efron *et al.*, 04),
 Adaptive Lasso(zou, 06), Approx sparse (Huang and Zhang, 06).
- SCAD (Fan & Li, 01, 06; Fan & Peng, 04)
 LQA (Fan & Li, 01), MM (Hunter & Li, 05),
 LA (Li and Zou, 07), and PLUS (Zhang, 07).

Dantzig selector (Candes & Tao, 07)



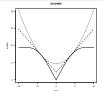
 $\min_{\boldsymbol{\beta} \in \mathbf{R}^{p_n}} \left\| \boldsymbol{\beta} \right\|_{\mathbf{1}} \quad \text{subject to } \left\| \boldsymbol{x}^{\mathsf{T}} \boldsymbol{r} \right\|_{\infty} \leq \lambda_{p_n} \sigma$

with $\lambda_{p_n} > 0$, $\mathbf{r} = \mathbf{y} - \mathbf{X} \beta$ and σ noise level. \approx Lasso (Bickel et al, 2008)

Connections among penalized least-squares

PLS: $\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \sum_{i=1}^{p_n} p_{\lambda}(|\beta_i|)$. **LLA**: with initial value β_0 (Zou & Li, 08),

nn



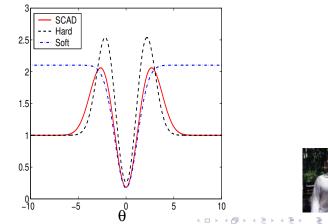
$$\|\mathbf{y} - \mathbf{X}\beta\|^2 + \sum_{i=1}^{m} \{ p_{\lambda}(|\beta_{i,0}|) + p_{\lambda}(|\beta_{i,0}|)'(|\beta_i| - |\beta_{i,0}|) \}.$$

Weighted L1:
$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \sum_{i=1}^{p_n} \mathbf{w}(|\boldsymbol{\beta}_{i,0}|) |\boldsymbol{\beta}_i|$$
.
Fan and Li (01) stressed the unbiasedness.
Convergence: Objective function decreasing.

Risk Comparisons of popularized least-sqaures

Penalized least-squares: $(Z - \theta)^2 + p_{\lambda}(|\theta|)$ $R(\hat{\theta}, \theta) = E_{\theta}(\hat{\theta} - \theta)^2$ with $Z \sim N(\theta, 1)$

 $\lambda = 2$ for hard thresholding



Jianqing Fan (Princeton University)

Iterative feature selection

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 22 / 43

=

< D > < B

• • = •

Drawback of Independence Screening

False negative: The features such that $cov(X_j, \mathbf{X}^T \boldsymbol{\beta}^*) = 0$ can not be selected, but this can be a **signature variable**. **Example**: If $\{X_i\}_{i=1}^J$ has common correlation ρ , then

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \dots + X_J - \mathbf{J}\rho\mathbf{X}_{\mathbf{J}+1}) = 0.$$

False positive: Rank too high predictors jointly unimportant but marginally important:

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \dots + X_J - 0.2X_{\rho+1}) = J\rho.$$

<ロト <回ト < 回ト < 回

Drawback of Independence Screening

False negative: The features such that $cov(X_j, \mathbf{X}^T \boldsymbol{\beta}^*) = 0$ can not be selected, but this can be a **signature variable**. **Example**: If $\{X_j\}_{j=1}^J$ has common correlation ρ , then

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \cdots + X_J - \mathbf{J}\rho \mathbf{X}_{\mathbf{J}+1}) = 0.$$

False positive: Rank too high predictors jointly unimportant but marginally important:

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \dots + X_J - 0.2X_{\rho+1}) = J\rho.$$

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 23 / 43

イロト イロト イヨト イヨ

False negative: The features such that $cov(X_j, \mathbf{X}^T \boldsymbol{\beta}^*) = 0$ can not be selected, but this can be a **signature variable**. **Example**: If $\{X_j\}_{j=1}^J$ has common correlation ρ , then

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \cdots + X_J - \mathbf{J}\rho \mathbf{X}_{\mathbf{J}+1}) = 0.$$

False positive: Rank too high predictors jointly unimportant but marginally important:

$$\operatorname{cov}(\mathbf{X}_{\mathbf{J}+1}, X_1 + \cdots + X_J - 0.2X_{\rho+1}) = J\rho.$$

- ■(Large-scale screening): Apply SIS to pick a set A₁;
 ■(Moderate-scale selection): Employ a penalized likelihood to select a subset M₁ of these indices.
- (Large-scale screening): Rank features according to the additional (conditional) contribution:

$$L_j^{(2)} = \min_{\beta_0, \beta_{\mathcal{M}_1}, \beta_j} n^{-1} \sum_{i=1}^n L(Y_i, \beta_0 + \mathbf{x}_{i, \mathcal{M}_1}^\mathsf{T} \beta_{\mathcal{M}_1} + X_{ij} \beta_j).$$

—Resulting in new feature sets \mathcal{A}_2 .

—An improvement over Fan and Lv (08) who set $\beta_{\mathcal{M}_1} = \beta_2$ previous fit.

Jianqing Fan (Princeton University)

ヘロト 人間 ト ヘヨト 人

- ■(Large-scale screening): Apply SIS to pick a set A₁;
 ■(Moderate-scale selection): Employ a penalized likelihood to select a subset M₁ of these indices.
- (Large-scale screening): Rank features according to the additional (conditional) contribution:

$$L_j^{(2)} = \min_{\beta_0, \beta_{\mathcal{M}_1}, \beta_j} n^{-1} \sum_{i=1}^n L(\mathbf{Y}_i, \beta_0 + \mathbf{x}_{i, \mathcal{M}_1}^{\mathsf{T}} \beta_{\mathcal{M}_1} + X_{ij} \beta_j).$$

—Resulting in new feature sets \mathcal{A}_2 .

—An improvement over Fan and Lv (08) who set $\beta_{\mathcal{M}_1} = \hat{\beta}_{\mathcal{M}_2}$ previous fit.

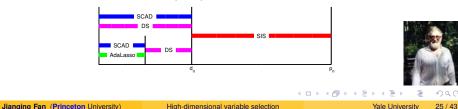
(Moderate-scale selection): Minimize wrt $\beta_{\mathcal{M}_1}, \beta_{\mathcal{R}_2}$

$$\sum_{i=1}^{n} L(\mathbf{Y}_{i}, \beta_{0} + \mathbf{x}_{i,\mathcal{M}_{1}}^{T} \beta_{\mathcal{M}_{1}} + \mathbf{x}_{i,\mathcal{A}_{2}}^{T} \beta_{\mathcal{A}_{2}}) + \sum_{j \in \mathcal{M}_{1} \cup \mathcal{A}_{2}} p_{\lambda}(|\beta_{j}|).$$

—Resulting in \mathcal{M}_2

-Allow deletion, improvement over ISIS (Fan and Lv, 08).

Sepeat Steps 1–3 until $|\mathcal{M}_\ell| = d$ (prescribed) or $\mathcal{M}_\ell = \mathcal{M}_{\ell-1}$.



<u>Variant 1</u>: Randomly split samples to obtain $\widehat{\mathcal{A}}^{(1)}$ and $\widehat{\mathcal{A}}^{(2)}$. Take $\widehat{\mathcal{A}} = \widehat{\mathcal{A}}^{(1)} \cap \widehat{\mathcal{A}}^{(2)}$.

Intuition: If both have SIS property, so does $\widehat{\mathcal{A}}$ with lower FSR.

Theorem 1: With prescribed d,

$$P(|\widehat{\mathcal{A}} \cap \mathcal{M}^{c}_{\star}| \geq r) \leq \frac{\binom{d}{r}^{2}}{\binom{p-|\mathcal{M}_{\star}|}{r}} \leq \frac{1}{r!} \left(\frac{d^{2}}{p-|\mathcal{M}_{\star}|}\right)^{r},$$

-Blessing of dimensionality!

<u>Variant 2</u>: Recruit as many variables into equal-sized sets $\widetilde{\mathcal{A}}^{(1)}$ and $\widetilde{\mathcal{A}}^{(2)}$ as required such that $|\widehat{\mathcal{A}}| = d$ (prescribed).

Jianqing Fan (Princeton University)

イロト イロト イヨト イ

<u>Variant 1</u>: Randomly split samples to obtain $\widehat{\mathcal{A}}^{(1)}$ and $\widehat{\mathcal{A}}^{(2)}$. Take $\widehat{\mathcal{A}} = \widehat{\mathcal{A}}^{(1)} \cap \widehat{\mathcal{A}}^{(2)}$.

Intuition: If both have SIS property, so does $\widehat{\mathcal{A}}$ with lower FSR.

<u>Theorem 1</u>: With prescribed *d*,

$$P(|\widehat{\mathcal{A}} \cap \mathcal{M}^{c}_{\star}| \geq r) \leq \frac{{\binom{d}{r}}^{2}}{{\binom{p-|\mathcal{M}_{\star}|}{r}}} \leq \frac{1}{r!} \left(\frac{d^{2}}{p-|\mathcal{M}_{\star}|}\right)^{r},$$

-Blessing of dimensionality!

<u>Variant 2</u>: Recruit as many variables into equal-sized sets $\widetilde{\mathcal{A}}^{(1)}$ and $\widetilde{\mathcal{A}}^{(2)}$ as required such that $|\widehat{\mathcal{A}}| = d$ (prescribed).

Jianqing Fan (Princeton University)

<u>Variant 1</u>: Randomly split samples to obtain $\widehat{\mathcal{A}}^{(1)}$ and $\widehat{\mathcal{A}}^{(2)}$. Take $\widehat{\mathcal{A}} = \widehat{\mathcal{A}}^{(1)} \cap \widehat{\mathcal{A}}^{(2)}$.

Intuition: If both have SIS property, so does $\widehat{\mathcal{A}}$ with lower FSR.

<u>Theorem 1</u>: With prescribed *d*,

$$P(|\widehat{\mathcal{A}} \cap \mathcal{M}^{c}_{\star}| \geq r) \leq \frac{{\binom{d}{r}}^{2}}{{\binom{p-|\mathcal{M}_{\star}|}{r}}} \leq \frac{1}{r!} \left(\frac{d^{2}}{p-|\mathcal{M}_{\star}|}\right)^{r},$$

Blessing of dimensionality!

<u>Variant 2</u>: Recruit as many variables into equal-sized sets $\widetilde{\mathcal{A}}^{(1)}$ a $\widetilde{\mathcal{A}}^{(2)}$ as required such that $|\widehat{\mathcal{A}}| = d$ (prescribed).

Numerical Studies

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 27 / 43

Э

トイヨト

< □ ト < @

<u>Contexts</u>: \bigstar Logistic \bigstar Poission $\bigstar L_1$ -reg; \bigstar Multiclass SVM

<u>Covariates</u>: p = 1000, $X_i \sim N(0, 1)$.

- $X_1, \ldots, X_p \sim_{i.i.d.} N(0, 1)$
- So $\operatorname{corr}(X_i, X_4) = 1/\sqrt{2}$ and otherwise $\operatorname{corr}(X_i, X_j) = 1/2$.
- The same except $corr(X_i, X_{p+1}) = 0$.

イロト イタト イヨト イヨト

Logistic regression, independent covariate

 $\beta_1 = 1.24, \, \beta_2 = -1.34, \, \beta_3 = -1.35, \, \beta_4 = -1.80, \, \beta_5 = -1.58, \, \beta_6 = -1.60.$

Bayes test error: 0.1368.

$$n = 400, N_{sim} = 100.$$

	SIS	ISIS	Var2-SIS	LASSO	NSC
$med(\ m{eta}-\widehat{m{eta}}\ _1)$	1.11	1.25	1.21	8.48	N/A
$med(\ eta - \widehat{eta}\ _2^2)$	0.49	0.52	0.52	1.70	N/A
True positive	0.99	0.84	0.91	1.00	0.34
Med. model size	6	6	6	94	3
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	237	247	243	164	N/A
AIC	250	260	256	353	N/A
BIC	278	285	282	725	N/A
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	272	273	273	319	N/A
0-1 test error	0.14	0.14	0.14	0.17	0.36

Jianqing Fan (Princeton University)

Yale University 29 / 43

イロト イポト イヨト イヨト 一日

200

Logistic regression, difficult case — false negative

$$\beta_1 = 4, \, \beta_2 = 4, \, \beta_3 = 4, \, \beta_4 = -6\sqrt{2}, \, \mathrm{cov}(X_4, \mathbf{X}^{\mathsf{T}} \boldsymbol{\beta}^{\star}) = 0.$$

Signature variable: Bayes error: **0.107** and **.344** w/ and w/o X_4 .

Van-SIS	ISIS	Var2-ISIS	LASSO	NSC
20.1	1.94	1.85	21.6	N/A
9.41	1.05	0.98	9.11	N/A
0.00	1.00	1.00	0.00	0.21
16	4	4	91	16.5
307	187	187	127	N/A
334	196	195	311	N/A
386	212	212	672	N/A
344	204	204	259	N/A
.193	.109	.109	0.141	0.377
	20.1 9.41 0.00 16 307 334 386 344	20.1 1.94 9.41 1.05 0.00 1.00 16 4 307 187 334 196 386 212 344 204	20.1 1.94 1.85 9.41 1.05 0.98 0.00 1.00 1.00 16 4 4 307 187 187 334 196 195 386 212 212 344 204 204	20.1 1.94 1.85 21.6 9.41 1.05 0.98 9.11 0.00 1.00 1.00 0.00 1

Jianqing Fan (Princeton University)

Yale University 30 / 43

Logistic, the most difficult case

$$\beta_1 = 4, \beta_2 = 4, \beta_3 = 4, \beta_4 = -6\sqrt{2}, \beta_{p+1} = 4/3, \operatorname{cov}(X_4, \mathbf{X}^T \beta^*) = 0.$$

Bayes error: 0.1040.

	Van-SIS	ISIS	Var2-ISIS	LASSO	NSC
$med(\ eta - \widehat{eta}\ _1)$	20.6	2.69	3.24	23.2	N/A
$med(\ eta - \widehat{eta}\ _2^2)$	9.46	1.36	1.59	9.11	N/A
True Positive	0.00	0.90	0.98	0.00	0.17
Med. model size	16	5	5	102	10
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	269	188	188	109	N/A
AIC	289	198	199	311	N/A
BIC	337	218	219	714	N/A
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	361	225	226	276	N/
0-1 test error	.193	.112	.112	.146	.387
			< □ >		<

Jianqing Fan (Princeton University)

Yale University 31 / 43

Possion, independent covariates

$$\begin{split} \beta_0 = 5, \, \beta_1 = -0.54, \, \beta_2 = 0.53, \, \beta_3 = -0.50, \, \beta_4 = -0.49, \, \beta_5 = -0.41, \\ \beta_6 = 0.52, \qquad n = 200, \, \textit{N}_{sim} = 100. \end{split}$$

	SIS	ISIS	Var2-ISIS	LASSO
$med(\ eta-\widehat{eta}\ _1)$.070	.124	.122	.197
$med(\ eta - \widehat{eta}\ _2^2)$.023	.032	.033	.054
True Positive	.76	1.00	1.00	1.00
Med. model size	12	18	17	27
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	1561	1502	1510	1534
AIC	1586	1538	1542	1587
BIC	1627	1597	1595	1674
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	1558	1594	1589	1645

Jianqing Fan (Princeton University)

< □ ト < @

トイヨトイ

Poisson Regression, difficult case

$$\beta_0 = 5, \beta_1 = 0.6, \beta_2 = 0.6, \beta_3 = 0.6, \beta_4 = -0.9\sqrt{2}$$

 $\operatorname{cov}(X_4, \mathbf{X}^T \beta^*) = 0.$

	ISIS	Var2-ISIS	LASSO
$ ext{med}(\ m{eta}-\widehat{m{eta}}\ _1)$.271	.225	3.07
$med(\ eta - \widehat{eta}\ _2^2)$.072	.068	1.29
True positive	1.00	.97	0.00
Median final model size	18	16	174
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	1494	1509	1364
AIC	1531	1541	1718
BIC	1590	1596	2293
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	1629	1615	2213

Jianqing Fan (Princeton University)

ト イヨト イヨト

< □ ト < @

Poisson Regression, the most difficult case

 $\beta_0 = 5, \beta_1 = 0.6, \beta_2 = 0.6, \beta_3 = 0.6, \beta_4 = -0.9\sqrt{2}, \beta_{n+1} = -0.15$ $\operatorname{cov}(X_4, \mathbf{X}^T \boldsymbol{\beta}^{\star}) = 0.$

	Van-ISIS	Var2-ISIS	LASSO
$med(\ eta - \widehat{eta}\ _1)$.254	.232	3.09
$med(\ eta - \widehat{eta}\ _2^2)$.068	.068	1.29
True positive	.97	.91	0.00
Median final model size	18	16	174
2Q $(\hat{eta}_0,\widehat{eta})$ (training)	1500	1516	1367
AIC	1536	1547	1715
BIC	1595	1600	2294
2Q $(\hat{eta}_0,\widehat{eta})$ (test)	1640	1631	2389

200

Jianqing Fan (Princeton University)

イロト イロト イヨト イヨト

Neuroblastoma Data (MAQC-II)

- 251 patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004, aged from 0 to 296 months (median 15 months).
- Ouroblastoma is a common paediatric solid cancer (15%)
- 3 251 customized oligonucleotide microarray with p = 10,707.
- focus on "3-year Event Free Survival", —whether each patient survived 3 years after the diagnosis of neuroblastoma (n = 239 w/ 49 "+" and 190 "-").

イロト イロト イヨト イヨト

Neuroblastoma Data (MAQC-II)

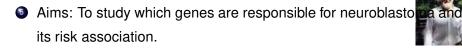
- 251 patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004, aged from 0 to 296 months (median 15 months).
- Neuroblastoma is a common paediatric solid cancer (15%)
- **③** 251 customized oligonucleotide microarray with p = 10,707.
- focus on "3-year Event Free Survival", —whether each patient survived 3 years after the diagnosis of neuroblastoma (n = 239 w/ 49 "+" and 190 "-").

Jianqing Fan (Princeton University)

イロト イロト イヨト

Neuroblastoma Data (MAQC-II)

- 251 patients of the German Neuroblastoma Trials NB90-NB2004, diagnosed between 1989 and 2004, aged from 0 to 296 months (median 15 months).
- Neuroblastoma is a common paediatric solid cancer (15%)
- **③** 251 customized oligonucleotide microarray with p = 10,707.
- focus on "3-year Event Free Survival", —whether each patient survived 3 years after the diagnosis of neuroblastoma (n = 239 w/ 49 "+" and 190 "-").



イロト イロト イヨト

Results

Training set and endpoints:

- "3-y EFS": Random *n* = 125 subjects (25 "+" and 100 "-").
- **Gender**": Random 120 males and 50 females. Total: 246.

Testing set: The remainder are used as the testing set.

Object	Method	SIS	ISIS	var2-ISIS	LASSO	NSC	Total
3-y EFS	No. pred.	5	23	12	57	9413	10,707
	Test error	19	22	21	22	24	114
Gender	No. pred.	6	2	2	42	3	10,707
	Test error	4	4	4	5	4	126

San

• • E • • E

Results

Training set and endpoints:

- **3** "3-y EFS": Random n = 125 subjects (25 "+" and 100 "-").
- **Gender**": Random 120 males and 50 females. Total: 246.

Testing set: The remainder are used as the testing set.

Object	Method	SIS	ISIS	var2-ISIS	LASSO	NSC	Total
3-y EFS	No. pred.	5	23	12	57	9413	10,707
	Test error	19	22	21	22	24	114
Gender	No. pred.	6	2	2	42	3	10 707
	Test error	4	4	4	5	4	126 EV
							The second second

I = 1

San

Multi-category Classification

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

Yale University 37 / 43

Э

I = 1

< □ ト < @

<u>Linear classifier</u>: argmax_k $f_k(\mathbf{x})$, where $f_k(\mathbf{x}) \equiv \beta_{0k} + \mathbf{x}^T \beta_k$.

Loss:
$$L(Y, \mathbf{f}(\mathbf{x}; \mathbf{B})) = \sum_{j \neq Y} [1 + f_j(\mathbf{x})]_+$$

Marginal utility of the *j*-feature (Lee et al, 2004; Liu, et al, 2007): $L_j = \min_{\mathbf{B}} \sum_{i=1}^{n} L(Y_i, \mathbf{f}(X_{ij}, \mathbf{B})) + \frac{1}{2} \sum_k \beta_{jk}^2 \text{ (identifiability)}$

Jianqing Fan (Princeton University)

イロト イポト イヨト

Simulation Experiments

$$\begin{array}{l} \underline{\text{Design}}: \tilde{X}_1, \dots, \tilde{X}_4 \; \text{U}[-\sqrt{3}, \sqrt{3}], \text{ and } \tilde{X}_5, \dots, \tilde{X}_p \sim N(0, 1). \\\\ \text{Case 1: } X_j = \tilde{X}_j \; \text{for } j = 1, \dots, p \\\\ \text{Case 2: } X_1 = \tilde{X}_1 - \sqrt{2} \tilde{X}_5, \; X_2 = \tilde{X}_2 + \sqrt{2} \tilde{X}_5, \; X_3 = \tilde{X}_3 - \sqrt{2} \tilde{X}_5, \\\\ X_4 = \tilde{X}_4 + \sqrt{2} \tilde{X}_5, \\\\ X_j = \sqrt{3} \tilde{X}_j \; \text{for } j = 5, \dots, p. \end{array}$$

Response: 4 categories $\mathbf{P}(\mathbf{Y} = k | \mathbf{X} = \mathbf{\tilde{x}}) \propto \exp\{f_k(\mathbf{\tilde{x}})\},\$ $f_1(\tilde{\mathbf{x}}) = -a\tilde{x}_1 + a\tilde{x}_4, f_2(\tilde{\mathbf{x}}) = a\tilde{x}_1 - a\tilde{x}_2,$ $f_3(\tilde{\mathbf{x}}) = a\tilde{x}_2 - a\tilde{x}_3$ and $f_4(\tilde{\mathbf{x}}) = a\tilde{x}_3 - a\tilde{x}_4$ with $a = 5/\sqrt{3}$.

200

Jianging Fan (Princeton University)

イロト イポト イヨト イヨト

Simulation Experiments

$$\begin{array}{l} \underline{\text{Design}}: \ & \tilde{X}_1, \dots, \tilde{X}_4 \ \text{U}[-\sqrt{3}, \sqrt{3}], \ \text{and} \ & \tilde{X}_5, \dots, \tilde{X}_p \sim \textit{N}(0, 1). \\ \\ & \text{Case 1:} \ & X_j = \tilde{X}_j \ \text{for} \ j = 1, \dots, p \\ \\ & \text{Case 2:} \ & X_1 = \tilde{X}_1 - \sqrt{2} \tilde{X}_5, \ & X_2 = \tilde{X}_2 + \sqrt{2} \tilde{X}_5, \ & X_3 = \tilde{X}_3 - \sqrt{2} \tilde{X}_5, \\ & X_4 = \tilde{X}_4 + \sqrt{2} \tilde{X}_5, \\ & X_j = \sqrt{3} \tilde{X}_j \ \text{for} \ j = 5, \dots, p. \end{array}$$

Response: 4 categories $\mathbf{P}(\mathbf{Y} = k | \mathbf{\widetilde{X}} = \mathbf{\widetilde{x}}) \propto \exp\{f_k(\mathbf{\widetilde{x}})\},\$ $f_1(\mathbf{\widetilde{x}}) = -a\tilde{x}_1 + a\tilde{x}_4, f_2(\mathbf{\widetilde{x}}) = a\tilde{x}_1 - a\tilde{x}_2,\$ $f_3(\mathbf{\widetilde{x}}) = a\tilde{x}_2 - a\tilde{x}_3 \text{ and } f_4(\mathbf{\widetilde{x}}) = a\tilde{x}_3 - a\tilde{x}_4 \text{ with } a = 5/\sqrt{3}.$

200

イロト イロト イヨト イヨト

	SIS	ISIS	Var2-ISIS	LASSO	NSC			
	Case 1							
True positive	1.00	1.00	1.00	0.00	0.68			
Median modal size	2.5	4	5	19	4			
0-1 test error	0.306	.301	.292	.330	.452			
Standard error	.007	.006	.006	.008	.021			
	Case 2							
True positive	.10	1.00	1.00	.33	.30			
Median modal size	4	11	9	54	9			
0-1 test error	.436	.304	.298	.430	.624			
Standard error	.007	.007	.006	.004	.008			

Test errors: based on 200*n* cases.

Jianqing Fan (Princeton University)

=

500

< □ ト < @

Classification: ★neuroblastoma (NB),

★rhabdomyosarcoma (RMS), ★non-Hodgkin lymphoma (NHL),
 ★Ewing family of tumors (EWS).

Data: cDNA microarrays with 2308 genes (from 6567).

Training: 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS)

Testing: 20 (6 NBs, 5 RMSs, 3 NHLs, and 6 EWS)

Results: All methods have zero testing errors.

Method	ISIS	var2-ISIS	LASSO	NSC	1
# selected genes	15	14	71	343	

イロト イロト イヨト イヨト

Classification: *neuroblastoma (NB),

★rhabdomyosarcoma (RMS), ★non-Hodgkin lymphoma (NHL),
 ★Ewing family of tumors (EWS).

Data: cDNA microarrays with 2308 genes (from 6567).

- Training: 63 (12 NBs, 20 RMSs, 8 NHLs, and 23 EWS)
- Testing: 20 (6 NBs, 5 RMSs, 3 NHLs, and 6 EWS)
- Results: All methods have zero testing errors.

Method	ISIS	var2-ISIS	LASSO	NSC	
# selected genes	15	14	71	343	
					1 at 5

イロト イタト イヨト イヨト

Propose large scale-screening and moderate-selection

- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Demonstrate its utility via extensive simulation. Handle well the most difficulty case.

Provide theoretical foundation to independence learning

Jianqing Fan (Princeton University)

High-dimensional variable selection

イロト イポト イヨト イヨト

Propose large scale-screening and moderate-selection

- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Demonstrate its utility via extensive simulation. Handle well the most difficulty case.

Provide theoretical foundation to independence learning

Jianqing Fan (Princeton University)

High-dimensional variable selection

イロト イポト イヨト イヨト

Propose large scale-screening and moderate-selection

- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Oemonstrate its utility via extensive simulation. Handle well the most difficulty case.

Provide theoretical foundation to independence learning

Jianqing Fan (Princeton University)

イロト イロト イヨト イヨト

Propose large scale-screening and moderate-selection

- Use conditional independence screening.
- Allow variable deletion in the process.
- Estimation accuracy, comp expediency, algorithmic stability.
- Applicable to many contexts: ★GLIM; ★Robust; ★Machine learning
- Oemonstrate its utility via extensive simulation. Handle well the most difficulty case.
- Provide theoretical foundation to independence learning.

Jianqing Fan (Princeton University)

イロト イロト イヨト イヨト

The End

200

Jianqing Fan (Princeton University)

High-dimensional variable selection

э 43/43 Yale University

<ロト < 四ト < 三ト < 三ト</p>