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Ultrahigh sensitivity of methylammonium lead
tribromide perovskite single crystals to
environmental gases

Hong-Hua Fang,1 Sampson Adjokatse,1 Haotong Wei,2 Jie Yang,1 Graeme R. Blake,1 Jinsong Huang,2

Jacky Even,3 Maria Antonietta Loi1*

One of the limiting factors to high device performance in photovoltaics is the presence of surface traps. Hence, the

understanding and control of carrier recombination at the surface of organic-inorganic hybrid perovskite is critical for

the design and optimization of devices with this material as the active layer. We demonstrate that the surface recom-

bination rate (or surface trap state density) inmethylammonium lead tribromide (MAPbBr3) single crystals can be fully

and reversibly controlled by the physisorption of oxygen and water molecules, leading to a modulation of the pho-

toluminescence intensity by over two orders of magnitude. We report an unusually low surface recombination velocity

of 4 cm/s (corresponding to a surface trap state density of 108 cm−2) in this material, which is the lowest value ever

reported for hybrid perovskites. In addition, a consistent modulation of the transport properties in single crystal de-

vices is evidenced. Our findings highlight the importance of environmental conditions on the investigation and fab-

rication of high-quality, perovskite-based devices and offer a new potential application of these materials to detect

oxygen and water vapor.

INTRODUCTION

Hybrid perovskites have led to a whole new generation of solar devices
with remarkable power conversion efficiency over 22% (1–5). This im-
pressive performance in solar cells has also spawned the exploration of
diverse applications from light-emitting diodes (6) and lasers (7, 8) to
photodetectors (9, 10), etc. Perovskites have been shown to have superior
optoelectronic properties, such as a tunable direct bandgap, high absorp-
tion coefficient, and balanced electron and hole transport (11–13). Similar
to other more traditional semiconductors, the stability and performance
of hybrid perovskite devices are strongly dependent on the defect states
and the filmmorphology, which have a great effect on the carrier lifetime
(14–17). Great effort has been devoted to produce large-grained perov-
skite films, improving their crystalline quality (18–20). In single crystals
of methylammonium lead triiodide (MAPbI3) andmethylammonium lead
tribromide (MAPbBr3), carrier diffusion lengths over 100 mm and bulk
trap state densities of the order of 109 to 1010 per cubic centimeter
have been demonstrated (21, 22). Surface recombination represents
an important loss of carriers and often plays a decisive role in deter-
mining the optoelectronic properties of semiconductors, where inter-
faces between different materials are crucial for the device to function.
A low surface recombination rate is required to try to approach the
thermodynamic efficiency limits for solar cells and devise other effi-
cient optoelectronic devices. Thus, understanding and controlling the
recombination of carriers at the surface of perovskite crystals is criti-
cally important for designing and optimizing devices.

Recently, a number of studies have shown that the interaction be-
tween hybrid perovskite materials and their environment has a signif-
icant impact not only on the perovskite morphology or photostability
but also on the optoelectronic properties (23–26). For instance, Gran-
cini and co-workers (27) reported that moisture and possibly oxygen

molecules can cause perovskite lattice strain and a shift in the photo-
luminescence (PL) spectrum. Tian and co-workers (25) showed a PL
yield enhancement in oxygen, which is attributed to a photochemical
reaction located both at the surface and in the bulk of MAPbI3. Simi-
larly, Müller et al. (26) found that water infiltration into MAPbI3 films
increases its ionic conductivity. However, the interaction mechanism
is only partially known and remains controversial. In polycrystalline
thin films, the intrinsic response of the optoelectronic properties to the
environment may be shielded by the microstructure quality and non-
crystalline domains. On the other hand, grain boundaries and non-
crystalline domains are absent in single crystals, making them the ideal
platform to probe the intrinsic material properties as well as the surface
recombination, and hence providing insight into the limitations in
improving perovskite polycrystalline thin film solar cells.

Here, we investigate the optical properties of MAPbBr3 single
crystals by single- and two-photon excitation, and we demonstrate an
unusually low surface recombination velocity (SRV) of 4 cm/s in these
crystals, which can be modulated by the physisorption of O2 and H2O
molecules. Thus, we reveal that the photophysical properties of MAPbBr3
single crystals are ultrasensitive to their environment. Moreover, the
tunability of the photophysical and charge transport properties of the
MAPbBr3 single crystals is fully and quantitatively reversible. This phe-
nomenon could therefore be at the basis for the development of sensi-
tive MAPbBr3-based gas detectors.

RESULTS AND DISCUSSION

PL modulation effect on crystals
The MAPbBr3 single crystals were prepared from solution by inverse
temperature crystallization (ITC) and antisolvent vapor-assisted crys-
tallization (AVC) methods. The inset of Fig. 1A shows an image of an
MAPbBr3 single crystal with dimensions of ~5 × 3 × 1.7 mm3 grown by
the ITC method. The crystal adopts the cubic Pm�3m space group at
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room temperature. Figure 1A presents the hk0 reciprocal lattice plane
reconstructed from raw single crystal x-ray diffraction (XRD) data col-
lected at 295 K. The sharp spots show the high quality of the crystals.
A powder diffraction pattern was collected at room temperature (see fig.
S1) with peaks at 14.92°, 21.11°, 30.07°, 33.71°, 37.11°, 43.05°, and 45.77°.
Conversion of the peak positions to interplanar spacings shows that
these peaks correspond to the (100), (110), (200), (210), (211), (220),
and (300) planes, respectively.

Under ambient conditions, the excitation of the crystal with a 400-nm
wavelength femtosecond laser (75-MHz repetition rate) results in strong
yellow-green fluorescence. The corresponding emission peak is located
at 556 nm (Fig. 1B) near the absorption onset (2.23 eV), as is revealed
by the PL excitation spectrum (see fig. S2). The crystals show superior
photostability under the same ambient conditions; the PL intensity re-
mained constant even after more than 3.5 hours of continuous optical
pumping (see fig. S3). However, we found that the PL intensity of the
MAPbBr3 crystal can be modulated when the crystals are exposed to
different environments. For instance, when the atmospheric pressure is
changed, the PL intensity also changes instantaneously. The PL inten-
sity is reduced by more than two orders of magnitude when the sample
chamber is evacuated from atmospheric pressure to 1.3 × 10−4 mbar, as
shown in Fig. 1B. The correlation between the emission intensity and
the controlled pressure is clearly seen when the gas pressure is further
reduced to 10−4 mbar (see fig. S4). It is noticeable that the PL intensity

reverts to its original magnitude when the chamber is refilled with air to
ambient pressure, clearly showing the reversibility of these “deactivation”
and “activation” processes.

Figure 1C shows the reversible variation of the PL intensity on the
chamber pressure. The PL intensity decreases to 10% within 120 s (160
to 280 s) when the chamber is evacuated. It further decreases slowly to
0.4% of the initial intensity in air after about 1750 s in vacuum. The ob-
served PLmodulation effect in the crystals is very high, and thusmacro-
scopically visible (see movie S1). Figure 1D shows the normalized PL
spectra corresponding to various times in the PL intensity plot in Fig.
1C, where it is obvious that the PL in vacuum is only slightly blueshifted
compared with that in air. The increased surface recombination in vac-
uum leads to a lower fraction of the photogenerated carriers to diffuse
toward the interior of the crystal, and therefore in this case, the PL is less
affected by reabsorption. We note that the PL modulation effect is ob-
served inboth crystals preparedby ITC (Fig. 1) andAVCmethods (see fig.
S5), as well as in crystals cleaved inside an N2-filled glove box (see fig. S6).

To understand how the presence of air affects the PL,we investigated
the dynamics of photoexcitation in theMAPbBr3 single crystals in differ-
ent environments (Fig. 1, E and F). With an excitation power density of
0.71 mJ/cm2 (400-nmwavelength), the decay time of the crystalmeasured
in air shows an initial fast component with a lifetime of ≈59 ns (77.2%)
and a slower componentwith a lifetimeof≈818ns (22.8%) (Fig. 1G).The
underlying mechanism for the extremely long carrier lifetime in the

A B C

E F G

D

Fig. 1. XRD and optical properties of MAPbBr3 single crystals. (A) hk0 reciprocal lattice plane reconstructed from MAPbBr3 single crystal XRD data at
room temperature. Inset: Image of one of the measured crystals grown from solution. (B) PL spectra in vacuum and air (the PL intensity in vacuum is two
orders ofmagnitude lower than in air). (C) Variation in PL intensity of MAPbBr3 crystals from air-vacuum-air environments. a.u., arbitrary units. (D) Normalized
PL spectra at different times in (C). (E and F) Two-dimensional (2D) pseudocolor plots of TRPL spectra taken in air and vacuum with an excitation power
density of 0.71 mJ/cm2. (G) Decay of the PL at a wavelength of 560 nm in air and vacuum.
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hybrid perovskites is not fully understood. Recently, Rashba spin-orbit
coupling has been proposed as one of the possible explanations (28).

In vacuum, the PL lifetime of the MAPbBr3 single crystals is much
shorter (Fig. 1G), and its determination is limited by the instrumental
resolution in the configuration used to measure the crystal in air. A
lifetime of 22 ns is measured using a shorter time window (see fig. S7).
Similar to our observations for steady-state PL, the time-resolved PL
(TRPL) reverts to its initial behavior a few minutes after the chamber is
refilled with air. This ability to “reset” the darkening as an effect of air
exposure suggests that the gas molecules are physisorbed rather than
chemisorbed on the crystal surface.

Physisorption of gas molecules
To determine which gas molecules are responsible for the observed
optical behavior and to assess the influence of atmospheric gas adsorp-
tion on the crystal surface, the PL intensity variation was monitored in
different gas environments. Optical spectroscopic measurements were
performed in the following atmospheres: moist air, dry N2, He, CO2, a
mixture of O2 (20%) and He (80%), moist N2, moist O2, and vacuum.
Before each gas exposure and measurement, the sample chamber
containing the crystal was evacuated to a pressure from10−4 to 10−5mbar
and left in vacuum for about 30 min before filling the chamber with
the test gas. In the case of themeasurements performed in vacuum, the
crystal with the 400-nm excitation laser beam incident was left in the
chamber for an additional 30min. In each of themeasurements, the laser
with a pulse repetition rate of 1.4MHzwas kept at a constant fluence of
0.71 mJ/cm2. The PL of the sample was monitored every 10 s.

The PL intensity variation as a function of time for the single crystal
under illumination in different gas atmospheres is shown in Fig. 2. Ex-
posure of the crystal to dryN2, CO2, or Ar (Fig. 2A) has no influence on
the PL intensity. However, the PL intensity increases rapidly in the pres-
ence of air, dry O2, andmoist N2, as shown in Fig. 2B. It is worth noting
that the most rapid and intense PL enhancement is observed in the air-
exposed crystal, whereas the PL intensity recovers muchmore slowly in
dry O2 and moist N2. These data clearly indicate that the PL enhance-
ment is due to the molecular property of O2 and H2O. Moreover, the
presence of a combination of oxygen and water molecules further pro-
motes the activation process to a level that is very similar to that observed
in air (see fig. S8). All these intensity variations in different gases occur
with essentially no difference in the wavelength and shape of the emis-
sion peak (a spread of about 5 nm in the peak wavelength can be seen in
the normalized PL spectrum reported in fig. S9). The measurements re-
ported here are highly reproducible and independent of the sample
history. Thus, the effect of gas exposure can be reset when the chamber
is evacuated. This also implies that the interaction between the defect
sites and the gas molecules is weak (they are physisorbed), but it dictates
the optical emission of the material.

Bulk and surface optical properties of single crystals
The results reported in the previous section demonstrate that O2 and
H2O molecules passivate the charge traps in MAPbBr3 single crystals.
However, it is unclear where the traps are located, whether at the crystal
surface or in the bulk of the crystal. To selectively probe the bulk proper-
ties of our crystals, an 800-nm femtosecond laser was used to excite the
crystal with photon energy below the bandgap energy. Figure 3A shows
theTRPLunder excitation of the 800-nm femtosecond laserwith a photo-
carrier density of around 1.9 × 1013 cm−3. Under two-photon excitation,
the laser can penetrate deep into the bulk and excite the interior region

of the crystal (see inset of Fig. 3B). Therefore, the bulk properties can be
measured in this way, neglecting the contributions from the surface
(29). The steady-state emission peak wavelength is slightly redshifted
(566 nm) compared to the emission when the crystal is excited with
the 400-nm laser (556 nm). The lifetimes extracted from theTRPL curves
are t1 = 34 ns and t2 = 4.5 ms, as shown in Fig. 3B. Figure 3C shows the
two-photon excited PL spectra in vacuum and ambient air. Unlike in the
400-nm laser excitation experiment, the PL intensity difference is much
smaller under two-photon excitation. The PL intensity variation under
two-photon excitation is within the uncertainty of the measurement
(fig. S10). The fact that the optical properties of the bulk of the crystal
are less affectedbyO2 andH2Omolecules allowsus to conclude thatmost
of the trap statespassivatedbyO2andH2Oare localizednear theMAPbBr3
crystal surface.

Under the single-photon excitation, the penetration depth of the laser
in the crystal is only ~150 nm (30). Thus, only optical properties in the
near-surface region up to the penetration depth are probed. Therefore,
the photocarrier recombination is observed to be strongly affected by the
surface properties. Figure 3D shows a 2D pseudocolor plot of the TRPL
of a freshly cleaved crystal in air, where a red line indicates the variation
of thewavelengthof the emission peak as a functionof time. ThePLpeak
is redshifted from 546 to 560 nm in about 25 ns. This behavior is in
contrast to what is observed for two-photon excitation, where the emis-
sion peak wavelength remains unchanged with time. Similar behavior
was recently reported by Yamada et al. (31) for MAPbI3 crystals, where
they suggested that the redshift probably originates from the diffusion of
photoexcited carriers from the surface to the interior of the crystal. To
verify this, we calculated the photocarrier distribution and simulated the
PL spectrum at various times after single-photon excitation (see the
Supplementary Materials for details). Figure 3E presents the calculated
photocarrier density profiles as a function of distance from the crystal
surface. Although the carrier density near the surface decreases with time,
the bulk carrier density increases because of their long diffusion length.
The calculatedPL spectrum(Fig. 3F) correctly reproduces the experimen-
tal results, confirming that the redshift originates from carrier diffusion.

Low SRV in MAPbBr3 crystals
The time evolution of the carrier density after their generation is
governed by their diffusion and recombination. Recombination mech-
anisms include Shockley-Read-Hall processes, radiative recombination,
and Auger recombination, as well as surface and/or interface recombi-
nation; all these mechanisms contribute directly or indirectly to the ob-
served PL recombination dynamics. Although there are several different
recombination channels, it is possible to classify them into two categories:
bulk recombination and surface recombination, as illustrated in Fig. 4A.
The effective lifetime of the carriers, which canbe obtained fromTRPL, is
described as the sum of the recombination rates: 1/t = 1/tb + 1/ts, where
tb is the bulk recombination lifetime and ts is the surface recombination
lifetime. The bulk recombination lifetime tb can be determined from the
TRPL measured by two-photon excitation. Our analysis in the previous
section suggests that the two-photon excitation corresponds to a low in-
jection regime (the estimated photocarrier density is 1.9 × 1013 cm−3). It
is noted that the carrier lifetime is not significantly affected by reabsorp-
tion and reemission effect; measurements performed in transmission
and reflection geometry give rise to similar results. The bulk recombination
rate is estimated to be 1/tb = 2.2 × 10−5 s−1 using the lifetime of 4.5 ms
measured by two-photon excitation. Furthermore, using single-photon
excitation (see previous section), the effect of surface states in the single
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Fig. 2. Effect on the PL intensity ofMAPbBr3 single crystals of exposure to different gaseous environments. (A) PL intensity as a function of time in
vacuum and on exposure to dry N2, dry CO2, and dry Ar. (B) PL intensity as a function of time on exposure to air, dry O2, and moist N2. In each panel,
the blue shaded area indicates vacuum. The crystal was excited with a 400-nm wavelength laser; the laser power was kept constant at 0.71 mJ/cm2.

A B C

D E F

Fig. 3. Two-photon excited fluorescence inMAPbBr3 crystal and single-photonexcited optical properties of cleaved crystal surface. (A) 2Dpseudo-
color plot of two-photon (800 nm) excited TRPLmeasured in air. (B) TRPL dynamics [extracted frommeasurement reported in (A)]; the fit gives lifetimes
of t1 = 34 ns and t2 = 4.5 ms. Inset: Image of MAPbBr3 crystal under two-photon excitation (TPE) with an excitation wavelength of 800 nm. (C) Two-photon
excited PL spectra measured in air and vacuum. (D) 2D pseudocolor plot of TRPL of a freshly cleaved crystal in air; the excitation wavelength is 400 nm. The
emission peak wavelength as a function of time is indicated by the red line. (E) Calculated photocarrier density profile at various times under 400-nm laser
excitation. Inset: Image ofMAPbBr3 crystal under single-photon excitation (SPE) with an excitationwavelength of 400 nm. (F) Calculated PL spectra at various
times after excitation.
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crystals can be quantified by extracting the SRV (S) using the following
equation (32)

1

ts
¼

2a2D

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 8a2D2=S2
p

where a is the absorption coefficient at the excitation wavelength,
andD = mkT/q is the carrier diffusion coefficient. This expression is ap-
plicable if the sample thickness d is much larger than the optical pene-
tration depth a

−1, which is the case for the single-photon excitation
study on our monocrystals. With the above expression, an SRV (S) =
4 cm/s is obtained fromcrystals with pristine surface, giving m=206 cm2

V−1 S−1 asmeasured by the time of flightmethod (33). Also, an effective
lifetime of 2.3 ms (see fig. S12) measured at low excitation fluence of
10 nJ/cm2 is used. The above general expression reduces to 1/ts = aS/√2
for small S values, showing that the result is robust toward variation of
the charge carriermobility. An SRV (S) = 2.9 cm/s is obtained if 1/ts=aS

is used as proposedbyAhrenkiel andDashdorj (34). This is the lowest SRV
value ever reported for hybrid perovskites (three orders of magnitude
lower than previously reported values) (35). It is also much lower than
the SRVvalues for detector grade semiconducting crystals, such as silicon
(2×104 cm/s) andgermanium (1300 cm/s) (36). It is noteworthy that the
surfaces of these MAPbBr3 crystals are not intentionally passivated.

The SRV can be described using the equation S = svthNt (37), where
vth ≈ 3.7 × 107 cm/s is the carrier thermal velocity, s ≈ 10−15 cm2 is a
typical recombination surface cross section in semiconductors, andNt is
the number of recombination centers per square centimeter. Under these
assumptions, we deduce the surface density of electronic defects to be less
than 108 cm−2. As discussed above, thePL lifetime is shortened to be 22ns
when the sample is exposed to vacuum. Under this condition, the cal-
culated SRV in vacuum increases to S = 890 cm/s, corresponding to a
surface density of defect states of 2.4 × 1010 cm−2, which is two orders of
magnitude higher than that in air. The effective PL lifetimes for large
crystals are plotted with different carrier diffusion coefficients D and
bulk lifetimes tb in Fig. 4B. We found that the single-photon excitation
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Fig. 4. Effect of surface recombination on the optical properties of MAPbBr3 crystal. (A) Schematic image showing photoexcitation and deep levels
within the forbidden gap in proximity to the surface. hvex, excitation laser; Ec, conduction band; Ev, valence band. (B) PL lifetime in bulk single crystals as
a function of SRV for various carrier diffusion coefficients and bulk lifetimes. (C) PL lifetime in polycrystalline thin film or small crystals for various surface
recombination velocities.

R E S EARCH ART I C L E

Fang et al. Sci. Adv. 2016; 2 : e1600534 27 July 2016 5 of 9

 o
n
 S

e
p
te

m
b
e
r 6

, 2
0
1
7

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://advances.sciencemag.org/


PL lifetime in bulk crystals is mainly limited by the SRV and, thus, by the
density of surface trap states.When the SRVvaries from1 to 104 cm/s, the
PL lifetime also varies from microseconds to nanoseconds. This further
indicates that MAPbBr3 single crystals may have great potential for de-
tecting oxygen and water vapor.

One of themost attractive features of hybrid perovskites is their ability
to form efficient polycrystalline thin films by low-temperature solution
processes for cheap mass production of solar cells. Precise knowledge
of the surface recombination effect on polycrystalline thin films as well
as on colloidal perovskite nanocrystals is therefore of high interest for the
improvement of perovskite devices. Here, we made the assumption that
surface traps at the thin film grain boundary and/or at the nanocrystal sur-
face areof the samenature as theones in the single crystals.Given that grain
boundaries and the surfaces of each grain have the same concentration of
recombinationcenterperunit area, thePL lifetimeas a functionof thegrain
size in the film or nanocrystal can be described by the equation (35)

1

ts
¼

1

tb
þ

2

d
S þ 1

D ð
d
p
Þ
2

where d is the size of the grain in the film or nanocrystal, S is the SRV, and
D is the carrier diffusioncoefficient.This expression is applicable if the sam-
ple thickness d is small, such that the carriers can easily diffuse from one
surface to the opposite surface, which is the case for single-photon ex-
citation studies on thin films. Figure 4C displays the PL lifetime as a
function of grain size at different SRVs. In contrast to bulk crystals, the
grain size plays a major role (Fig. 4B and previous equation). For small

grain size d, the effective PL lifetime approaches the bulk recombination
lifetime. This occurs only if the surface of the perovskite material is well
passivated, so that the surface state density is much lower than that of the
bulk defect states. In the case where the thin film has the same bulk re-
combination lifetime as themonocrystal and the grain size is about 1 mm,
the SRVwould be less than 1 cm/s, corresponding to a surface density of
3.7 × 107 cm−2.

Electronic properties of single crystals
To directly evaluate how the electronic properties are modulated by the
interaction between ambient gas molecules and the defect sites, we pro-
ceeded to investigate the charge-transport properties ofMAPbBr3 single
crystal devices in vacuum and air. For this purpose, we fabricated de-
vices by evaporating Au electrodes (40 nm) on the monocrystals with
channel length of 120 mm, as illustrated in Fig. 5. Figure 5D shows the
measured current as a function of applied bias with and without laser
illumination both in air and in vacuum. At an applied bias of 1.5 V, the
current obtained in vacuum is about 40 nA and increases to 50 nA
after air exposure. A similar but larger effect is observed in the presence
of the laser illumination; the current increases from 10 mA in vacuum to
24 mA in air. The current variation is reversible when the device is re-
measuredunder vacuum. It is important tonote that the change inphoto-
current is much larger than that of the dark current. The current in the
crystal canbe expressed as I= Ib+ Is, where Ib is the bulk contribution and
Is is the current near the surface. Because of the short penetration depth of
the incoming 405-nm light beam,most of the photogenerated carriers are
located near the surface rather than in the bulk.We indeed observed that

CBA

D E

Fig. 5. Electronic properties ofMAPbBr3 single-crystal devices. (A) Structure of the single-crystal device for current-voltage (I-V) measurement. (B and
C) Side-view and top-view of a single-crystal device. (D) I-V curves of theMAPbBr3 single-crystal device under laser illumination in air and vacuum. (E) Dark
current of the MAPbBr3 single-crystal device in air and vacuum.
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the photocurrent is easily modulated by exposing the crystal surface to air
or vacuum, confirming that the surface trap sites play an important role
in determining the optoelectronic properties of MAPbBr3 single crystals.

The oxygen and water molecules have been shown to effectively
modulate the optoelectronic properties of MAPbBr3 single crystals. Re-
cently, Tian et al. (38) reported that trapping sites in MAPbI3 can be
deactivated by a photochemical reaction involving oxygen and causing
a nonreversible PL enhancement. It should be emphasized that the in-
teraction between gases and perovskites is strongly dependent on both
the chemical nature of the material and the local composition. The PL
modulation inMAPbBr3 single crystals is fast and fully reversible; thus, it
is reasonable to think that is because of physical processes (physisorp-
tions) rather than photochemical reactions. Meanwhile, the MAPbBr3
crystals show high photostability under ambient conditions (see fig, S3),
in contrast to MAPbI3 (39). In a recent study combining experiments
andmodeling, it has been shown that electrons are trapped by Pb2+ cations
inMAPbBr3 and related compounds (40). Loss of bromide at the surface of
theperovskite leads to vacancy sites andundercoordinationof thePb atom,
resulting in a net positive charge at the crystal surface. It then creates favor-
able conditions for coordination with electron-rich molecules, such as
Lewis bases, for example, thiophene (41). Such defects have been observed
in low-temperature scanning tunneling microscopy studies of MAPbBr3
crystals (42). Thus, a possible reason for the observedPLmodulation effect
is that the reversible physisorption of O2 and H2O acts as a type of “mo-
lecular gating” that donates electron density to the Pb2+ cation. This helps
to effectively neutralize the excess positive charges and therefore to drasti-
cally modulate the surface recombination rate inMAPbBr3 single crystals.

CONCLUSION

In summary, we have synthesized MAPbBr3 single crystals with an ex-
tremely low surface recombination rate. Themeasured SRV rate is so far
the lowest reported in hybrid perovskites.We have observed that the PL
properties of the crystals can be drasticallymodulated by exposing them
to different gases. In this way, the surface state density can be controlled,
and the process is fully reversible. These results have important impli-
cations for the design and fabrication of future devices under different
environmental conditions. In particular, the large variation in the PL
intensity and lifetime observed in the present study could provide a
basis for the application ofMAPbBr3 perovskite as gas detectors. There-
fore, our results not only shed light on the defect physics of hybrid per-
ovskites but also offer a new route toward tailoring their physical
properties by defect engineering.

MATERIALS AND METHODS

Materials
All reagents were purchased from commercial vendors and used as re-
ceived. Test gases [N2, He, Ar, CO2, and a mixture of O2 (20%) and He
(80%)] were obtained from Linde Gas. Other reagents used were lead
bromide (PbBr2) (>98%; Sigma-Aldrich), methylamine hydrobromide
(>98.0%; Alfa Aesar, TCI), N,N′-dimethylformamide (DMF) (>99.8%;
Alfa Aesar), and dichloromethane (DCM) (99.7%; Alfa Aesar).

Growth of MAPbBr3 single crystals
MAPbBr3 single crystals were prepared from solution by ITC or AVC.
In the ITC method, PbBr2 and methylamine bromide (MABr) with a
molar ratio of 1:1 were dissolved in N,N′-DMF to form a solution, and

CH3NH3PbBr3was crystallized at 60°C. In theAVCmethod, PbBr2 and
MABrwere dissolved in 5-mlDMF solution in a 20-ml vialwith amolar
ratio of 1:1. The vial was sealedwith foil, but left a small hole to let DCM
slowly enter. The vial was stored in an atmosphere of DCM, under
which conditions MAPbBr3 single crystals slowly grew, reaching a size
of a few millimeters after several days.

Optical measurement
PLmeasurements were performed by exciting the samples with the sec-
ond harmonic (400 nm) of a mode-locked Ti/sapphire laser (Mira 900,
Coherent). The laser power was adjusted using neutral density filters.
The excitation beamwas spatially limited by an iris and focused with a
150-mm focal length lens. Fluorescence was collected into a spectrometer
with a 50 lines/mm grating and recorded with an ImagEMCCD camera
fromHamamatsu. The spectrawere corrected for the spectral response of
the setup. Time-resolved traces were recorded with a Hamamatsu streak
camera working in single-sweep mode. The excitation source was the
same mode-locked femtosecond laser with a repetition rate of 76 MHz;
a pulse picker was inserted on the optical path to decrease the repetition
rate of the laser pulses when needed. For the two-photon excited PLmea-
surement, the fundamental laser pulse from themode-lockedTi/sapphire
laser was used, and the power density was adjusted to be 18.5 mJ/cm2 by
neutral density filters.

Charge-transport measurement
Electrical contacts were prepared by depositing gold on the largest
natural facet of an MAPbBr3 crystal in a coplanar configuration. We
used a goldmicrowire as a shadowmask before depositing the gold elec-
trodes. A Keithley 2400 SourceMeter was used for electrical character-
ization. In photoconductivitymeasurements, the top surface of the crystal
was illuminated at normal incidenceusing a laser diodewith awavelength
of 405 nm.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/2/7/e1600534/DC1

fig. S1. Powder XRD pattern of crushed MAPbBr3 crystals.

fig. S2. PL excitation spectrum and PL of a MAPbBr3 single crystal measured at room

temperature in ambient air.

fig. S3. Photostability of MAPbBr3 single crystal.

fig. S4. PL spectra taken at different vacuum levels.

fig. S5. PL spectra of crystals prepared by the AVC technique in vacuum and air.

fig. S6. Steady-state and TRPL spectrum from a freshly cleaved crystal prepared by the ITC

technique in vacuum and air.

fig. S7. TRPL decay in vacuum from a crystal grown by ITC.

fig. S8. PL intensity variation in different gases.

fig. S9. Normalized PL spectra in different gases.

fig. S10. PL intensity as a function of time in air under two-photon excitation (800 nm).

fig. S11. Photocarrier distribution at t = 0 under single- and two-photon excitation conditions.

fig. S12. TRPL spectrum from a crystal prepared by the ITC technique under lower power

density of 400-nm excitation.

movie S1. Perovskite crystal under excitation of a 400-nm wavelength laser from an

atmosphere of air to vacuum and then to air.
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