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Abstract

This introductory article provides the background for the September 2003 issue of MRS
Bulletin on Ultrahigh-Temperature Materials for Jet Engines. It covers the need for these ma-
terials, the history of their development, and current challenges driving continued research
and development. The individual articles that follow review achievements in four different ma-
terial classes (three in situ composites—based on molybdenum silicide, niobium silicide, and
silicon carbide, respectively—and high-melting-point platinum-group-metal alloys), as well as
advances in coating systems developed both for oxidation protection and as thermal barriers.
The articles serve as a benchmark to illustrate the progress made to date and the challenges
ahead for ultrahigh-temperature jet-engine materials.

Keywords: coatings, composites, ductility, jet engines, oxidation, oxides, platinum-
group-metal alloys (PGM alloys), silicides, strength, structural materials, thermal-barrier
coatings, toughness, ultrahigh-temperature materials.

This year marks the centennial of the
Wright brothers’ first flight. In the second
half of the last century, aircraft powered
by jet engines came to dominate both
civilian and military flights, and they con-
tinue to have tremendous impact on the
economy and on our lives (e.g., aircraft
turbine engines are the single largest U.S.
export product).

The history of the jet engine goes back
much farther than one would suppose.
Jacques Etienne Montgolfier was the first
to propose reaction propulsion for aircraft
in 1783. His concept was intended for a
balloon rather than an airplane and more
for steering than main propulsion. The first
patent for a turbine engine appeared in
1791; it was intended for use on a horseless
carriage (automobile). Charles de Leuvrié
first suggested the idea for a jet-powered
monoplane in 1865, but it was not until
1928 that Frank Whittle, a 21-year-old
Royal Air Force cadet, advanced the idea
of jet propulsion for aircraft in a published
thesis. Although his concept was rejected
by the authorities of the time, he perse-
vered and by April 12, 1937, had built and
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successfully tested his first turbo-jet en-
gine. Whittle’s engine first powered an
airplane (the Gloster E2) on May 15, 1941.
Meanwhile, an independent parallel effort
was going forward in Germany. Hans von
Ohain obtained a patent for a jet engine on
November 10, 1935. With backing from
Ernst Heinkel, he built the He S3B engine,
which successfully powered an airplane,
the He 178, on August 27, 1939. Both of
these developments came too late to have
a significant impact on World War II, al-
though some military jets were flown in
the 1940s. The commercial significance of
the new mode of power was apparent,
and in 1952, the British Overseas Airways
Co. (BOAC) inaugurated the first sched-
uled jet passenger service. In 1992, Ohain
and Whittle shared the Draper Prize for
“early jet development and contributions
to mankind.” Readers may be interested
in their biographies'? and in another
book® that clearly explains the fundamen-
tals of a jet engine.

The need in any engine for materials
with strength at high temperatures was
recognized early, but the first step was to
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use alloys already known for their modest
high-temperature strength and oxidation
resistance, such as the Ni-Cr alloys intro-
duced by Marsh in 1906. Only in the late
1930s and early 1940s, with the introduc-
tion of the jet engine, was a concerted re-
search effort launched, principally by the
Mond Nickel Co. in the United Kingdom,
to develop alloys particularly for this pur-
pose. The history of this development was
sketched in a recent review.! Present-day
alloys for this application, Ni-based super-
alloys, evolved during a period of 70 years
or more through small incremental changes
contributed by engine manufacturers, ma-
terials producers, and materials research
and development specialists. These alloys
are composed of Ni;Al (y") precipitates in
a Ni (y) matrix with admixtures of 10-12
other elements dissolved in one or both of
the major phases. The current alloys oper-
ate for thousands of hours under loads on
the order of 140 MPa at 85% of their melting
point. It is now clear that neither the in-
creasing sophistication of our understand-
ing of how such performance is achieved,
nor the possibility of further tinkering with
composition or processing, nor advances
in turbine design (e.g., more complex
cooling systems) will yield the improve-
ments demanded by engine designers. We
still need substantially improved high-
temperature materials that can only come
from a completely different materials class.

The jet engine is a very complex yet op-
erationally simple device. Figure 1 shows
a GE 90-115B engine, the most powerful
jet engine in the world. It consists essen-
tially of a stationary, hour-glass-shaped,
cylindrical case on which all of the vanes
(nozzles) and the combustion chamber
(combustor) are attached, and a rotating
mandrel on which a series of disks (rotors,
wheels) are mounted. Attached to the pe-
ripheries (perimeters/rims) of the disks
are the blades (either compressor blades
or turbine blades). The vanes duct the air
into appropriate directions to effectively
propel the blades. Alternating rows of
vanes and blades are arranged in both the
compressor and turbine sections. As the
air is compressed, its temperature rises; it
is then mixed with fuel and burned in the
combustor to raise the temperature. The
high-temperature, high-pressure (high-
energy) gas coming out of the combustor
is ducted by the first-stage, high-pressure
turbine (HPT) vanes to propel the first-
stage HPT blades. The efficiency and per-
formance of the jet engine are strongly
dependent on the highest temperature in
the engine—the inlet temperature of the
HPT—and it is the high-temperature ca-
pability of these parts that is critical. To
achieve higher thrust, higher operating
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Figure 1. (a), (b) Photographs of a high-pressure turbine (HPT) vane and a HPT blade of a
jet engine. (c) Schematic arrangement of the stationary vanes relative to the rotating blades
within the engine. (d) lllustration of the GE 90-115B jet engine, showing its various
components. (e) Pressure and temperature trends from the front to the back of the engine.

temperatures must be realized. To achieve
higher efficiency, engines must be made
significantly lighter without loss of thrust.
In either case, it is obvious that completely
new families of materials must be devel-
oped, ones with higher melting points and
greater intrinsic strength.

There are only four categories of ma-
terials that can be considered: refractory
metals, monolithic ceramics, intermetallic
compounds, and composites (natural or
synthetic).
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The first category can be immediately
ruled out. None of the refractory metals is
sufficiently oxidation-resistant, and all of
them, with the exception of chromium, are
substantially denser than present-day Ni-
based alloys. Chromium, while having the
advantage of a lower density than nickel,
is only marginally tough at room tempera-
ture and is subject to nitrogen embrittlement
when exposed to air at high temperatures.
Klopp® and Ro et al® summarized the
progress made with Cr-based alloys; these
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alloys are currently not considered good
prospects for meeting the need. Perhaps
significantly, Cr-based alloys were not cov-
ered in Sims et al.’s 1987 work, Superalloys I1”

Many monolithic ceramic materials
possess good strength at jet-engine oper-
ating temperatures. However, their inher-
ent brittleness poses a significant challenge
in withstanding the rigors of assembly and
the impact damage caused by foreign ob-
jects that may pass through the engines in
operation. These materials will have limited
applications in turbine engines without
further development of improved mate-
rials and innovative system architectures.

Thus, we focus on the remaining two
classes of potential materials: intermetallic
compounds and composites. It is these
two groups that are the subjects of the de-
tailed reviews that follow in this issue of
MRS Bulletin.

There are three families among the in-
termetallics that have received serious at-
tention for jet-engine applications: y-TiAl,
NiAl, and the platinum-group metal (PGM)
compounds. TiAl is considered from an
engineering point of view to be the most
mature intermetallic for jet-engine appli-
cations. Yet its modest melting point
(~1500°C) precludes it from use in high-
temperature blades and restricts it to the
low-pressure turbine and static parts of
the engine. After more than 20 years of ef-
fort on TiAL3" it is not yet used in com-
mercial jet engines, despite the fact that a
1993 engine test of a low-pressure fan with
98 TiAl blades was successful. The prob-
lems that remain include low room-
temperature ductility (1-2%), low fracture
toughness, high stress-sensitivity of fa-
tigue life, and high manufacturing cost for
finished parts.

NiAl has a number of attractive proper-
ties for jet-engine applications, such as a
high melting point (~1650°C), good thermal
conductivity, low density, and intrinsic oxi-
dation resistance. With suitable alloying
(Ta + Cr), good strength properties at tem-
peratures higher than 1000°C can be
achieved. Alloy parts based on this inter-
metallic have been successfully made by a
variety of processes (e.g., investment cast-
ing, powder metallurgy, hot extrusion,
and injection molding). Tests for applica-
tion as static parts for stationary turbines
have been successful. In NiAl alloy devel-
opment for jet-engine applications, both
directionally solidified eutectics and poly-
crystalline multiphase structures have
been explored. Serious consideration for
engine applications will require better
toughness at room temperature and higher
creep strength at high temperatures. Re-
cent summaries of the status of NiAl for
engine applications may be found in Mir-
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acle and Darolia,'? Noebe and Walston,'?
and several other papers."*-"7

The PGM-based intermetallic alloys
that have been studied for possible appli-
cation as high-temperature structural ma-
terials fall into two classes: those that are
isomorphous with Ni;Al (e.g., Pt;Al), and
those that are isomorphous with NiAl (e.g.,
RuAl). In both cases, the advantages of
PGM-based intermetallics over Ni-based
superalloys are a significantly higher melt-
ing point (~1500°C for Pt;Al and ~2100°C
for RuAl) and inherent oxidation resis-
tance, albeit with some increase in density.
Recent reviews of these alloys are pre-
sented by Wolff et al.'’® and Yamabe-
Mitarai et al.? Most of the attention has
been focused on Pt- and Ru-based com-
pounds, but there have been some studies
of Ir-based” and Rh-based?” materials.
Progress toward the desired properties has
been either by alloying to improve strength
and reduce density or by oxide-dispersion
strengthening (ODS). In this issue, Cornish
et al. review current activities and achieve-
ments with each approach.

Composite materials are defined® as a
macroscopic combination of two or more
distinct materials having a recognizable
interface between them. More particularly,
structural composites are those in which a
continuous matrix phase bonds and pro-
vides toughening characteristics to an array
of pieces of a stronger, stiffer reinforcement
phase. Structural composites may be formed
by artificially bringing together a suitable
combination of matrix and reinforcement
phase (as in the case of glass-fiber-
reinforced polymers) or produced natu-
rally by suitable processing of a carefully
selected composition (so-called in situ com-
posites). All three composite systems re-
viewed here fall into this category of in situ
composites. All are silicon-rich, which low-
ers density and provides a basis for oxida-
tion resistance, but they differ in the nature
of the reinforcing phase or phases. Dimiduk
and Perepezko review achievements with
in situ composites in the Mo-Si-B system,
Bewlay et al. address the Nb-Ti-Cr-Si sys-
tem, and Naslain and Christin cover SiC/
SiC ceramic-matrix composites (CMCs).
The oxidation behavior and the density-
normalized strength of these materials are
compared in Figures 2 and 3% The
reader is cautioned that the data for the
different materials were not necessarily
obtained under comparable conditions
and that all materials shown are under
continuous development with progres-
sively improving properties.

Although all of the materials discussed
in this issue show promise as ultrahigh-
temperature materials for advanced jet en-
gines, there is no clear winner among them
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Figure 2. The oxidation/recession rate of various ultrahigh-temperature materials discussed
in this issue of MRS Bulletin. The data were obtained from References 24—29. The best
published data were plotted for each class of materials. The recession rate is a good figure
of merit for oxidation resistance, as it measures the material loss in thickness by oxidation
at certain temperatures and time periods. The material loss is usually by formation and
spallation of a thermally grown oxide scale, or by evaporation of the metal and oxide in the
case of platinum-group metal alloys and Mo-Si-B. The results on Mo-Si-B are only for one
alloy (Mo-11at.%Si-11at.%B) and are only preliminary, sensitive to a variety of processing,
composition, and microstructure variables. The SiC data were used as a proxy for
ceramic-matrix composites (CMCs), since the CMC data were not available in the literature.
The data reported here for SiC were an average of both lean- and rich-burn combustion
conditions.?® The oxidation data were not obtained under identical conditions, therefore this
figure is only intended to show the approximate present performance for each class of ma-
terials; such data are likely to get better with further materials development.

so far. Relatively speaking, the develop-
ment of Mo-Si-B, Nb-silicide-based com-
posites, and PGM-based alloys is still in its
infancy, while the development of CMCs
has a much longer history. Each class of
materials has its own merits and draw-
backs, as briefly summarized here and
discussed in the respective articles.

B SiC/SiC Ceramic-Matrix Composites
are the closest to the long-term engine test-
ing stage; several engine tests with CMCs
as combustion chambers have been per-
formed on land-based gas turbines, and
similar efforts for jet engines are currently
under way. Their strength is relatively low,
even on a density-normalized basis. For
well-designed systems, the good impact
resistance and stability at high operating
temperatures make this system an attrac-
tive option; significant design effort will
be required to take full advantage of the
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properties as well as to master the chal-
lenges poised by mating CMCs with
metallic components. Significant progress
has been made in environmental-barrier
coatings to combat the SiO, evaporation
problem in high-velocity water-vapor
environments. Cost, reliability, estimation
of component life, and the manufacture
of complex shapes are among the chal-
lenges requiring continued attention and
development.

® Nb Silicide Composites show good oxi-
dation resistance, good resistance to pesting
(intermediate-temperature pulverization),
reasonable fracture toughness, good fa-
tigue resistance, good high-temperature
strength, good impact resistance, and can
be cast reasonably well. Good coatings
have also been developed for these com-
posites. However, combining high oxida-
tion resistance with high strength in a
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Figure 3. Comparison of the density-normalized strength of various ultrahigh-temperature
materials. The data were obtained from References 30—37 and the articles published in this
issue of MRS Bulletin. The best published data for each class of material are plotted here.
Some of the strength data are from compression and bending tests. The results on Nb
silicide composites, Mo-Si-B, and CMCs are only preliminary, and the low-temperature data
are mostly elastic-fracture strength, which is very sensitive to defects and microstructure.
This figure is intended only to show the best published performance so far for each class of
materials. The MASC (metal and silicide composite) alloy has a composition of
Nb-25Ti-8Hf-2Cr-2AI-16Si. Nb-Si Alloy C is an alloy patented by General Electric Co. and is
described in more detail in the article by Bewlay et al. in this issue. DPH Pt-10Rh is a
“dispersion-hardened” (DPH) platinum alloy containing 10 at.% Rh. For more on platinum-
group-metal alloys, see the article by Cornish et al. in this issue.

single composition remains a problem, as
does manufacturability.

® Mo-Si-B Composites exhibit excellent
high-temperature creep strength, out-
standing high-temperature yield strength,
and excellent oxidation resistance at tem-
peratures above 1000°C. Among their
problems are less-than-desirable oxida-
tion resistance at intermediate tempera-
tures, poor manufacturability, poor fatigue
resistance, poor impact resistance, and low
fracture toughness. Improvements on these
fronts are required.

B PGM-Based Alloys show excellent oxi-
dation resistance with low amounts of al-
loying additions. Most of the alloys have
low strengths (both yield and creep rup-
ture), very high density, and high cost. The
Ir-based alloys show very high strength, but
they no longer have the oxidation resistance
of the PGMs due to high alloying. The de-
velopment of PGM-based alloys is still in
its infancy, and there is the potential for
high strength by both alloying and ODS.
In order for them to be used in jet engines,
innovative designs will be required to take
advantage of the excellent properties of
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PGM-based alloys while avoiding the
problems of high density and cost.

The strength data of Al,O;/GdAIO;Eu-
tectic Composites are shown in Figure 3 as
a benchmark of oxide—oxide composites.
Initial work on this material® shows great
high-temperature strength, reasonable frac-
ture toughness (5 MPa m'/? at room tem-
perature and 13 MPa m'/2 at 1600°C)* and
great oxidation resistance (no loss of mate-
rial even after exposure at 1700°C for 1000
h). But it has a serious drawback—a lack
of the thermal-shock resistance required
to survive engine startups and shut-
downs. It would be a good potential high-
temperature material if the thermal-shock-
resistance problem were solved, either by
engine design or by material improve-
ment. In addition, the high strength of this
material only exists in the melt-grown,
in situ composite where no glassy phase
exists along interfaces. It would greatly
improve the manufacturability of this com-
posite if formation of the glassy phase dur-
ing a sintering process could be avoided,
thus making complex, near-net-shape
blades possible.
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For a bare material to survive in the
oxidative environment of a high-
temperature, high-velocity gas stream
within a HPT, it needs either to form a
protective oxide scale or to be virtually
inert, as are the precious metals. Two pro-
tective oxides, Al,O; and SiO,, are the best
candidates as oxide scales. It is this fact
that dictated the basic compositions of the
composite materials reviewed here. SiO,
grows much slower than AlLO; at high
temperatures, thus conferring a clear ad-
vantage, but it evaporates more quickly in
a high-velocity, moist environment. Com-
positional modification of the substrate
materials has not yielded an attractive
combination of oxidation resistance and
high-temperature strength. Thus, it is con-
cluded that all prospective new materials
for jet-engine blades will require coatings
to achieve acceptably long life. These coat-
ings are quite complex materials systems.
They are designed to serve two main func-
tions: oxidation protection and thermal
protection of the substrate material. Other
layers may be included to provide auxiliary
functions: bond coats between coating
layers or between coating and substrate,
or diffusion barriers to prevent degrada-
tion of either substrate or coating by in-
ward or outward diffusion of components.
A series of recent symposia chaired by Da-
hotre® has recorded progress in this area.
In the final article in this issue, Nicholls
describes the current status of the field.

But what is the future? Despite the
progress made in understanding the
problems confronting high-temperature
structural materials and the ingenious de-
velopments in composition selection and
processing for new base materials, the fact
remains that none of the systems described
here is in use in aircraft flying today. Con-
tinued developments will probably produce
some further property improvements, but
whether they will be enough to instigate
wide usage is difficult to say at this point.
It is critical to have a combined effort by
materials people and designers to learn to
work with low-ductility materials. On the
materials side, we need materials and proc-
ess improvements that will increase the
consistency and reliability of performance,
even at low ductility and toughness levels;
and on the design side, new concepts must
be developed that are more forgiving of
lower-ductility materials. An alternate route
to success may be to explore completely
new base systems, perhaps ternary or
quaternary compounds.

For those who are new to this subject
field, we provide this list of suggested
readings. Superalloys are covered in two
monographs, those of Sims et al.” and of
Donachie and Donachie,?’ as well as in the
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recurring Seven Springs Conferences on
Superalloys volumes.*' Intermetallic com-
pounds are treated in monographs by
Sauthoff* and by Stoloff and Sikka,* as well
as in great detail in the three-volume trea-
tise edited by Westbrook and Fleischer,*
and in a series of Materials Research Society
symposia proceedings.*® Composites are
covered in considerable detail in the re-
cent ASM Handbook, Vol. 21.% Finally, the
International Symposium on Structural
Intermetallics series, three of which have
been published so far,*” considers compos-
ites, intermetallics, and other types of
high-temperature structural materials.
Background information and tutorials on
jet engines and advanced high-temperature
materials may also be found on the Inter-
net. Some of these sites are
® Ultra-Efficient Engine Technology
(www.ueet.nasa.gov/Engines101.html);
® Superalloys: A Primer and History
(www.tms.org/Meetings/Specialty /Su-
peralloys2000/SuperalloysHistory.html);
and
® AZoM—Metals, Ceramics, Polymers,
Composites, An Engineer’s Resource
(www.azom.com).

Disclaimer

The views, opinions, and conclusions
contained in this introductory article are
those of the guest editors for this issue and
should not be interpreted as representing
the official policies, positions, or endorse-
ment, either expressed or implied, of
General Electric Co. or of Brookline Tech-
nologies, their employers. They also
should not be interpreted as representing
the opinions or positions of the other au-
thors in this issue of MRS Bulletin or of
their respective institutions.
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