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Abstract 

 
We describe how the nonlinear process of two–photon absorption in a commercial laser 

diode may be used for all–optical demultiplexing in Tbit/s OTDM networks. Switching 

windows of 650 fs in duration are presented, and the switching energies required are 

around 5 pJ. 
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Introduction 

The availability of a stable and compact ultrafast switch for demultiplexing ultrahigh bit 

rate Optical Time Division Multiplexed (OTDM) signals is essential for the future 

development of high capacity networks. To achieve demultiplexing in very high 

capacity OTDM systems it is necessary to use all–optical switching devices based on 

instantaneous optical nonlinearities. Two common high speed all–optical 

demultiplexers are the nonlinear optical loop mirror (NOLM) [1], based on the Kerr 

effect in optical fibres, and the Terahertz Optical Asymmetric Demultiplexer (TOAD) 

[2], based on nonlinearities associated with carrier depletion in semiconductor optical 

amplifiers (SOA).  Although recent NOLM and TOAD–based demultiplexers have 

demonstrated all–optical demultiplexing in systems operating at up to 640 Gbit/s [3,4], 

a number of factors limit the performance of these devices.  For example, high speed 

switching in the NOLM requires speciality fibre and precise wavelength control of 

signal and control pulses about the fibre zero dispersion wavelength, and with TOAD 

gain depletion in the SOA has been shown to limit the minimum control pulse width 

and thus the maximum switching speed [5].  Because of these limitations of presently 

available all–optical switches, it is important to consider alternative optical 

nonlinearities for ultrafast demultiplexing.  In this letter, we demonstrate the first use of 

the two–photon absorption (TPA) nonlinearity in a commercial laser diode as an 

ultrafast, all–optical switch for demultiplexing.   

 

Principle of TPA demultiplexer 

The phenomenon of TPA is a nonlinear optical–to–electrical conversion process where 

two photons are absorbed in the generation of a single electron–hole carrier pair.  It 

occurs when a photon of energy Eph is incident on the active area of a semiconductor 

device with a bandgap exceeding Eph but less than 2Eph.  TPA in semiconductor 
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devices has been a subject of considerable research [6, 7], and it has been recently 

demonstrated that commercially–available 1.3 µm laser diodes are ideally suited to 

TPA detection of incident pulses at 1.5 µm, with experiments demonstrating highly–

sensitive ultrashort pulse autocorrelation, and ultrafast optical thresholding in optical 

networks [6]. 

 

Figure 1 shows the principle of operation of an all–optical TPA demultiplexer. The 

system uses optical control pulses to demultiplex a high speed OTDM channel via TPA 

in a semiconductor device. The high speed OTDM signal and the control pulses (at the 

repetition rate of the individual channels in the multiplex), are optically coupled 

together and are incident on the device with their relative arrival time adjusted via a 

variable delay in the control arm.  TPA in the semiconductor device leads to a delay–

dependent response due to the signal and control in the detector, and the nonlinear 

nature of this response ensures that there is strong contrast between the TPA signal 

generated when the control and signal pulses overlap and that generated when they 

arrive independently.  Background subtraction of the constant signal due only to the 

control pulse can then be conveniently carried out to result in a high contrast 

demultiplexed signal output. 

 

For optimal operation, the control pulse is adjusted to have a larger intensity than the 

signal pulse, for example, a control–to–signal power ratio of 20:1. In this case, with the 

relative delay adjusted for the independent arrival of signal and control pulses, the 

electrical response due to the signal is 400 times (26 dB) less than that due to the 

control, so that there is a constant background dominated by the control pulses.  With 

adjustment of the delay so that the signal and control pulses overlap in the detector, the 
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TPA response is now determined by the superposition of signal and control pulses.  

After background subtraction of the control pulses, the output consists of the 

demultiplexed signal and the negligible unswitched signal channels (which do not 

overlap with the control), with an extinction ratio of 16 dB between them.  The 

negligible TPA response to the independently arriving signals also ensures that detector 

saturation does not occur in high bit rate systems. 
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Experiment 

To demonstrate this technique, we have performed experiments using 500 fs duration 

control and signal pulses at 1.5 µm generated using a passively–modelocked fibre 

figure–of–eight laser followed by a soliton compression stage.  Figure 2 shows the 

experimental set–up.  Initially, the laser pulses are split into control and signal pulse 

trains having orthogonal polarisations to avoid interferometric contributions.  To 

simulate a 330 Gbit/s signal, the signal pulse was further split in two and subsequently 

recombined with a delay of 3 ps between pulses.  The relative intensities of the control 

and signal pulses were adjusted to give a control to signal pulse power ratio of 10:1.  

This corresponds to control and individual signal pulse peak powers of 10 and 1 W 

respectively.  The control and signal pulses were then recombined before being coupled 

into a commercially–available InGaAsP 1.3 µm Fabry–Perot laser diode 

(NKL1301CCA), which has previously been shown to be a highly–sensitive 

semiconductor device suitable for TPA measurements [6]. 

 

To determine the duration of the switching window, the control pulse was swept across 

the two signal pulses by adjusting the relative delay between control and signal, and the 

peak TPA signal from the laser diode was measured using a 32 GHz oscilloscope.  

Figure 3(a) displays the peak photovoltage as a function of delay, after background 

subtraction of the control pulse signal, clearly showing that switching of a 330 Gbit/s 

pulse stream can be achieved.  In addition, the switching window duration of around 

650 fs indicates that the demultiplexing at bit rates in excess of 1 Tbit/s is possible.  The 

switching windows shown in this figure are essentially the crosscorrelation function of 

the signal and control pulses.  Thus it is simply their pulse durations which determine 

the maximum switching speed obtainable, as the TPA response is essentially 

instantaneous.  Figure 3(b) displays the pulse which is switched out and detected via 
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TPA (after background subtraction) when the control is synchronised and overlapped 

with one of the two signal pulses.  The TPA signal generated by the adjacent signal 

pulse 3 ps away is negligible, since this signal and the control do not overlap.  The 

baseline in Figure 3(b) shows the negligible signal obtained when the optical signal 

pulse overlapping with the control is blocked, indicating a good extinction ratio.  The 

electrical response time of the laser diode is around 200 ps (from Figure 3 (b)) which 

would allow individual data channels at a bit–rate of up to 2.5 Gbit/s to be used. 

 

Conclusion 

The results obtained here indicate that all–optical switching at bit rates in excess of 1 

Tbit/s are feasible using a TPA–based all–optical demultiplexer.  The switching energy 

required is of the order of 5 pJ, and the maximum bit rate of the individual channels in 

an OTDM system would be limited to 2.5 Gbit/s by the electrical response of the diode.  

Improved performance should be obtainable with optimisation of the exact waveguide 

design for particular applications.  This demultiplexer is extremely compact and stable 

and it does not require exact signal and control wavelengths for correct operation. 
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Figure Captions 

 

Fig. 1  A TPA based demultiplexer for use in an OTDM network. 

 

Fig. 2  Experimental Set–up used to demonstrate all–optical switching based on 

TPA. 

 

Fig. 3  (a) Switching window obtained by sweeping the control pulse across the 

two signal pulses. (b) Output electrical TPA signal for control pulse 

synchronised with one signal pulse.  Base line obtained by blocking the 

switched signal pulse, indicating negligible TPA signal generated by the 

adjacent signal pulse. 
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