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Abstract: Acoustic microscopes and acoustic tweezers have great value in the application of micropar-
ticle manipulation, biomedical research and non-destructive testing. Ultrahigh frequency (UHF)
ultrasonic transducers act as the key component in acoustic microscopes, and acoustic tweezers
and acoustic lenses are essential parts of UHF ultrasonic transducers. Therefore, the preparation of
acoustic lenses is crucial. Silicon is a suitable material for preparing acoustic lenses because of its high
acoustic velocity, low acoustic attenuation and excellent machinability. In previous research, silicon
lenses were mainly prepared by etching. However, etching has some drawbacks. The etching of
large sizes is complex, time-consuming and expensive. Furthermore, vertical etching is preferred to
spherical etching. Thus, a new method of ultra-precision machining was introduced to prepare silicon
lenses. In this paper, silicon lenses with an aperture of 892 µm and a depth of 252 µm were prepared.
Then, UHF ultrasonic transducers with a center frequency of 157 MHz and a −6-dB bandwidth of
52% were successfully prepared based on silicon lenses. The focal distance of the transducers was
736 µm and the F-number was about 0.82. The transducers had a lateral resolution of 11 µm and
could distinguish the 13 µm slots on silicon wafers clearly.

Keywords: silicon lens; acoustic lens; ultrahigh frequency ultrasonic transducer; ultra-precision
machining; acoustic microscope

1. Introduction

Ultrasonic energy can penetrate the interior of objects and measure their elastic proper-
ties through echo without damaging them. Therefore, ultrasound can be used to image the
interior of objects. Ultrasonic imaging has the advantages of being real-time, inexpensive
and harmless to organisms. Acoustic microscopes [1–9] are the systems used for high
resolution ultrasonic imaging. Acoustic microscopes have great value in applications such
as biomedical imaging [3–5,10,11] and non-destructive testing [7–9,12,13]. The resolution of
systems is determined by the working frequency of transducers. Thus, ultrahigh frequency
(UHF) ultrasonic transducers [10,14] are the key components in acoustic microscopes.

When particles are suspended in a field of acoustic waves, the acoustic radiation
force [15] that arises from the scattering of the acoustic waves is exerted on particles. The
contactless manipulation of particles can be realized by acoustic waves. The systems
that manipulate the position and movement of very small objects with acoustic waves
are called acoustic tweezers. Acoustic tweezers [16,17] have numerous applications in
biophysical and biomedical research fields [16–18]. The target objects are usually smaller
than the wavelength of acoustic waves used. The use of UHF ultrasound transducers
allows for extremely high manipulation accuracy, so UHF ultrasonic transducers are crucial
to acoustic tweezers.

Ultrasonic transducers with dispersed acoustic beams are difficult to be apply in
imaging or manipulation. The acoustic beams need be focused to obtain high resolution
and energy density. Acoustic lenses [19–21] can be applied for focusing acoustic beams
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and are an essential part of ultrasound transducers. At low frequency, there are few
limitations for preparing acoustic lenses, but for UHF frequency, the attenuation of acoustic
energy is proportional to the square of the frequency. Thus, the size of acoustic lens is
considerably decreased, and the difficulty of its preparation is much increased. Therefore,
suitable materials and accurate processing methods are important for the preparation of
UHF lenses.

Silicon is a suitable material for preparing UHF acoustic lenses because of its high
acoustic velocity, low acoustic attenuation and excellent machinability. In previous research,
silicon lenses were prepared by etching. The etching [14,18,22] of silicon is a common
method in the field of semiconductors, although it is expensive and complex. Etching
involves a series of processes including coating, exposure, development, etching, and
striping. Thus, low-cost and efficient methods are needed to simplify the preparation of
UHF acoustic lenses. In the following section, the preparation of UHF acoustic lenses
by a new method is described. Then, the design and simulation of UHF acoustic lenses
are presented. Finally, the preparation of UHF ultrasonic transducers is described, and
characterization and imaging experiments are discussed.

2. Materials and Methods
2.1. Design, Simulation and Fabrication of Silicon Lens

Ultraprecision machining was applied for preparing silicon lenses. The process utilized
an ultraprecision high-speed Micro Machining Center (QJM-VL1S, Quick Jet, Kunshan,
China) and ball nose milling cutter (EPDBEH-TH3 series, Hitachi, Tokyo, Japan) with
a diameter of 100 um (Figure 1a). 3D models of the lens were required for automatic
machining. Spherical holes were machined on the surface of the silicon. Diamond polishing
paste of 1 micron was then used to obtain a superfine mirror finish. The surface undulation
of the lens was less than 1 µm. The contour measured by stylus profilometer (DektakXTL,
Bruker, Massachusetts, MA, USA) demonstrated the result of polishing (Figure 1b). The
morphology of silicon lenses can be observed in a scanning electron microscope (SEM).
Figure 1c and d show the cross-sectional and top view of a silicon lens captured by SEM.
The size of the silicon lens was measured using the ruler tools in the SEM software. The
silicon lens showed a complete spherical morphology. The parameters of the silicon wafer
used in this process are shown in Table 1.
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Table 1. The parameters of the silicon wafer.

Size (feet) Thickness (µm) Type Orientation Resistivity (Ω·cm) Surface Treatment

2 500 N 100 1–10 single-side polishing, no oxide film

Acoustic lenses with a large focal distance have a wide working range, while acoustic
energy attenuation also increases with distance. Thus, the design of focal distance should
not be too large when the depth of applications is low. The focal distance (q) of silicon lenses
can be calculated by Formula (1) [19,23]. When the incident acoustic waves are a distance
(h) from the center axis, q is changed to s2 (Figure 2a), and this aberration decreases the
resolution. According to Formula (2) [23], the aberration of the focal point is proportional
to the square of aperture. Although a large aperture can allow more energy to penetrate,
the size of the aperture should be considered seriously. The F-number [19] is defined as the
focal distance divided by the aperture. An appropriate value of the F-number can balance
the acoustic energy and resolution. An F-number of 0.8 [19] was chosen for the design of
silicon lenses. To avoid edge effects, the aperture of lenses should be less than the size
of the piezoelectric materials. The size of the piezoelectric materials in UHF ultrasonic
transducers was 1000 × 1000 µm. Thus, the aperture of silicon lenses was designed to
900 µm and the focal distance was 720 µm. In addition, s2 is inversely proportional to the
square of n. A small value of n leads to small aberration. The commonly used coupling
medium is water with an acoustic velocity of 1540 m/s. Silicon has an acoustic velocity
of 8430 m/s, which is much larger than that of water. The value of n was about 0.18, as
calculated by Formula (3) [23]. Thus, silicon is a suitable material for preparing acoustic
lenses. The lens properties are calculated as follows:

q =
r0

1 − n
(1)

1
s2

=
1
q
+

n2h2

2qr02 (2)

n =
n1

n2
=

v2

v1
(3)

where r0 is the radius of the curvature, n1 is the refractive index of the lens, n2 is the
refractive index of the medium, v1 is the acoustic velocity in lens, and v2 is the acoustic
velocity in the medium.

To verify the effectiveness of the silicon lens, a commercial finite element method
software (COMSOL Multiphysics 6.0) was used to establish a 2D finite element model based
on Figure 2b. The silicon lens was symmetrically modeled with a depth of 250 µm. Silicon
was selected to fabricate the lens, and a LiNbO3 crystal was selected as the piezoelectric
material because of its excellent acoustic properties. The acoustic parameters used for the
simulation are listed in Table 2. A highly-attenuated conductive epoxy (E-solder 3022)
was selected as the backing to reduce the rings from the back of the piezo-element. The
physical fields (pressure acoustics, solid mechanics, and electrostatic mechanics) were
selected to accurately simulate the propagation of acoustic waves. Silicon and water were
attributed to the pressure acoustics field, and LiNbO3 was assigned to solid mechanics and
electrostatic mechanics. To simulate the infinite water domain and avoid the influence of
non-experimental factors, a perfect matching layer was selected on the outermost side of
the model. Finally, a sufficiently small mesh (less than λ/5, λ means the wavelength at the
center frequency) was divided to obtain more accurate simulation results, and the frequency
sweep range of 100–200 MHz with step of 5 MHz was applied to simulate the acoustic field
under different excitation frequencies. Figure 3a shows the simulated acoustic pressure
intensity distribution in water. Furthermore, the lateral resolution could be calculated by
the transversal line past the center of the focal point. As shown in Figure 3b, the lateral
resolution was 20 µm at −6-dB magnitude.
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Table 2. The parameters of materials in the COMSOL simulation.

Velocity (m/s) Density (kg/m3) Acoustic Impedance (MRayl)

LiNbO3 7360 4688 34.5
Si 8430 2340 19.8

E-solder 3022 1850 3200 5.9
Water 1540 1000 1.5
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2.2. Fabrication of UHF Ultrasound Transducer

As shown in Figure 4c, a piece of LiNbO3 single crystal was stuck on the glass substrate
with paraffin and was ground to 17 µm. An Au-layer with a thickness of 200 nm was
sputtered (Desk V, Denton Vacuum, Moorestown, NJ, USA) on the surface of the LiNbO3. A
ceramic ring was used for filling the E-solder 3022 conductive adhesive, and E-solder 3022
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(Von Roll Isola Inc., Schenectady, NY, USA) was ground to 1 mm as a backing layer. The
elements were diced into 1 × 1 mm by a dicing saw (DAD323, Disco, Japan). Then, UHF
ultrasound transducers were packaged according to Figure 4b. The bottom electrode was
connected by the backing layer and wire. The element was then placed in the Cu-housing.
The Cu-housing was filled with epoxy to fix the element. An Au-layer with a thickness of
200 nm was sputtered on the surface of the transducers as the top electrode and connected
the Cu-housing. A parylene layer with a thickness of 3 µm (PDS 2010, Specialty Coating
Systems, Indianapolis, IN, USA) acted as a protective film. The silicon lens was fixed in
a PLA 3D printing mold. The mold and Cu-housing were assembled by threads, and a
couplant was used for removing the air between the silicon lens and the element. The
fabricated devices are shown in Figure 4a.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 11 
 

 

  
(a) (b) 

Figure 3. (a) The acoustic pressure field simulated by COMSOL. (b) The lateral resolution simulated 
by COMSOL. 

Table 2. The parameters of materials in the COMSOL simulation. 

 Velocity (m/s) Density (kg/m3) Acoustic Impedance (MRayl) 
LiNbO3 7360 4688 34.5 

Si 8430 2340 19.8 
E-solder 3022 1850 3200 5.9 

Water  1540 1000 1.5 

2.2. Fabrication of UHF Ultrasound Transducer 
As shown in Figure 4c, a piece of LiNbO3 single crystal was stuck on the glass 

substrate with paraffin and was ground to 17 μm. An Au-layer with a thickness of 200 nm 
was sputtered (Desk V, Denton Vacuum, Moorestown, NJ, USA) on the surface of the 
LiNbO3. A ceramic ring was used for filling the E-solder 3022 conductive adhesive, and 
E-solder 3022 (Von Roll Isola Inc., Schenectady, NY, USA) was ground to 1 mm as a 
backing layer. The elements were diced into 1 × 1 mm by a dicing saw (DAD323, Disco, 
Japan). Then, UHF ultrasound transducers were packaged according to Figure 4b. The 
bottom electrode was connected by the backing layer and wire. The element was then 
placed in the Cu-housing. The Cu-housing was filled with epoxy to fix the element. An 
Au-layer with a thickness of 200 nm was sputtered on the surface of the transducers as 
the top electrode and connected the Cu-housing. A parylene layer with a thickness of 3 
μm (PDS 2010, Specialty Coating Systems, Indianapolis, IN, USA) acted as a protective 
film. The silicon lens was fixed in a PLA 3D printing mold. The mold and Cu-housing 
were assembled by threads, and a couplant was used for removing the air between the 
silicon lens and the element. The fabricated devices are shown in Figure 4a. 

 
 

(a) (b) 

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 11 
 

 

 
(c) 

Figure 4. (a) The fabricated devices. (b) Schematic diagram of UHF ultrasound transducers. (c) The 
preparation processes of the elements. 

3. Results 
3.1. Characteristics of Transducers 

The pulse-echo experiment is commonly used for characterizing ultrasonic transduc-
ers. Here, the UHF ultrasonic transducers were characterized by pulse-echo testing. A 
piece of glass acted as reflector (Figure 5a). JSR (DPR500, Imaginant, Pittsford, NY, USA) 
was used to transmit a pulse and receive an echo. The results are shown in Figure 5b, and 
the relevant parameters are listed in Table 3. The center frequency of the transducers de-
termines the physical limit of resolution. The −6-dB bandwidth affects the waveform of 
echoes. Pulse duration was used for describing the length of the echo and is defined by 
the duration of the half amplitude of the echoes. The performance of LiNbO3 transducers 
without a lens has been shown in previous research [10,24–26]. 

  
(a) (b) 

Figure 5. (a) Pulse-echo testing. (b) The waveform and frequency spectrum of the echo. 

  

Figure 4. (a) The fabricated devices. (b) Schematic diagram of UHF ultrasound transducers. (c) The
preparation processes of the elements.

3. Results
3.1. Characteristics of Transducers

The pulse-echo experiment is commonly used for characterizing ultrasonic transducers.
Here, the UHF ultrasonic transducers were characterized by pulse-echo testing. A piece of
glass acted as reflector (Figure 5a). JSR (DPR500, Imaginant, Pittsford, NY, USA) was used
to transmit a pulse and receive an echo. The results are shown in Figure 5b, and the relevant
parameters are listed in Table 3. The center frequency of the transducers determines the
physical limit of resolution. The −6-dB bandwidth affects the waveform of echoes. Pulse
duration was used for describing the length of the echo and is defined by the duration of
the half amplitude of the echoes. The performance of LiNbO3 transducers without a lens
has been shown in previous research [10,24–26].
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Table 3. The performance parameters of the UHF ultrasonic transducer.

Center Frequecy
(MHz)

−6-dB Bandwidth
(%)

Pulse Duration
(ns)

Focal Distance
(µm)

Silicon lens
Transducer 157 52 8 736

3.2. B-Scan Imaging

Scanning acoustic microscope (SAM) usually refers to ultrasound imaging devices
consisting of single-element ultrasound transducers, three-axis motion platforms, and a
data acquisition (DAQ) card. Figure 6a shows a schematic diagram of an SAM. Figure 6b
shows the general working modes of an SAM.
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Tungsten wires with a diameter of 10 µm were imaged by SAM. The tungsten wires
could be distinguished in the B-scan image (Figure 7a). The lateral resolution could be
calculated by the transversal line past the center of the tungsten wires. As shown in
Figure 7b, the resolution was 11 µm.
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3.3. C-Scan Imaging

Silicon wafers with three slots were imaged by SAM (Figure 8a). The widths of three
slots were 55 µm, 28 µm, and 13 µm respectively. As shown in Figure 8b, the three slots
were distinguished clearly. The high lateral resolution was demonstrated.
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4. Discussion

In this paper, silicon wafer was chosen as the material of UHF acoustic lens because
of its high acoustic velocity, low acoustic attenuation and excellent machinability. Silicon
lenses with an aperture of 892 µm and a depth of 252 µm were prepared by ultraprecision
machining with a maximum error of 8 µm. Silicon lenses were used to fabricate UHF
ultrasonic transducers with a center frequency of 157 MHz and a −6-dB bandwidth of 52%.
The focal distance of the transducers was 736 µm, and the F-number was about 0.82. The
transducers had a lateral resolution of 11 µm and could distinguish the 13 µm slots on
the silicon wafer clearly. In addition, a short pulse duration of 8 ns was achieved, which
represents high axial resolution.
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In previous research, etching has been widely used in the fabrication of acoustic lenses
based on silicon wafers. Acoustic lenses usually should have a smooth surface and larger
geometry sizes than semiconductor devices. Etching is divided into wet etching and dry
etching. Wet etching [18] has a faster etching rate, but when materials have poor anisotropy,
smooth surfaces are difficult to prepare by wet etching. Though dry etching [14] can produce
smooth surfaces, large size etching is time-consuming and expensive using dry etching.
Moreover, for dry etching, it is preferable to use vertical etching to spherical etching. Thus,
although etching is a common method for processing silicon wafer in the semiconductor field,
it is not the best choice for preparing acoustic lenses. Ultra-precision machining relies on a
micron-sized ball nose milling cutter, which can be used to machine any spherical morphology
in silicon lenses. As shown in Table 4, ultra-precision machining has the advantage of low
cost and shorter processing time. As etching involves a series of steps including coating,
exposure, development, etching, striping, it is more complex than ultraprecision machining.
Furthermore, ultraprecision machining is independent of the anisotropy of silicon wafer which
decreases the difficulty of processing. Therefore, ultraprecision machining should have a
bright future in the preparation of UHF acoustic lenses.

Table 4. The advantages of ultraprecision machining.

Method Cost Time Complexity Difficulty

Ultraprecision
machining Low Short Single step Easy

Etching High Long A series of steps Hard

For UHF applications of biomedical imaging, the frequency limit is a key problem.
The preparation of silicon lenses for use in higher frequency imaging will continue to be
researched. Sapphire [27] is a more suitable material for preparing UHF acoustic lenses
because of its higher acoustic velocity and lower acoustic energy attenuation than silicon,
but it is more difficult to process. The preparation of sapphire lenses will be another
challenging target.
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