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Short Communication 

Ultrahigh-Strength Polyethylene Filaments 
by Solution Spinning/Drawing, 2”) 

Influence of Solvent on the Drawability 

Paul Smith*, Piet J. Lemstra 

Central Laboratory, DSM, Geleen, The Netherlands 

(Date of receipt: September 12, 1979) 

Introduction 

High-modulus structures of linear polyethylene with Young’s moduli of 70 GPa may be gen- 
erated, for example, by drawing meltspun fibers to very high draw ratios’), solid-state extrusion 
(e. g., cf.’)) and by the solution-crystallization technique referred to as surface growth3). 

The tensile strength of the drawn and extruded materials is usually found below 1 GPa, 
whereas the longitudinal crystals of Zwijnenburg and Pennings may have a strength as high as 
3 GPa. The superior strength of the latter filaments, which have comparable Young’s moduli, 
is due to the high molecular weight of the polymer sample used4*’). 

Previous attempts to draw or extrude polyethylene of similar molecular weight to high draw 
ratios only succeeded at relatively high temperatures, in fact above the melting point, where the 
effectiveness of the chain-extension process is known to be low (see6)). The structures thus pro- 
duced, therefore, exhibited but moderately improved mechanical properties6). 

In a wide-ranging study on the processability of high molecular weight polymers it has been 
found that the effective drawability of these materials is drastically enhanced by spinning” or 
casting from dilute solutions. This effect will be illustrated in the present paper for polyethy- 
lene, and this improved drawability will be discussed in terms of a favourable intermolecular 
topology of the polymer. 

Experimental Part 

The polyethylene used in this study was high molecular weight Hostalen GUR (Nn=2 .  lo5, 
flw = 1,s. lo6). The solvent was decalin, a mixture of cis- and trans-decahydronaphthalene (from J. T. Baker 
Chemicals). Polyethylene solutions were stabilized by 0,s wt.-% of the anti-oxidant di-tert-butyl-p-cresol. 
Polyethylene monofilaments were spun from both dilute and concentrated solutions. 

Dilute solutions: Solutions of 2 wt.-% polyethylene in decalin were prepared at 150°C. Subsequently, 
these highly viscous solutions were pumped at 130 “C through a capillary with a diameter of 0,s mm and a 
length of 3 mm. The as-spun liquid filament was quenched to room temperature by passing through a bath 
tilled with water. A gel filament that still contained about 98 wt.-% of the solvent was thus generated. 

a) Part 1: cf.’). 
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One group of these gel fibers, designated I, was drawn in a hot-air oven to various draw ratios. The draw- 
ing temperature was 120°C and the strain rate was about l s - ' .  

A second set of gel fibers was extracted with methanol at room temperature for three days, and subse- 
quently dried. No residual solvent was left within detectable limits. These dried fibers (set II), too, were 
drawn at 120"C, as described above. 

Concentruied solutions: Hostalen GUR powder was mixed with various amounts of decalin ranging from 
10 to 50 wt.-%. The blended polymer/solvent mixtures were extruded at 190°C, and the filaments obtained 
were subsequently drawn at 120°C. 

The tensile properties of all drawn fibers were determined at room temperature using an Instron tensile- 
tester (model 1195). The testing speed was 10 cm/min and the initial sample length was 15 cm. All stress 
values were related to the original cross-sectional area of the specimen. This area was calculated from the 
mass per unit length of the fiber using a crystal density of 1 OOO kg/m'. The moduli quoted in this paper in- 
variably refer to the initial moduli. 

Results and Discussion 

Dilute solutions 

In the first set of experiments the wet gel fibers (I) were drawn to various draw ratios at a 
temperature of 120 "C. During this drawing stage a complex process occurs of redissolution of 
the polyethylene crystallites that constituted the originally formed polymer gel, extension, al- 
ignment, and crystallization of macromolecules, and simultaneous evaporation of the solvent. 
In Fig. 1 typical stress-strain curves are presented of the polyethylene filaments with draw ra- 
tios 3, 15, and 32. The draw ratio refers to the reduction in cross-sectional area of the drawn fi- 
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Stress-strain curves of solution spun/drawn polyethylene monofilaments. Draw ratios (A): 3, (B): 
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bers in respect to the dried undrawn ones. This Fig. shows that the drawing process drastically 
improved the mechanical properties of the monofilaments, which, in fact, is well known for po- 
lymeric materials. 

The Young's modulus, tensile strength and strain at break that were calculated from these 
curves are listed in Tab. 1. The modulus and, in particular, the strength of the fiber with draw 
ratio 32 (90 GPa and 3,O GPa, resp.) rank among the highest values reported for polyethylene 
filaments produced by the surface-growth technique of Zwijnenburg and Pennings') and ex- 
ceed those of other drawn or extruded fibers6.*). 

Tab. 1. Mechanical properties of solution spun/drawn polyethylene filaments 

Set Draw Young's Tensile Strain at 
ratio modulus in GPa strength in GPa break in % 

I 3 5 
I 15 41 
I 32 90 

I1 3 6 
I1 15 38 
I1 22 55 

It should be noted that the draw ratios achieved in the solution spinning/drawing process are 
substantially higher than the maximum draw ratio of about 5 which is attained in drawing 
melt-processed Hostalen GUR at the same temperat~re~.~).  In view of the known fact that low 
molecular weight material, which is commonly present in heterodisperse polymers, may act as 
plasticizer in drawing or extrusion9-"), the initial presence of solvent in the gel fibers seemed 
to account for the high draw ratios reached in the present process. However, the plasticizing ac- 
tion of the solvent did not seem to explain the high efficiency of the drawing. 

In order to eliminate the possible role of the solvent in the drawing stage, the set of extracted 
gel fibers (set 11) was drawn at 120 "C. The Young's modulus, tensile strength and the strain at 
break of these drawn fibers are given in Tab. 1. This Tab. shows that removal of the decalin 
from the gel filaments, prior to drawing, reduced the attained draw ratio to some extent. Ap- 
parently, the solvent had a slight plasticizing effect, indeed. The efficiency of the drawing proc- 
ess did not appear to be affected by removal of the solvent. This can be concluded from the fact 
that the mechanical properties of the drawn filaments of both sets are identical at the same 
draw ratio. 

Concentrated solutions 

It was found that fibers obtained from the concentrated polyethylene/decalin solutions, 
which contained 10-50 wt.-% of solvent, could not be drawn to high draw ratios at 120 "C. A 
draw ratio of about 5 appeared to be the upper limit, which is similar to the maximum draw ra- 
tio attained in drawing melt-processed Hostalen GUR. 

We thus face the interesting phenomenon that high molecular weight polyethylene fibers 
which are spun from dilute solutions exhibit a dramatically increased drawability compared 
with melt-spun filaments and fibers obtained from concentrated solutions. Having eliminated 
the plasticizing action of the solvent as the main cause (in set 11), we must invoke structural dif- 
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ferences in the polymeric solids generated from the melt or concentrated solutions, on the one 
hand, and, on the other hand, from dilute solutions, in order to explain the present findings. 

It is well known that high molecular weight polyethylene is difficult to process to form a ho- 
mogeneous, continuous structure. This is primarily due to the high viscosity of the material. As 
a result, melt-processed filaments of high molecular weight polyethylene may contain numer- 
ous defects, notably remnants of grain boundaries, which cause fracture upon drawing. In a di- 
lute solution of this polymer the macromolecules form a tenuous network with a substantially 
smaller number of entanglements in comparison with the undiluted melt. Naturally, a certain 
minimum quantity of entanglements is required to constitute a homogeneous macromolecular 
network, i. e., a sufficient high molecular weight of the dissolved polymer is needed in combi- 
nation with a concentration that causes coil overlap. Such a tenuous network is likely to have a 
much more favourable intermolecular topology than the highly entangled, possibly discontin- 
uous, melt-processed material for the generation of a structure of extended and aligned macro- 
molecules. 

Quenching the dilute polymer solution to room temperature gives rise to fixation of the net- 
work structure due to the formation of fringed-micelle type of crystallites acting as physical 
crosslinks. In subsequent hot drawing, very effective stretching occurs of the macromolecules 
that are temporarily anchored in these microcrystallites. The delay in the dissolution or melting 
of the crystallites prevents relaxation of the polymer molecules in the drawing process. 

Removal of the solvent from the gel structure, prior to drawing (set II), did not seem to result 
in a major change in the overall intermolecular topology at the drawing temperature. 

More detailed studies on the influence of the drawing temperature, molecular weight, etc. on 
the structure and properties of the polyethylene filaments produced by the solution-spinning/ 
drawing technique will be published shortly. 

The authors are indebted to Prof. R. Koningmeid for his continuous encouragement and stimulation, and 
to Dr. H. C. Booij for reading the manuscript and for his valuable comments. 
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