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1 Introduction

Lepton flavor physics is about to live a golden age. Several state-of-the-art experiments

recently started taking data and a few more are about to begin [1]. These include new

searches for lepton flavor violating (LFV) processes, forbidden in the Standard Model

(SM), as well as more precise measurements of lepton flavor conserving observables, such

as charged lepton anomalous magnetic moments. The search for LFV in processes involving

charged leptons is strongly motivated by the observation of LFV in the neutral sector (in the

form of neutrino flavor oscillations). In what concerns muon observables, the search for the

radiative LFV decay µ → eγ is going to be led by the second phase of the MEG experiment,

MEG-II [2, 3], while the long-awaited Mu3e experiment will aim at an impressive sensitivity

to branching ratios for the 3-body decay µ → eee as low as 10−16 [3, 4]. A plethora of
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promising experiments looking for neutrinoless µ − e conversion in nuclei is also planned.

Flavor factories and experiments aiming at a broad spectrum of flavor observables, such

as Belle II and LHCb, will also contribute to this era of lepton flavor, mainly due to

their high sensitivities in the measurement of tau lepton observables [5, 6]. On the flavor

conserving side, improved measurements of the muon anomalous magnetic moment are

expected at the Muon g-2 experiment [7], hopefully shedding light on a well-known long-

standing experimental anomaly.

With such an exciting experimental perspective in the coming years, it is natural to

ask what type of new physics can be probed. In this work we will concentrate on ultralight

scalars that couple to charged leptons and study their impact on leptonic observables. In

this context, we will use the term ultralight scalar to refer to a generic scalar φ that is much

lighter than the electron, mφ ≪ me, and can therefore be produced on-shell in charged

lepton decays. In practice, this also means that φ can be assumed to be approximately

massless in all considered physical processes. We will take a model independent approach

and neglect mφ in our analytical calculations. Actually, this is not an approximation

if φ is exactly massless, the case for a Goldstone boson whose mass is protected by a

(spontaneously broken) global continuous symmetry.

There are many well-known examples of such ultralight scalars. If the apparent ab-

sence of CP violation in the strong interactions is explained by means of the Peccei-Quinn

mechanism [8], a new pseudoscalar state must exist: the axion [9, 10]. Although its mass is

not predicted and can vary over a wide range of scales [11], a large fraction of the parameter

space (corresponding to large axion decay constants) leads to an ultralight axion. Interest-

ingly, such low mass axion would be of interest as a possible component of the dark matter

of the Universe [12–14]. Axion-like particles, or ALPs, generalize this type of scenario by

making the mass and decay constant two independent parameters. This allows for a larger

parameter space, again including a substantial portion with very low ALP masses. The

solution to the strong CP problem could also be intimately related to the flavor problem

of the SM [15, 16]. This naturally leads to a flavored axion [17–20], although an axion

with flavor-blind interactions is also possible [21]. Another popular ultralight scalar is the

majoron, the Goldstone boson associated to the breaking of global lepton number [22–25].

While this state can gain a small mass by various mechanisms, and then be a possible dark

matter candidate [26, 27], it is expected to be exactly massless in the absence of explicit

breaking of lepton number. Another possible ultralight scalar is the familon, the Goldstone

boson of spontaneously broken global family symmetry. Finally, the Universe could also

be filled with ultralight scalars in the form of fuzzy cold dark matter [28].

While many of the previously discussed examples are pseudoscalar states, the ultra-

light scalar φ can also have pure scalar couplings. This would be the case for a massless

Goldstone boson if the associated global symmetry is non-chiral. Therefore, restricting the

phenomenological exploration to just pseudoscalars would miss a relatively large number

of well-motivated scenarios. This has actually been the case in many recent works [29–39],

which were mainly interested in the phenomenology of flavored axions (or ALPs) and ma-

jorons [40].

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
2
4
0

Motivated by the principle of generality, we will consider a generic scenario where the

CP nature of φ is not determined and explore several leptonic observables of interest. These

include processes in which φ is produced in the final state, such as ℓα → ℓβ φ or ℓα → ℓβ φ γ.

In this case, we will generalize previous results in the literature, typically obtained for pure

pseudoscalars or for the case of a massive φ. We will also study processes in which φ is

not produced, but acts as a mediator. A prime example of this category is ℓ−
α → ℓ−

β ℓ−
β ℓ+

β .

To the best of our knowledge, the mediation of this process by an ultralight axion has

only been previously considered in [29]. We will extend the study to more general scalar

states and provide detailed analytical expressions for the decay width of the process. The

analogous ℓ−
α → ℓ−

β ℓ−
γ ℓ+

γ and ℓ−
α → ℓ+

β ℓ−
γ ℓ−

γ decays will also be studied, in this case for the

first time here. Charged lepton anomalous magnetic moments constitute other interesting

examples of observables induced by the ultralight φ.

The rest of the manuscript is organized as follows. We introduce our general setup, as

well as our notation and conventions, in section 2. In section 3 we discuss the current bounds

on the lepton flavor conserving couplings of the scalar φ. These are often constrained by

studing their impact on astrophysical processes, but also receive indirect bounds due to

their contribution to the 1-loop coupling of φ to photons, as we will show. In section 4 we

discuss the impact of φ on several leptonic observables and derive analytical expressions

for them. Phenomenological implications are considered in section 5. We summarize our

findings and conclude in section 6. Finally, a pedagogical discussion on an alternative

parametrization of the φ Lagrangian in terms of derivative interactions is provided in

appendix A.

2 Effective Lagrangian

We are interested in charged leptons processes taking place at low energies in the presence

of the ultralight real scalar φ. For practical purposes, we will consider φ to be exactly

massless, but our results are equally valid for a massive φ, as long as mφ ≪ me holds. The

interaction of the scalar φ with a pair of charged leptons ℓα and ℓβ, with α, β = e, µ, τ , can

be generally parametrized by

Lℓℓφ = φ ℓβ

(
Sβα

L PL + Sβα
R PR

)
ℓα + h.c. , (2.1)

where PL,R = 1
2(1 ∓ γ5) are the usual chiral projectors. No sum over the α and β charged

lepton flavor indices is performed. SL and SR are dimensionless coefficients and we consider

all possible flavor combinations: βα = {ee, µµ, ττ, eµ, eτ, µτ}. Eq. (2.1) describes the most

general effective interaction between the ultralight scalar φ and a pair of charged leptons.

In particular, we note that eq. (2.1) includes both scalar and pseudoscalar interactions as

well as flavor violating (charged lepton fields with α 6= β) and flavor conserving (charged

lepton fields with α = β) interactions. An alternative parametrization for this Lagrangian

based on the introduction of derivative interactions, applicable to the case of pseudoscalar

interactions only, is discussed in appendix A.
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Some of the LFV observables considered below receive contributions from the usual

dipole and 4-fermion operators. Therefore, our full effective Lagrangian is given by

L = Lℓℓφ + Lℓℓγ + L4ℓ , (2.2)

with

Lℓℓγ =
e mα

2
ℓβ σµν

[(
KL

2

)βα
PL +

(
KR

2

)βα
PR

]
ℓαFµν + h.c. , (2.3)

L4ℓ =
∑

I=S,V,T
X,Y =L,R

(
AI

XY

)βαδγ
ℓβΓIPXℓα ℓδΓIPY ℓγ + h.c. , (2.4)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor, with Aµ the photon

field, and we have defined ΓS = 1, ΓV = γµ and ΓT = σµν . No sum over the α, β, γ

and δ charged lepton flavor indices is performed in eqs. (2.3) and (2.4). The coefficients

KX
2 and AI

XY , with I = S, V, T and X, Y = L, R, have dimensions of mass−2. We assume

mα > mβ and therefore normalize the Lagrangian in eq. (2.3) by including the mass of the

heaviest charged lepton in the process of interest. Eq. (2.3) contains the usual photonic

dipole operators, which contribute to ℓα → ℓβγ and lead to

Γ (ℓα → ℓβγ) =
e2 m5

α

16 π

[∣∣∣∣
(
KL

2

)βα
∣∣∣∣
2

+

∣∣∣∣
(
KR

2

)βα
∣∣∣∣
2
]

, (2.5)

while eq. (2.4) contains 4-lepton operators. In summary, the effective Lagrangian in

eq. (2.2) corresponds to the one in [41], extended to include the new operators with the

scalar φ introduced in eq. (2.1).

In the following, we will disregard φ interactions with quarks and concentrate on purely

leptonic observables, such as the LFV decays ℓα → ℓβ φ or ℓα → ℓβℓβℓβ, and the electron

and muon anomalous magnetic and electric dipole moments. Even though φ couplings

to quarks are possible, and indeed present in specific realizations of our general scenario,

the prime example being the QCD axion, they introduce a large model dependence. We

also note that leptophilic ultralight scalars, such as the majoron, are also well-motivated

possibilities that naturally appear in models with spontaneous violation of global lepton

number.

3 Bounds on lepton flavor conserving couplings

Let us comment on the current experimental contraints on the lepton flavor conserving

couplings of the scalar φ. We will start discussing the stellar cooling mechanism. Since

this subject has been extensively studied in the literature, and we do not want to delve

further into the topic, only a brief outline will be presented. Then we will discuss another

source of constraints, the 1-loop coupling between φ and a pair of photons.

3.1 Stellar cooling

The production of φ scalar particles inside stars, followed by their emission, may constitute

a powerful stellar cooling mechanism. If this process takes place at a high rate, it may alter

– 4 –



J
H
E
P
0
3
(
2
0
2
1
)
2
4
0

star evolution, eventually leading to conflict with astrophysical observations [42]. This

allows one to place strong constraints on the φ scalar couplings. The dominant cooling

mechanisms are scalar bremsstrahlung in lepton-nucleus scattering, ℓ− + N → ℓ− + N + φ,

and the Compton process γ + ℓ− → ℓ− + φ. Their relative importance depends on the

density and temperature of the medium, and therefore on the astrophysical scenario. In

particular, the Compton process dominates only at low densities and high temperatures,

conditions that can be found in red giants. Limits can also be derived from the production

of ultralight scalars in supernovae. The scalar φ can be efficiently produced and, since it

will typically escape without interacting with the medium, a net transport of energy out of

the supernova will take place. Such a loss of energy may dramatically affect other processes

taking place in the supernova, such as neutrino production.

Plenty of works have recently studied the question of cooling by the emission of ul-

tralight scalars in astrophysical scenarios [11, 39, 43–45]. However, to the best of our

knowledge, all of them consider axions or ALPs. These are low-mass pseudoscalars and

thus, their impact on stellar evolution can only be used to constrain pseudoscalar couplings.

Even though we will not provide a detailed calculation to support this statement, we will

argue that similar bounds can be set on the scalar couplings.

To make explicit the pure scalar and pseudoscalar interactions, we can use a redefinition

of our Lagrangian in eq. (2.1) which, for the diagonal terms, can be written as

Ldiag
ℓℓφ = φ ℓβ

(
SββPL + Sββ∗PR

)
ℓβ = φ ℓβ

[
Re Sββ − i Im Sββ γ5

]
ℓβ , (3.1)

with Sββ = Sββ
L + Sββ∗

R . For a pure pseudoscalar, only Im Sββ is present.

The currently most stringent limit on the pseudoscalar coupling with electrons is

obtained from white dwarfs. Specifically, the limit is obtained by considering the

bremsstrahlung process, which can be very efficient in the dense core of a white dwarf.

Using data from the Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey, ref. [39]

found (at 90% C.L.)

Im See < 2.1 × 10−13 . (3.2)

The coupling with muons has been recently studied in some works [39, 43, 44]. In this case

the process ultimately used to set the contraint is neutrino production, clearly suppressed

if energy is transported out of the supernova by scalars produced in µ + γ → µ + φ. Using

the famous supernova SN1987A, ref. [44] has found

Im Sµµ < 2.1 × 10−10 . (3.3)

Setting precise limits for the scalar parts of the couplings would imply the calculation of

the cross sections and the energy-loss rates per unit mass, as required to perform a complete

analysis. Instead, one can gauge the relevance of the bounds on the scalar couplings with

the following arguments. First, we note that if the charged lepton mass is neglected, the

scalar and pseudoscalar couplings contribute in exactly the same way to the relevant cross

sections. This is, however, a bad approximation, due to the low energies involved in the

astrophysical scenarios that set the limits. For this reason, one must keep the charged lepton
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Figure 1. Loop induced coupling of φ to a pair of photons.

mass. We have numerically integrated the cross sections for a wide range of low energies

and found that, for the same numerical value of Re S and Im S, the scalar interaction

always gives larger cross sections. Therefore, the constraints on the scalar couplings will

be stronger and we can conclude that

Re Sββ .
[
Im Sββ

]
max

, (3.4)

with β = e, µ. Nevertheless, we point out that a detailed analysis of the cooling mechanism

with pure scalars is required to fully determine the corresponding bounds.

Finally, one should note that these limits are based on the (reasonable) assumption

that the scalar properties are not altered in the astrophysical medium. In particular, its

mass and couplings are assumed to be the same as in vacuum. Some mechanisms have been

recently proposed [46, 47] (see also previous work in [48]) that would make this assumption

invalid. These works are mainly motivated by the recent XENON1T results, which include

a 3.5 σ excess of low-energy electron recoil events [49]. An axion explaining this excess

would violate the astrophysical constraints, since the required coupling to electrons would

be larger than the limit in eq. (3.2), see for instance [45]. This motivates the consideration

of mechanisms that alter the effective couplings to electrons or the axion mass in high den-

sity scenarios. If any of these mechanisms are at work, larger diagonal couplings would be

allowed. However, we note that additional bounds, not derived from astrophysical obser-

vations, can be set on the diagonal couplings. This is precisely what we proceed to discuss.

3.2 1-loop coupling to photons

The interaction of the scalar φ to a pair of photons is described by the effective Lagrangian

Lφγγ = gSγγ φ FµνF µν + gAγγ φ FµνF̃ µν , (3.5)

where gSγγ and gAγγ are the couplings for a pure scalar and a pure pseudoscalar, respec-

tively, and F̃ µν is the dual electromagnetic tensor, defined as

F̃ µν =
1

2
εµναβ Fαβ . (3.6)

The gSγγ and gAγγ couplings can be induced at the 1-loop level from diagrams involving

charged leptons, as shown in figure 1. Since gSγγ and gAγγ are constrained by a variety
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of experimental sources, this can be used to set indirect constraints on the φ couplings

to charged leptons introduced in eq. (2.1). In particular, we will take advantage of this

relation to get additional limits on the lepton flavor conserving couplings of φ.

The 1-loop analytical expression for gSγγ and gAγγ can be written as [50]

|gIγγ |2 =
α2

64 π2

∣∣∣∣∣∣

∑

β

gIββ

mβ
AI

1/2 (τβ)

∣∣∣∣∣∣

2

, (3.7)

where I = S, A and we sum over β = e, µ, τ . Here gIββ denote the φ couplings to the

charged leptons, and their relation to SL and SR is given below. AS
1/2 and AA

1/2 are 1-loop

fermionic functions defined as

AS
1/2(τβ) = 2 [τβ + (τβ − 1) f (τβ)] τ−2

β (3.8)

for the scalar coupling and

AA
1/2(τβ) = 2τ−1

β f (τβ) (3.9)

for the pseudoscalar case, with τβ = m2
φ/4m2

β. The function f (τ) can be found for instance

in [51]. It is given by

f(τ) ≡





arcsin2 √
τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1
− iπ

]2
τ > 1

. (3.10)

In this work we consider the case of an ultralight scalar. In the massless limit, the loop

functions reduce simply to AS
1/2 (0) = 4

3 and AA
1/2 (0) = 2, and then we can write

|gSγγ |2 =
α2

36 π2

∣∣∣∣∣∣

∑

β

gSββ

mβ

∣∣∣∣∣∣

2

,

|gAγγ |2 =
α2

16 π2

∣∣∣∣∣∣

∑

β

gAββ

mβ

∣∣∣∣∣∣

2

,

(3.11)

with the couplings to the charged leptons being given by

gSββ = Re Sββ ,

gAββ = Im Sββ .
(3.12)

We are now in position to compare to the current experimental limits on the coupling to

photons. These are of two types. First, let us consider astrophysical limits. Magnetic fields

around astrophysical sources of photons may transform these into scalars, an effect that can

be used to set constraints on their coupling. Ref. [52] provides a comprehensive recollection

of limits from astrophysical observations. Using results from [53], this reference finds that

for scalar masses in the range mφ ≪ 1 peV − 1 neV, astrophysical constraints imply

gIγγ .
(
10−12 − 10−11

)
GeV−1 (3.13)

– 7 –



J
H
E
P
0
3
(
2
0
2
1
)
2
4
0

for both scalar and pseudoscalar couplings. Taking this into account, we can find the

relations
∣∣∣∣∣∣

∑

β

Re Sββ

mβ

∣∣∣∣∣∣

2

=
36 π2

α2
g2

Sγγ < 6.7 × 10−16 GeV−2 ,

∣∣∣∣∣∣

∑

β

Im Sββ

mβ

∣∣∣∣∣∣

2

=
16 π2

α2
g2

Aγγ < 3.0 × 10−16 GeV−2 ,

(3.14)

which translate into very stringent bounds on the diagonal couplings to charged leptons,

See . 10−11 and Sµµ . 10−9. The OSQAR experiment [54], a light-shining-through-a-wall

experiment, has also derived limits for massless scalars. Again, these are valid for both

scalar and pseudoscalar couplings,

gIγγ < 5.76 × 10−8 GeV−1 , (3.15)

and therefore,
∣∣∣∣∣∣

∑

β

Re Sββ

mβ

∣∣∣∣∣∣

2

=
36 π2

α2
g2

Sγγ < 3.8 × 10−8 GeV−2 ,

∣∣∣∣∣∣

∑

β

Im Sββ

mβ

∣∣∣∣∣∣

2

=
16 π2

α2
g2

Aγγ < 1.7 × 10−8 GeV−2 .

(3.16)

These relations also imply strong contraints on the diagonal couplings to charged leptons,

but milder than in the previous case, See . 10−7 and Sµµ . 10−5.

Finally, we point out that these indirect limits are strictly only valid if the diagrams in

figure 1 are the only contribution to the φ coupling to photons. If more contributions exist,

possible cancellations among them may reduce the total coupling so that the constraints

are satisfied for larger couplings to charged leptons. We should also note that astrophysical

constraints are subject to the same limitation discussed above. They rely on the assumption

that the properties of φ in the astrophysical medium are the same as in vacuum.

4 Leptonic observables

4.1 ℓα → ℓβ φ

The off-diagonal Sβα
A scalar couplings, with A = L, R, can be directly constrained by the

LFV decays ℓα → ℓβ φ. Using the effective Lagrangian in eq. (2.1), it is straightforward

to obtain

Γ (ℓα → ℓβ φ) =
mα

32 π

(∣∣∣Sβα
L

∣∣∣
2

+
∣∣∣Sβα

R

∣∣∣
2
)

, (4.1)

where terms proportional to the small ratio mβ/mα have been neglected.1

1We must notice that this approximation is not equally good for all ℓα → ℓβ φ cases. This is because

the ratio mµ/mτ ∼ 0.1 is not completely negligible. Therefore, while the approximation is very good for

µ → e φ and τ → e φ, it may lead to an error of the order of 20% in τ → µ φ. This deviation is acceptable,

but can be accounted for by including additional terms proportional to mµ/mτ , hence leading to a much

more complicated analytical expression. Completely analogous comments can be made for the rest of the

observables discussed in this section.
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4.2 ℓα → ℓβ γ φ

The decay width for the 3-body LFV process ℓα → ℓβ γ φ can be written as

Γ (ℓα → ℓβ γ φ) =
α mα

64π2

(∣∣∣Sβα
L

∣∣∣
2

+
∣∣∣Sβα

R

∣∣∣
2
)

I (xmin, ymin) , (4.2)

where terms proportional to mβ/mα have been neglected. Here I (xmin, ymin) is a phase

space integral given by

I (xmin, ymin) =

∫
dx dy

(x − 1) (2 − xy − y)

y2 (1 − x − y)
, (4.3)

and we have introduced the usual dimensionless parameters x and y, defined as

x =
2Eβ

mα
, y =

2Eγ

mα
, (4.4)

which, together with z = 2Eφ/mα, must fulfill the kinematical condition x + y + z = 2.

We point out that our analytical results match those in [55], except for redefinitions in the

couplings.2

The phase space integral in eq. (4.3) depends on xmin and ymin, the minimal values

that the x and y parameters may take. While one could naively think that these are just

dictated by kinematics, they are actually determined by the minimal ℓβ lepton and photon

energies measured in a given experiment. This not only properly adapts the calculation of

the phase space integral to the physical region explored in a real experiment, but also cures

the kinematical divergences that would otherwise appear. In fact, we note that the integral

in eq. (4.3) diverges when the photon energy vanishes (y → 0). This is the well-known

infrared divergence that also appears, for instance, in the radiative SM decay µ → eνν̄γ.

Another divergence is encountered when the photon and the ℓβ lepton in the final state

are emitted in the same direction. The angle between their momenta is given by

cos θβγ = 1 +
2 − 2(x + y)

xy
. (4.5)

Since we work in the limit mβ = 0, one finds a colinear divergence in configurations in

which the photon and the ℓβ lepton have their momenta aligned (θβγ → 0). However,

any real experimental setup has a finite experimental resolution, which implies a non-zero

minimum measurable Eγ and a non-zero minimum θβγ angle. Therefore, by restricting

the phase space integration to the kinematical region explored in a practical situation, all

divergences disappear.

Direct comparison with eq. (4.1) allows one to establish the relation

Γ (ℓα → ℓβ γ φ) =
α

2π
I (xmin, ymin) Γ (ℓα → ℓβ φ) , (4.6)

which tells us that ℓα → ℓβ γ φ is suppressed with respect to ℓα → ℓβ φ due to an additional

α coupling and a phase space factor. In fact, the latter turns out to be the main source of

suppression.

2In the model considered in [55], the right-handed coupling was suppressed and hence neglected.
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4.3 ℓα → ℓβ γ

The amplitude for the ℓα → ℓβ γ radiative decay only receives contributions from dipole

operators and takes the general form

Mφ = −e ūβ

{
mα σµνqν

[(
KL

2

)βα
PL +

(
KR

2

)βα
PR

]}
uα ε∗

µ , (4.7)

where u and v are spinors and qµ and εµ are the photon 4-momentum and polarization

vector, respectively. The KL
2 and KR

2 coefficients are induced at the one-loop level, as

shown in figure 2. We find the expressions

(
KL

2

)βα
=

Cγα
L Cβγ

L f1 (mα,mβ,mγ)+Cγα
L Cβγ

R f2 (mα,mβ,mγ)+Cγα
R Cβγ

L f2 (mβ,mα,mγ)

32π2 m5
α m3

β (mα+mβ)(mα−mβ)2 ,

(4.8)

(
KR

2

)βα
=

Cγα
R Cβγ

R f1 (mβ,mα,mγ)+Cγα
L Cβγ

R f2 (mβ,mα,mγ)+Cγα
R Cβγ

L f2 (mα,mβ,mγ)

32π2 m5
α m3

β (mα+mβ)(mα−mβ)2 ,

(4.9)

where a sum over γ is implicit here and the fi loop functions are defined as

f1 (mα,mβ ,mγ) = 2mα mβ mγ

[
m2

β

(
m2

α−m2
β

)(
m2

α−m2
γ

)
log

m2
γ

m2
γ −m2

α

+ m2
α

(
m2

β −m2
α

)(
m2

β −m2
γ

)
log

m2
γ

m2
γ −m2

β

+ m2
α m2

β

(
m2

α−m2
β

)2
C0

(
0,m2

α,m2
β,mγ ,mγ ,0

)]
,

(4.10)

f2 (mα,mβ ,mγ) = −m3
α m2

β

(
m2

α−m2
β

)(
m2

β +m2
γ

)
−mα m4

β

(
m4

α−m4
γ

)
log

m2
γ

m2
γ −m2

α

+ m3
α

(
m2

β −m2
γ

)[
2m2

β m2
γ +m2

α

(
m2

β −m2
γ

)]
log

m2
γ

m2
γ −m2

β

− 2m3
α m4

β m2
γ

(
m2

α−m2
β

)
C0

(
0,m2

α,m2
β,mγ ,mγ ,0

)
,

(4.11)

and we have introduced here the usual scalar Passarino-Veltman three-point function

C0

(
0,m2

α,m2
β,mγ ,mγ ,0

)
=

1

2
(
m2

α−m2
β

)
[
log2

(
−

m2
γ

m2
α

)
−log2

(
−

m2
γ

m2
β

)
+2Li2

m2
γ

m2
α

−2Li2
m2

γ

m2
β

]
.

(4.12)

The CL,R couplings that appear in eqs. (4.8) and (4.9) are related to the SL,R couplings

introduced in the effective Lagrangian in eq. (2.1). The relation depends on the particular

diagram under consideration:

Cηρ
L =





Sηρ
L mη < mρ

Sρη∗
R mη > mρ

Sηη η = ρ

, (4.13)
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Figure 2. One-loop Feynman diagram contributing to the process ℓα → ℓβγ described by the

effective Lagrangian in eq. (2.1). The flavor indices of the couplings contributing to the diagram

have been specified in the vertices.

and

Cηρ
R =





Sηρ
R mη < mρ

Sρη∗
L mη > mρ

Sηη∗ η = ρ

. (4.14)

It proves convenient to find approximate expressions for the KL,R
2 coefficients, obtained at

leading order in mβ. We find

(
KL

2

)βα
=

Sββ Sβα
R

32π2 m2
α

− Sβα
L

[
Sαα

(
π2−6

)
+Sαα∗ (π2−9

)]

96π2 m2
α

+
1

32π2 mα





Sβγ
L

Sγα
R

mα
mα ≫ mγ ≫ mβ

Sγβ∗

R
Sγα

R

mα
mα ≫ mβ ≫ mγ

−Sβγ
L

Sαγ∗

R

mγ
mγ ≫ mα

(4.15)

and

(
KR

2

)βα
=

Sββ∗ Sβα
L

32π2 m2
α

− Sβα
R

[
Sαα

(
π2−9

)
+Sαα∗ (π2−6

)]

96π2 m2
α

+
1

32π2 mα





Sβγ
R

Sγα
L

mα
mα ≫ mγ ≫ mβ

Sγβ∗

L
Sγα

L

mα
mα ≫ mβ ≫ mγ

−Sβγ
R

Sαγ∗

L

mγ
mγ ≫ mα

,

(4.16)

We note, however, that these approximate expressions may only serve as an estimate for

the order of magnitude of the KL,R
2 coefficients, since large errors (∼ 50%) are obtained

in some cases due to the appearance of large logs. Finally, upon substitution in eq. (2.5),

one obtains the total decay width of the process.3 Then, we can compare our analytical

results with those found in [32]. Assuming that the only non-vanishing couplings are the

ones involving the µµ and eµ flavor combinations, and making the replacements

Sµµ = i
mµ cµµ

f
, Seµ

L = i
mµ (ke)eµ

f
, Seµ

R = i
mµ (kE)eµ

f
, (4.17)

full agreement is recovered.

3For completeness, we note that the expression for the ℓα → ℓβ γ decay width without neglecting m2

β is

Γ (ℓα → ℓβγ) =
e2
(
m2

α − m2

β

)
3

16 π mα

[∣∣∣
(
KL

2

)βα
∣∣∣
2

+

∣∣∣
(
KR

2

)βα
∣∣∣
2
]

.
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Figure 3. Tree-level Feynman diagrams contributing to the process ℓ−

α → ℓ−

β ℓ−

β ℓ+

β described by

the effective Lagrangian in eq. (2.1).

4.4 ℓ−

α → ℓ−

β ℓ−

β ℓ
+

β

Complete expressions for the ℓ−
α → ℓ−

β ℓ−
β ℓ+

β decay width in the absence of φ can be found

in [56]. Here we are interested in the new contributions mediated by the scalar φ, which

are given by the Feynman diagrams shown in figure 3. It is straightforward to derive the

associated amplitude, given by

Mφ = ū(p3) i
(
SββPL+Sββ∗PR

)
v (p4)

i

q2+iε
ū(p2) i

(
Sβα

L PL+Sβα
R PR

)
u(p1)

−ū(p2) i
(
SββPL+Sββ∗PR

)
v (p4)

i

k2+iε
ū(p3) i

(
Sβα

L PL+Sβα
R PR

)
u(p1) .

(4.18)

Here q = p1−p2 and k = p1−p3 are the φ virtual momenta and we have explicitly indicated

the flavor indices of the SL,R coefficients. The total decay width can then be written as

Γ
(
ℓ−

α → ℓ−
β ℓ−

β ℓ+
β

)
= Γφ̄

(
ℓ−

α → ℓ−
β ℓ−

β ℓ+
β

)
+ Γφ

(
ℓ−

α → ℓ−
β ℓ−

β ℓ+
β

)
, (4.19)

where Γφ̄ is the decay width in the absence of φ, given in [56], and

Γφ

(
ℓ−

α → ℓ−
β ℓ−

β ℓ+
β

)
=

mα

512π3

{(∣∣∣Sβα
L

∣∣∣
2
+
∣∣∣Sβα

R

∣∣∣
2
){∣∣∣Sββ

∣∣∣
2
(

4log
mα

mβ
− 49

6

)
− 2

6

[(
Sββ∗

)2
+
(
Sββ

)2
]}

− m2
α

6

{
Sβα

L SββAS∗
LL+2Sβα

L Sββ∗AS∗
LR+2Sβα

R SββAS∗
RL+Sβα

R Sββ∗AS∗
RR

−12
(
Sβα

L SββAT ∗
LL+Sβα

R Sββ∗AT ∗
RR

)
−4
(
Sβα

R SββAV ∗
RL+Sβα

L Sββ∗AV ∗
LR

)

+ 6e2
[
Sβα

R Sββ
(
KL

2

)βα∗
+Sβα

L Sββ∗
(
KR

2

)βα∗
]
+c.c.

}}
,

(4.20)

where in this expression AI
XY =

(
AI

XY

)βββα
. In writing eq. (4.20) we have only kept the

lowest order terms in powers of mβ for each possible combination of couplings. This is

equivalent to 0th order for all terms, with the exception of the ones in the first line, where

the factor log mα

mβ
avoids the appearance of an infrared divergence. An expression including

terms up to first order in mβ is given in appendix A.
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Figure 4. Tree-level Feynman diagrams contributing to the process ℓ−

α → ℓ−

β ℓ−

γ ℓ+
γ described by

the effective Lagrangian in eq. (2.1).

4.5 ℓ−

α → ℓ−

β ℓ−

γ ℓ+
γ

Again, complete expressions for the ℓ−
α → ℓ−

β ℓ−
γ ℓ+

γ decay width in the absence of φ can

be found in [56]. The new contributions mediated by the scalar φ are obtained from the

Feynman diagrams shown in figure 4. While the diagram on the left involves a flavor

conserving (γγ) and a flavor violating (βα) vertex, both vertices in the diagram on the

right violate flavor (γα and γβ). The associated amplitude is slightly different from that

of the previous process and is given by

Mφ = ū (p3) i (SγγPL + Sγγ∗PR) v (p4)
i

q2 + iε
ū (p2) i

(
Sβα

L PL + Sβα
R PR

)
u (p1)

− ū (p2) i
(
Sγβ

L PL + Sγβ
R PR

)
v (p4)

i

k2 + iε
ū (p3) i (Sγα

L PL + Sγα
R PR) u (p1) .

(4.21)

Finally, the total decay width can be written as

Γ
(
ℓ−

α → ℓ−
β ℓ−

γ ℓ+
γ

)
= Γφ̄

(
ℓ−

α → ℓ−
β ℓ−

γ ℓ+
γ

)
+ Γφ

(
ℓ−

α → ℓ−
β ℓ−

γ ℓ+
γ

)
, (4.22)

where Γφ̄ is the decay width in the absence of φ, given in [56], and

Γφ

(
ℓ−

α → ℓ−
β ℓ−

γ ℓ+
γ

)
=

mα

512π3

{(∣∣∣Sβα
L

∣∣∣
2
+
∣∣∣Sβα

R

∣∣∣
2
){

|Sγγ |2
(

4log
mα

mγ
− 23

3

)
− 1

3

[
(Sγγ∗)2+(Sγγ)2

]}

+
(
|Sγα

L |2+|Sγα
R |2

)(∣∣∣Sγβ
L

∣∣∣
2
+
∣∣∣Sγβ

R

∣∣∣
2
)(

2log
mα

mmax
f

−3

)

− 1

2

[
Sγγ

(
Sβα

L Sγα∗
L Sγβ∗

L +Sβα∗
R Sγα

R Sγβ
R

)
+c.c.

]

+
m2

α

6

{
Sγα

L Sγβ
L AS∗

LL+Sγα
R Sγβ

R AS∗
RR−2Sγγ

(
Sβα

L AS∗
LL+Sβα∗

L AS
LR+Sβα

R AS∗
RL+Sβα∗

R AS
RR

)

+4
(
Sγα

L Sγβ
R AV ∗

LR+Sγα
R Sγβ

L AV ∗
RL

)
+12

(
Sγα

L Sγβ
L AT ∗

LL+Sγα
R Sγβ

R AT ∗
RR

)

−6e2
[
Sγα

L Sγβ
R

(
KR

2

)βα∗
+Sγα

R Sγβ
L

(
KL

2

)βα∗
]
+c.c.

}}
, (4.23)
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Figure 5. Tree-level Feynman diagrams contributing to the process ℓ−

α → ℓ+

β ℓ−

γ ℓ−

γ described by

the effective Lagrangian in eq. (2.1).

where in this expression AI
XY =

(
AI

XY

)γγβα
. Also here mmax

f = max (mβ , mγ) and then

the expression depends on the process in question. Once again, we have only kept the

lowest order terms in powers of mβ and mγ for each possible combination of couplings.

4.6 ℓ−

α → ℓ
+

β ℓ−

γ ℓ−

γ

Also for this process, complete expressions for the ℓ−
α → ℓ+

β ℓ−
γ ℓ−

γ decay width in the absence

of φ can be found in [56]. The new contributions mediated by the scalar φ are given by

the Feynman diagrams shown in figure 5. We note that both vertices are necessarily flavor

violating. The associated amplitude is given in this case by

Mφ = ū(p4) i
(
Sγβ

L PL+Sγβ
R PR

)
v (p2)

i

q2+iε
ū(p3) i(Sγα

L PL+Sγα
R PR)u(p1)

−ū(p3) i
(
Sγβ

L PL+Sγβ
R PR

)
v (p2)

i

k2+iε
ū(p4) i(Sγα

L PL+Sγα
R PR)u(p1) .

(4.24)

Here q = p1 − p3 and k = p1 − p4 are different from their definitions in the processes above.

Writing one more time the decay width as the sum of two contributions,

Γ
(
ℓ−

α → ℓ+
β ℓ−

γ ℓ−
γ

)
= Γφ̄

(
ℓ−

α → ℓ+
β ℓ−

γ ℓ−
γ

)
+ Γφ

(
ℓ−

α → ℓ+
β ℓ−

γ ℓ−
γ

)
, (4.25)

where Γφ̄ is the decay width in the absence of φ, given in [56], we find that

Γφ

(
ℓ−

α → ℓ+
β ℓ−

γ ℓ−
γ

)
=

mα

512π3

{(
|Sγα

L |2 + |Sγα
R |2

)(∣∣∣Sγβ
L

∣∣∣
2

+
∣∣∣Sγβ

R

∣∣∣
2
)(

2 log
mα

mmax
f

− 3

)

− 1

2

(
|Sγα

L |2
∣∣∣Sγβ

L

∣∣∣
2

+ |Sγα
R |2

∣∣∣Sγβ
R

∣∣∣
2
)

+
m2

α

6

[
−Sγα

L Sγβ
L AS∗

LL − Sγα
R Sγβ

R AS∗
RR − 2

(
Sγα

L Sγβ
R AS∗

RL + Sγα
R Sγβ

L AS∗
LR

)

+4
(
Sγα

L Sγβ
R AV ∗

RL + Sγα
R Sγβ

L AV ∗
LR

)
+ 12

(
Sγα

L Sγβ
L AT ∗

LL + Sγα
R Sγβ

R AT ∗
RR

)
+ c.c.

]}
,

(4.26)

where in this expression AI
XY =

(
AI

XY

)γβγα
and mmax

f = max (mβ , mγ).
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Figure 6. Feynman diagram for the one-loop contribution to the anomalous magnetic moment of

charged leptons given by the interaction in eq. (2.1). The flavor indices of the couplings contributing

to the diagram have been specified in the vertices. The relation between these couplings, which we

generically denote as CL,R and C̃L,R, and the SL,R couplings in the effective Lagrangian of eq. (2.1)

depends on the flavor states involved in the diagram. See text for a detailed explanation.

4.7 Lepton magnetic and electric dipole moments

We finally consider the magnetic and electric dipole moments of the charged leptons. These

can be described by the effective Lagrangians

LAMM =
e

2 mα
aα ℓα σµνFµν ℓα , (4.27)

LEDM = − i

2
dα ℓα σµνFµν γ5 ℓα . (4.28)

The charged lepton dipole moments receive contributions mediated by the scalar φ, as

shown in figure 6.4 In the following we denote the chiral couplings in the ℓ̄α − ℓβ −φ vertex

as Cαβ
L and Cαβ

R , whereas the chiral couplings in the ℓ̄β − ℓα − φ vertex are denoted as C̃βα
L

and C̃βα
R . The CL,R and C̃L,R couplings are obviously related to the SL,R couplings in the

effective Lagrangian of eq. (2.1), but this relation depends on the flavor states involved in

the diagram, as discussed below. The amplitude associated to the diagram in figure 6 can

be written as

iM =

∫
d4q

(2π)4 uℓ

(
p′, mα

) [
i
(
Cαβ

L PL + Cαβ
R PR

)] i
(
/p′ + /q + mβ

)

(p′ + q)2 − m2
β

(−i e γµ)
i
(
/p + /q + mβ

)

(p + q)2 − m2
β

[
i
(
C̃βα

L PL + C̃βα
R PR

)] i

q2
uℓ (p, mα) ε∗

µ (k) , (4.29)

where mα and mβ are the masses of the external and internal leptons, respectively, and

we sum over the index β. One must now compare to the equivalent amplitude obtained

4Two-loop Barr-Zee contributions [57] to the charged leptons AMMs and EDMs can also be considered.

However, while these might be relevant in some cases, we will assume that the SL,R couplings can at most

have mild hierarchies among different flavors, hence making them numerically irrelevant with respect to the

one-loop contributions considered here.
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with the effective Lagrangians in eqs. (4.27) and (4.28). After some algebra, one finds that

the scalar φ induces the contributions to the anomalous magnetic moments (AMMs) and

electric dipole moments (EDMs) of the charged leptons

∆aα =
1

32π2 m4
α



2mα mβ


m2

α+
(
m2

α−m2
β

)
log

m2
β∣∣∣m2

β −m2
α

∣∣∣



(
Cαβ

L C̃βα
L +Cαβ

R C̃βα
R

)

−

m2

α

(
m2

α−2m2
β

)
−2m2

β

(
m2

α−m2
β

)
log

m2
β∣∣∣m2

β −m2
α

∣∣∣



(
Cαβ

L C̃βα
R +Cαβ

R C̃βα
L

)


 ,

(4.30)

and

dα =
i e mβ

32 π2 m4
α

(
Cαβ

L C̃βα
L − Cαβ

R C̃βα
R

)

m2

α +
(
m2

α − m2
β

)
log

m2
β∣∣∣m2

β − m2
α

∣∣∣


 . (4.31)

These analytical results have been checked with the help of Package-X [58]. We note again

that a sum over the index β is performed in eqs. (4.30) and (4.31). Therefore, they include

both flavor diagonal as well as flavor off-diagonal contributions to the dipole moments. We

now consider these contributions separately and study their behavior in specific limits:

1. Flavor off-diagonal contribution with mβ ≪ mα.

In this case the CL,R and C̃L,R couplings are related to the SL,R couplings in eq. (2.1)

as C̃βα
L,R = Sβα

L,R and Cαβ
L,R = Sβα∗

R,L and the expressions simplify to

∆aα =
1

32 π2 mα

[
− mα

(∣∣∣Sβα
L

∣∣∣
2

+
∣∣∣Sβα

R

∣∣∣
2
)

+ 4 mβ Re
(
Sβα

R Sβα∗
L

)(
1 + log

m2
β

m2
α

)]
+ O

(
m2

β

)
, (4.32)

and

dα =
e mβ

16 π2 m2
α

Im
(
Sβα

R Sβα∗
L

)(
1 + log

m2
β

m2
α

)
+ O

(
m3

β

)
. (4.33)

2. Flavor off-diagonal contribution with mβ ≫ mα.

In this case the generic CL,R and C̃L,R couplings are related to the SL,R couplings as

C̃βα
L,R = Sαβ∗

R,L and Cαβ
L,R = Sαβ

L,R, giving us

∆aα =
mα

16 π2 mβ

[
Re
(
Sαβ

R Sαβ∗
L

)
+

mα

6 mβ

(∣∣∣Sβα
L

∣∣∣
2

+
∣∣∣Sβα

R

∣∣∣
2
)]

+ O
(
m3

α

)
, (4.34)

and

dα =
e

32 π2 mβ
Im
(
Sαβ

R Sαβ∗
L

)
+ O

(
m2

α

)
. (4.35)
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3. Flavor diagonal contribution, i.e. mβ = mα.

Finally, in this case we have Cαα
L = C̃αα

L = Sαα and Cαα
R = C̃αα

R = Sαα∗, and we find

the simple expression

∆aα =
1

16π2

[
3 (Re Sαα)2 − (Im Sαα)2

]
(4.36)

for the AMM of the charged lepton ℓα, which agrees with previous results in the

literature. In particular, it matches exactly the expression given in [59] in the limit

of a massless scalar, with the equivalence

− mα

v
aS

α =
1

2
(Sαα + Sαα∗) , −i

mα

v
bS

α = −1

2
(Sαα − Sαα∗) . (4.37)

Regarding the expression for the EDM, it also acquires a very simple form in this case,

dα = − e

8 π2 mα
(Re Sαα) (Im Sαα) . (4.38)

This expression agrees with the one given in [60] just by identifying Re Sαα = −λℓ
S

and Im Sαα = λℓ
P . Notice that eqs. (4.36) and (4.38) are both exact results for the

diagonal contributions to the dipole moments.

5 Phenomenological discussion

After deriving analytical expressions for several leptonic observables of interest we now

discuss their associated phenomenology.

5.1 Searches for ℓα → ℓβ φ

Several searches for ℓα → ℓβ φ have been performed and used to set experimental contraints

on the off-diagonal Sβα
A effective couplings. Let us start with muon decays. The strongest

limit on the branching ratio for the 2-body decay µ+ → e+ φ was obtained at TRIUMF,

finding BR (µ → e φ) < 2.6 × 10−6 at 90% C.L. [61]. However, as explained in [55], this

experimental limit must be applied with care to the general scenario considered here. The

reason is that the experimental setup in [61] uses a muon beam that is highly polarized in

the direction opposite to the muon momentum and concentrates the search in the forward

region. This reduces the background from the SM process µ+ → e+νe ν̄µ, which is strongly

suppressed in this region, but also reduces the µ+ → e+ φ signal unless the φ − e − µ

coupling is purely right-handed. Therefore, we obtain a limit valid only when Seµ
L = 0:

Seµ
L = 0 ⇒ |Seµ

R | < 2.7 × 10−11 . (5.1)

A more general limit can also be derived from [61]. Using the spin processed data shown in

figure(7) of [61], the authors of [55] obtained the conservative bound BR (µ → e φ) . 10−5,

valid for any chiral structure of the Seµ
A couplings. This bound is similar to the more recent
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limit obtained by the TWIST collaboration [62], also in the ∼ 10−5 ballpark. With this

value, one finds an upper limit on the e − µ flavor violating couplings of5

|Seµ| < 5.3 × 10−11 , (5.2)

where we have defined the convenient combination

∣∣∣Sβα
∣∣∣ =

(∣∣∣Sβα
L

∣∣∣
2

+
∣∣∣Sβα

R

∣∣∣
2
)1/2

. (5.3)

Several strategies can be followed for newer µ → e φ searches. The authors of [39]

advocate for a new phase of the MEG-II experiment, reconfigured to search for µ → e φ

by placing a Lyso calorimeter in the forward direction. Also, as pointed out in [63, 64]

and recently discussed in [39] as well, the limit in eq. (5.2) can be substantially improved

by the Mu3e experiment by looking for a bump in the continuous Michel spectrum. The

detailed analysis in [64] shows that µ → e φ branching ratios above 7.3 × 10−8 can be ruled

out at 90% C.L. . This would imply a sensitivity to an |Seµ| effective coupling as low as

4.5 × 10−12, improving an order of magnitude with respect to the limit in eq. (5.2).

Turning to τ decays, the currently best experimental limits were set by the ARGUS

collaboration [65], which found

BR (τ → e φ )

BR (τ → e ν ν̄)
< 0.015 ,

BR (τ → µ φ)

BR (τ → µ ν ν̄)
< 0.026 ,

(5.4)

at 95% C.L. . These limits are weaker than those for muon decays, but still lead to stringent

constraints on the LFV τ couplings with the scalar φ. It is straightforward to find

|Seτ | < 5.9 × 10−7 ,

|Sµτ | < 7.6 × 10−7 .
(5.5)

These limits for the LFV couplings to τ leptons are expected to be improved at Belle

II. In fact, new methods for τ → ℓ φ searches at this experiment have been recently

proposed [66].

5.2 ℓα → ℓβ γ φ at the MEG experiment

In order to illustrate the calculation of the phase space integral for a specific case, let us

focus on the µ → e γ φ decay and consider the MEG experiment [67]. This experiment

has been designed to search for µ → e γ and therefore concentrates on Ee ≃ mµ/2 and

cos θeγ ≃ −1 (positron and photon emitted back to back). However, due to the finite

experimental resolution, these cuts cannot be imposed with full precision, which makes

MEG also sensitive to µ → e γ φ. The final MEG results were obtained with the cuts [67]

cos θeγ < −0.99963 , 51.0 < Eγ < 55.5 MeV , 52.4 < Ee < 55.0 MeV . (5.6)

5See also the recent [39] for a comprehensive discussion of the experimental limit of [61] and how this

gets altered for different chiral structures of the Seµ
A couplings.
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Figure 7. Illustration of the allowed phase space region for the process µ → e γ φ in a given

experiment. The blue continuous lines correspond to cos θeγ = ±1 and therefore delimit the total

phase space that would be in principle available due to kinematics. The red dashed line represents

xinf(y) and corresponds to the minimal θeγ angle measurable by the experiment, excluding the

region below it. The green dotted straight lines at xmin and ymin are the minimal positron and

photon energy, respectively, that the experiment can measure, while yint is the value of y for which

xmin and xinf intersect. Finally, the yellow surface is the region where we must integrate.

This defines the MEG kinematical region for the calculation of the phase space integral in

eq. (4.3) since µ → e γ φ events that fall in this region can be detected by the experiment.

For instance, events with cos θeγ < −0.99963, or equivalently θeγ > θmin
eγ = 178.441◦, were

at the reach of MEG. The kinematical region can be divided into two subregions:

ymin =
2 Emin

γ

mµ
< y < yint ,

xinf < x < xmax = 1 ,

(5.7)

and

yint < y < ymax = 1 ,

xmin =
2 Emin

e

mµ
< x < xmax ,

(5.8)

where xinf = xinf(y) is the value of x such that cos θeγ = cos θmin
eγ for each value of y. This

can be easily found by solving eq. (4.5):

xinf =
2 (1 − y)

2 − y
(
1 − cos θmin

eγ

) . (5.9)

Finally yint is the value of y for which xmin and xinf coincide. These two subregions are

illustrated in figure 7, where the experimental restrictions have been modified for the sake of
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Figure 8. Realistic version of the phase space region limited by the experimental cuts of the MEG

experiment, given in eq. (5.6). The figure on the right shows a zoom of the figure on the left,

centered on the colored surface.

clarity by enlarging the kinematical region of interest. A realistic representation obtained

with the MEG cuts in eq. (5.6) is shown in figure 8. This clearly illustrates the strong

suppression due to the phase space integral.

Having explained how to compute the phase space integral and illustrated the strong

suppression it introduces, we can obtain results for the MEG experiment. Using the cuts

in eq. (5.6), the phase space integral in eq. (4.3) can be numerically computed to find

I (xmin, ymin)MEG = 3.8 × 10−8 . (5.10)

Combining this result with eq. (4.2), we obtain the branching ratio of µ → e γ φ restricted

to the MEG phase space, obtaining

BRMEG (µ → e γ φ) = 1.5 × 105
(
|Seµ

L |2 + |Seµ
R |2

)
. (5.11)

MEG results require BR (µ → e γ) < 4.2 × 10−13 [67], a bound that must also be satisfied

by BRMEG (µ → e γ φ). This leads to

|Seµ| < 1.6 × 10−9 . (5.12)

This bound is notably worse than the one given in eq. (5.2), as expected due to the strong

phase space suppression at MEG, an experiment that is clearly not designed to search for

µ → e γ φ.

More stringent bounds were obtained at the Crystal Box experiment at LAMPF [68–

70]. Several searches were performed, with different experimental cuts and branching ratio

bounds. These result in different limits on the |Seµ| effective coupling, as shown in table 1.

Adapting the limit from the µ → eγ search in [68] along the lines followed in the previous

discussion for MEG, we find

|Seµ| < 9.5 × 10−11 . (5.13)

This bound is still not better than the one given in eq. (5.2), but it is in the same ballpark.

A very similar bound is obtained with the results of a later analysis, in this case more

specific to µ → e γ φ [69, 70].
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References θmin
eγ Emin

γ [MeV] Emin
e [MeV] I (xmin, ymin) BR bound Limit on |Seµ|

[68] 160◦ 40 44 1.3 × 10−3 4.9 × 10−11 9.5 × 10−11

[69, 70] 140◦ 38 38 1.1 × 10−2 1.1 × 10−9 1.6 × 10−10

Table 1. Results in the search for µ → e γ φ at the Crystal Box experiment.

Finally, the Mu3e experiment is not well equipped to detect the photon in µ → e γ φ

and therefore cannot improve on these limits. As explained in [64], a future Mu3e-Gamma

experiment including a photon conversion layer could increase the sensitivity to µ → e γ φ.

5.3 ℓα → ℓβ γ vs. ℓα → ℓβ ℓβ ℓβ

The LFV decays ℓα → ℓβ γ and ℓα → ℓβℓβℓβ constitute complementary probes of the

underlying physics. While ℓα → ℓβ γ only receives contributions from dipole operators,

ℓα → ℓβℓβℓβ is induced by dipole as well as non-dipole operators. Their relative importance

can be studied by means of the ratio

Rαβ =
BR(ℓα → ℓβℓβℓβ)

BR(ℓα → ℓβ γ)
. (5.14)

In models in which the ℓα → ℓβℓβℓβ amplitude is clearly dominated by dipole contributions,

the two branching ratios are strongly correlated and one can make a definite prediction for

Rµe. In fact, since ℓα → ℓβℓβℓβ involves an additional electromagnetic coupling constant,

one expects Rαβ ≪ 1. Departures from this prediction would clearly point towards a non-

dipole dominant contribution. We now consider this issue in the presence of an ultralight

scalar, which contributes at tree-level to ℓα → ℓβℓβℓβ via scalar (and hence non-dipole)

operators. Contrary to the above-mentioned dipole-dominated scenarios, in this case one

generally expects Rαβ ≫ 1, as shown below.

However, before we move on to the discussion of the interplay between ℓα → ℓβ γ and

ℓα → ℓβℓβℓβ, we would like to point out that light scalars may offer additional experimental

handles in ℓα → ℓβℓβℓβ. In particular, the authors of [71] showed that a light scalar

produced on-shell in ℓ−
α → ℓ−

β φ that later decays as φ → ℓ−
β ℓ+

β may lead to observable

displaced vertices. This interesting possibility is, however, not possible in the ultralight

scalar scenario considered here.

General dipole contributions. First, we consider the general case of a scenario in which

dipole contributions are independent of the non-dipole ones induced by the ultralight scalar

φ. This would be the case of a model containing additional LFV sources, not related to

φ. In order to evaluate the relevance of the new contributions to ℓα → ℓβℓβℓβ mediated by

the scalar φ we drop the 4-fermion operators in eq. (2.4) and consider a simplified effective

Lagrangian containing only left-handed photonic dipole and scalar-mediated operators

Lsimp
LFV =

e mα

(
KL

2

)βα

2
ℓβ σµν PL ℓαFµν + Sβα

L φ ℓβ PL ℓα + h.c. . (5.15)
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Figure 9. Contours of BR(µ → eγ) and BR(µ → eee) in the κ-Λ plane. The lowest values

correspond to the future sensitivities for the MEG-II and Mu3e experiments, while colored regions

are excluded due to the current bounds BR(µ → eγ) < 4.2 · 10−13 and BR(µ → eee) < 10−12 [73].

These results have been obtained with the effective Lagrangian in eq. (2.1) and the parametrization

in eq. (5.16).

Then, inspired by [72], we parametrize the KL
2 and SL coefficients as

e
(
KL

2

)βα
≡ 1

(κ + 1) Λ2
, Sβα

L ≡ mα
κ

(κ + 1) Λ
. (5.16)

Λ is a dimensionful parameter that represents the energy scale at which these coefficients

are induced, while κ is a dimensionless parameter that accounts for the relative intensity

of these two interactions.6 In case of κ ≪ 1, the dipole operator dominates, while the

scalar mediated contribution dominates for κ ≫ 1. We point out that mα in eqs. (5.15)

and (5.16) is a global factor given by the mass of the heaviest charged lepton in the process

and that eq. (5.16) assumes Sβα
L = Sββ

L .

Figure 9 shows BR(µ → eγ) and BR(µ → eee) as a function of Λ and κ. Our results

are compared to the current bounds and the future sensitivities for the MEG-II and Mu3e

experiments. We observe that for κ ≫ 1 and BR(µ → eee) > 10−16, Λ must be necessarily

below ∼ 3000 TeV. A slightly lower upper limit for Λ is found when κ ≪ 1 and BR(µ →
eγ) > 10−14. These are precisely the final expected sensitivities in MEG-II and Mu3e.

Furthermore, we note that the search for the scalar mediated contribution in Mu3e will

actually be very constraining in all the parameter space. Similar results are shown for

6We normalize SL by introducing the mass of the heaviest charged lepton involved in each process.

However, this is done only for the purpose of this analysis. In the rest of the paper we do not assume any

hierarchy among the couplings proportional to the charged lepton masses.
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Figure 10. Contours of BR(τ → eγ) and BR(τ → eee), on the left, and BR(τ → µγ) and

BR(τ → µµµ), on the right, in the κ-Λ plane. The lowest values correspond to the expected future

sensitivities of the Belle II experiment [6], while colored regions are excluded due to the current

bounds BR(τ → eγ) < 3.3 · 10−8, BR(τ → µγ) < 4.4 · 10−8, BR(τ → eee) < 2.7 · 10−8 and

BR(τ → µµµ) < 2.1 · 10−8 [73]. These results have been obtained with the effective Lagrangian in

eq. (2.1) and the parametrization in eq. (5.16).

τ decays in figure 10. In this case, the current experimental limits are expected to be

improved by about one order of magnitude by the LHCb and Belle II collaborations, which

will search for the τ → ℓβγ and τ → ℓβℓβℓβ decays, with ℓβ = e, µ. This figure has been

obtained using the expected sensitivities by the Belle II experiment presented in [6]. We

find that for low values of κ, i.e. κ ≪ 1, the current limit on BR(τ → eγ) implies the

non-observation of τ → eee at Belle II. This would therefore require a larger value of κ, to

enhance the relative weight of the 3-body decay. Qualitatively similar results are obtained

for τ → µ transitions.

φ-induced dipole contributions. We now consider the generation of dipole operators

by loops involving the ultralight scalar φ, as discussed in section 4.3 and shown in figure 2.

In this scenario, we assume that φ provides the dominant (or, of course, only) contribution

to dipole operators. For the sake of simplicity, the couplings See and Seµ
L,R will be the only

ones allowed to be different from zero in the analysis that follows. They will also be taken

to be real. In this case, the general expressions for KL
2 and KR

2 given in eqs. (4.8) and (4.9)

lead to

(
KL

2

)eµ
=

See

96π2 m3
µ

{
3 mµ Seµ

R + me

(
−6 Seµ

L + 2 π2 Seµ
L + 3 Seµ

R

)

+ 3 meSeµ
L log

(
− m2

e

m2
µ

)[
1 + log

(
− m2

e

m2
µ

)]}
, (5.17)

(
KR

2

)eµ
=

See

96π2 m3
µ

{
3 mµ Seµ

L + me

(
−6 Seµ

R + 2 π2 Seµ
R + 3 Seµ

L

)

+ 3 meSeµ
R log

(
− m2

e

m2
µ

)[
1 + log

(
− m2

e

m2
µ

)]}
, (5.18)
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where we have expanded at first order in me. These expressions allow us to compute the

Rµe ratio defined in eq. (5.14). Defining the mass ratio r =
m2

µ

m2
e
, we do that for some

simplified scenarios:

• Scenario 1: Seµ
L = 0 or Seµ

R = 0

R(1)
µe ≈ 4 π r

3 α

12 log r − 53

| log(−r)|4 + r
≈ 3.2 · 104 . (5.19)

• Scenario 2: Seµ
L = Seµ

R

R(2)
µe ≈ 4 π r

3 α

12 log r − 53

| log2(−r) +
√

r| ≈ 1.9 · 104 . (5.20)

• Scenario 3: Seµ
L = −Seµ

R

R(3)
µe ≈ 4 π r

3 α

12 log r − 53

| log2(−r) − √
r| ≈ 1.1 · 105 . (5.21)

We find that Rµe ≫ 1 in these scenarios. This, however, was expected, since ℓα →
ℓβℓβℓβ is induced at tree-level by φ exchange, while ℓα → ℓβ γ can only take place at

loop order. More interestingly, different scenarios for the φ couplings lead to very different

predictions for Rµe. This would in principle allow us to determine the nature of the scalar

φ if positive signals are observed for both µ → eγ and µ → eee, and both branching ratios

can be experimentally determined.

5.4 Lepton magnetic and electric dipole moments

At present, there is a discrepancy between the experimental determination of the electron

and muon AMMs and their SM predicted values [74–80]

∆ae = aexp
e − aSM

e = (−87 ± 36) × 10−14 , (5.22)

∆aµ = aexp
µ − aSM

µ = (27.1 ± 7.3) × 10−10 , (5.23)

where

aβ =
gβ − 2

2
. (5.24)

In the case of the muon anomalous magnetic moment, the deviation is at the level of ∼ 4 σ,

whereas for the electron anomalous magnetic moment the significance is a little lower,

slightly below ∼ 3 σ.7 While further measurements (and possibly improved theoretical

calculations) are required to fully confirm these anomalies, these intriguing deviations can

7See also the very recent calculation of the hadronic vacuum polarization contribution by the Budapest-

Marseilles-Wuppertal collaboration [81], which brings the SM prediction for the muon anomalous magnetic

moment into agreement with the experimental measurement. However, this result seems to lead to tension

with electroweak data [82].
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be interpreted as a possible hint of new physics [83]. In particular, the sign difference

between ∆ae and ∆aµ and the relatively large value of |∆ae| may indicate the presence of

new physics contributions that do not scale with the square of the corresponding charged

lepton masses [84]. In what concerns the EDMs of the charged leptons, the SM predicts

tiny values, well beyond the experimental prospects in the near future. Therefore, any

measurement of a non-zero charged lepton EDM would be a clear indication of CP-violating

new physics effects. The current best limits for the electron and muon EDMs are [85, 86]

|de| < 1.1 × 10−29 e cm , (5.25)

|dµ| < 1.5 × 10−19 e cm , (5.26)

both at 95% C.L. .

Figure 11 shows favored regions for the diagonal coupling See due to the electron AMM

and EDM. As shown on the left panel, the bound on the electron EDM strongly constrains

the See coupling, which must be essentially purely real or essentially purely imaginary.

However, one can find regions in the parameter space that explain the (g − 2)e anomaly,

compatible with the bound on the electron EDM. Given the low significance of the (g −2)e

anomaly, one stays within the 3 σ region even if See = 0, but if Re See . 10−13, a value of

about Im See ∼ 10−5 would actually achieve agreement at the 1 σ level. The deviation in

(g − 2)µ is more significant, and this implies that one must introduce larger Sµµ values in

order to reconcile the theoretical prediction with the experimental measurement. This is

shown on figure 12. In this case, the bound from the muon EDM does not impose strong

restrictions on the parameter space, as can be clearly seen in the left panel. However, larger

Sµµ couplings, of the order of 10−4, are necessary in order to explain the current deviation

between theory and experiment. In both cases, the required values for See and Sµµ are in

conflict with the bounds discussed in section 3, see eqs. (3.2) and (3.3), and therefore a

mechanism to suppress the processes from which they are derived would be necessary for

the ultralight scalar φ to be able to provide an explanation to the current g − 2 anomalies.

Finally, we have explored whether the electron and muon AMM anomalies can be

explained by purely off-diagonal contributions. In the following we consider vanishing di-

agonal couplings and real non-zero off-diagonal couplings. In this scenario the contribution

to the charged leptons EDMs vanish and the AMMs strongly correlate with LFV observ-

ables. In fact, the bounds derived in section 4.7 from the non-observation of ℓα → ℓβ φ

imply that an explanation to the observed deviations cannot be achieved. In particular,

we find that Seµ
L ∼ −Seµ

R ∼ 2 × 10−4 or Seτ
L ∼ −Seτ

R ∼ 7 × 10−4 are needed in order to

explain the (g − 2)e deviation. Regarding the muon AMM anomaly, only with the µ−τ −φ

coupling one can obtain a positive contribution, requiring Sµτ
L ∼ Sµτ

R ∼ 3 × 10−3 to ex-

plain the (g − 2)µ deviation. In all cases, the required off-diagonal couplings are several

orders of magnitude larger than the limits in eqs. (5.2) and (5.5). We therefore conclude

that the explanation of the electron and muon AMMs anomalies must come from diagonal

contributions, whereas the off-diagonal ones can only play a subdominant role.
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Figure 11. Favored region for the diagonal coupling See, due to the electron anomalous magnetic

and electric dipole moments. Within the light (dark) green region, the deviation in the electron

AMM is explained at the 3 σ (1 σ) level. The region delimited by the orange continuous lines is the

parameter space allowed by the current experimental upper bound of the electron EDM. In the

figure on the right, the abscissa axis has been zoomed.

Figure 12. Favored regions for the diagonal coupling Sµµ, due to the muon anomalous magnetic

and electric dipole moments. In the figure on the left it is seen that the bound from the muon

EDM (yellow continuous curves) does not restrict too much the AMM of the muon (orange dashed

curves). On the right figure, only the muon AMM is represented and within the light (dark) region,

the current experimental deviation is explained at the 3 σ (1 σ) level.
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6 Conclusions

Ultralight scalars appear in a wide variety of SM extensions, either as very light states

or as exactly massless Goldstone bosons. Examples include the axion and the majoron,

two well-motivated hypothetical particles at the core of two fundamental problems: the

conservation of CP in the strong interactions and the origin of neutrino masses. These

states, as well as other ultralight scalars, can be produced in many leptonic processes or

act as their mediators, leading to many exotic signatures.

In this work we have explored the impact of ultralight scalars in many leptonic ob-

servables. We have adopted a model independent general approach, taking into account

both scalar and pseudoscalar interactions to charged leptons, therefore going beyond most

existing studies. First, we have briefly reviewed the current bounds from stellar cooling,

which set important constraints on the diagonal couplings, and discussed indirect limits

from the 1-loop generation of a coupling to photons. Then, we have obtained analyti-

cal expressions for a wide variety of leptonic observables. We have revisited the decays

ℓα → ℓβ φ and ℓα → ℓβ γ φ, in which the scalar φ is produced, and provided complete

expressions for the radiative LFV decays ℓα → ℓβ γ, as well as for the 3-body decays

ℓ−
α → ℓ−

β ℓ−
β ℓ+

β , ℓ−
α → ℓ−

β ℓ−
γ ℓ+

γ and ℓ−
α → ℓ+

β ℓ−
γ ℓ−

γ , in which φ contributes as mediator. The

effect of ultralight scalars on the charged leptons anomalous magnetic and electric dipole

moments has also be discussed. Finally, several phenomenological aspects of this scenario

are explored. After deriving limits on off-diagonal couplings from lepton flavor violating

observables, we have shown that an explanation to the (g − 2)e and (g − 2)µ anomalies is

possible in this scenario. We have also shown that the observables discussed in this paper

are indeed complementary.

The phenomenology of ultralight scalars is very rich, since they are kinematically

accessible in most high- and low-energy processes. We have discussed many purely leptonic

processes, but if φ couples to quarks as well, many hadronic and semi-leptonic channels

open. This could give rise to many signatures at kaon factories [87]. Furthermore, ultralight

scalars may leave their footprints in other processes. For instance, they can be produced

and emitted in tritium beta decay [88] or µ − e conversion in nuclei [89], have a strong

impact in leptogenesis [90], and give rise to non-resonant phenomena at colliders [91]. In

our opinion, this diversity of experimental signatures and their potential to unravel some

of the most important problems in particle physics through their connection to ultralight

scalars merits further investigation.
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A Parametrization in terms of derivative interactions

Eq. (2.1) is completely general and includes both scalar and pseudoscalar interactions of

the field φ with a pair of charged leptons. An alternative parametrization in terms of

derivative interactions is given by

Lℓℓφ = (∂µφ) ℓ̄βγµ
(
S̃βα

L PL + S̃βα
R PR

)
ℓα + h.c. . (A.1)

The coefficients S̃L,R have dimensions of mass−1 and we consider all possible flavor com-

binations: βα = {ee, µµ, ττ, eµ, eτ, µτ}. Notice that the diagonal ℓβ − ℓβ − φ vertex is

proportional to (S̃L + S̃∗
L)ββPL + (S̃R + S̃∗

R)ββPR, and therefore the diagonal couplings can

be taken to be real without loss of generality. As will be shown below, eq. (A.1) only in-

cludes pseudoscalar interactions for φ. Therefore, it can be thought of as a particularization

of eq. (2.1).8

Physical observables must be independent of the parametrization chosen. We proceed

to show now that the two parametrizations considered here are completely equivalent for

a pure pseudoscalar in processes involving on-shell leptons. First, we recall the equations

of motion for the lepton fields ℓα and its conjugate ℓ̄α

i γµ∂µℓα − mαℓα = 0 ,

i ∂µℓ̄αγµ + mαℓ̄α = 0 ,
(A.2)

valid for on-shell leptons. One can now rewrite eq. (A.1) as the sum of a total derivative

and a derivative acting on the lepton fields. The total derivative does not contribute to

the action, whereas the derivative on the lepton fields can be replaced using the equations

of motion in eq. (A.2). This leads to

Lℓℓφ = −i φ ℓ̄β

[(
mβ S̃βα

L − mα S̃βα
R

)
PL +

(
mβ S̃βα

R − mα S̃βα
L

)
PR

]
ℓα + h.c.

≡ φ ℓ̄β

(
Sβα

L PL + Sβα
R PR

)
ℓα + h.c. .

(A.3)

8The parametrization in eq. (A.1) is completely general if φ is a pure pseudoscalar, usually the case

of the Goldstone bosons in many models. In such scenarios, the two parametrizations for the effective

Lagrangian Lℓℓφ introduced here are related to two possible ways to parametrize the Goldstone boson.

Eq. (2.1) follows from a cartesian parametrization, that splits a complex scalar field in terms of its real and

imaginary components. Alternatively, the parametrization in terms of derivative interactions in eq. (A.1)

would follow from a polar parametrization, that splits a complex scalar field in terms of its modulus and

phase. As we will prove below, they lead to the same results for observables involving on-shell leptons.
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Therefore we find a dictionary between the SX and S̃X coefficients

Sβα
L = i

(
mα S̃βα

R − mβ S̃βα
L

)
, (A.4)

Sβα
R = i

(
mα S̃βα

L − mβ S̃βα
R

)
, (A.5)

which for the diagonal couplings reduces to

Sββ = Sββ
L + Sββ∗

R = 2 i mβ

(
S̃ββ

R − S̃ββ
L

)
. (A.6)

Since both S̃ββ
X are real parameters, eq. (A.6) implies that the diagonal Sββ couplings must

be purely imaginary. It is straightforward to show that, in this case, the flavor conserving

interactions of φ in eq. (2.1) are proportional to γ5 (see eq. (3.1)). This proves that eq. (A.1)

is not general, but only includes pseudoscalar interactions, and there is no one-to-one

correspondence between the two parametrizations. Given a set of S̃X couplings, one can

always find the corresponding SX couplings using eqs. (A.4) and (A.5). However, certain

sets of SX couplings, namely those with non-vanishing real parts, cannot be expressed in

terms of S̃X couplings. This stems from the fact that purely scalar interactions are not

included in eq. (A.1).

The equivalence for the case of a pure pseudoscalar can be explicitly illustrated by com-

paring the analytical expressions obtained with eqs. (2.1) and (A.1) for a given observable.

We can start with a trivial example, the process ℓα → ℓβφ, discussed in section 4.1. Using

the parametrization in eq. (A.1), one can easily derive the decay width of this two-body

decay,

Γ̃ (ℓα → ℓβ φ) =
m3

α

32 π

(∣∣∣S̃βα
L

∣∣∣
2

+
∣∣∣S̃βα

R

∣∣∣
2
)

, (A.7)

where terms proportional to mβ have been neglected. This results differs from eq. (4.1)

only by a factor m2
α, as one would obtain from the direct application of the dictionary

in eqs. (A.4) and (A.5). Let us now consider a less trivial example: ℓ−
α → ℓ−

β ℓ+
β ℓ−

β . The

computation of its amplitude with the Lagrangian in eq. (A.1) makes use of the same

Feynman diagrams shown in figure 3. In this case one obtains

M̃φ = ū(p3)2
(
−/q
)(

S̃ββ
L PL+S̃ββ

R PR

)
v (p4)

i

q2+iε
ū(p2)

(
/q
)(

S̃βα
L PL+S̃βα

R PR

)
u(p1)

−ū(p2)2(−/k)
(
S̃ββ

L PL+S̃ββ
R PR

)
v (p4)

i

k2+iε
ū(p3)(/k)

(
S̃βα

L PL+S̃βα
R PR

)
u(p1) ,

(A.8)

where the factor of 2 preceding the diagonal coupling is due to the addition of the Hermi-

tian conjugate, as explicitly shown in eq. (A.1). Again, explicit flavor indices have been
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introduced. The decay width is computed to be

Γ̃φ

(
ℓ−

α → ℓ−
β ℓ+

β ℓ−
β

)
=

m5
α

512π3

{
4

(∣∣∣S̃βα
L

∣∣∣
2
+
∣∣∣S̃βα

R

∣∣∣
2
)(

S̃ββ
L −S̃ββ

R

)2 m2
β

m2
α

(
4log

mα

mβ
− 15

2

)

+
mβ

3mα

{(
S̃ββ

L −S̃ββ
R

){
S̃βα

R

(
AS∗

LL−2AS∗
LR

)
−S̃βα

L

(
AS∗

RR−2AS∗
RL

)

+
mβ

mα

{
S̃βα

L

[
2AS∗

LL+

(
12log

mα

mβ
−25

)
AS∗

LR

]
−S̃βα

R

[
2AS∗

RR+

(
12log

mα

mβ
−25

)
AS∗

RL

]}

+12

[
AT ∗

RR

(
S̃βα

L +2
mβ

mα
S̃βα

R

)
−AT ∗

LL

(
S̃βα

R +2
mβ

mα
S̃βα

L

)]
+4
(
S̃βα

R AV ∗
LR−S̃βα

L AV ∗
RL

)

+2
mβ

mα

{
S̃βα

L

[(
25−12log

mα

mβ

)
AV ∗

LR−
(

42−24log
mα

mβ

)
AV ∗

LL

]

− S̃βα
R

[(
25−12log

mα

mβ

)
AV ∗

RL−
(

42−24log
mα

mβ

)
AV ∗

RR

]}

+6e2
[(

KL
2

)βα∗
S̃βα

L −
(
KR

2

)βα∗
S̃βα

R

]

+4e2 mβ

mα

(
3

2
+π2+6log2 2−6log2 mα

mβ

)[(
KR

2

)βα∗
S̃βα

L −
(
KL

2

)βα∗
S̃βα

R

]}
+c.c.

}}
,

(A.9)

where in this expression AI
XY =

(
AI

XY

)βββα
. We note that infrarred divergences also

occur in interference terms at this order in
mβ

mα
. This explains the appearance of several

log factors. The decay width in eq. (A.9) can be compared to a previous result in the

literature. The authors of [29] drop all interference terms in their calculation, and then

their result must be compared to the first line in eq. (A.9). One can easily relate the S̃L,R

coefficients to the ones in [29] as

V e
βα ≡ −1

2

(
S̃βα

L + S̃βα
R

)
, Ae

βα ≡ 1

2

(
S̃βα

R − S̃βα
L

)
, (A.10)

for the flavor violating terms, and

Ae
ββ ≡

(
S̃ββ

R − S̃ββ
L

)
, (A.11)

for the flavor conserving ones. With this translation, it is easy to check that both results

agree up to a global factor of 1/2.

In order to compare the ℓ−
α → ℓ−

β ℓ+
β ℓ−

β decay widths obtained with both parametriza-

tions we need an expanded version of eq. (4.20) that includes terms up to O
(

mβ

mα

)
. This
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is given by

Γφ

(
ℓ−

α → ℓ−
β ℓ+

β ℓ−
β

)
=

mα

512π3

{(∣∣∣Sβα
L

∣∣∣
2

+
∣∣∣Sβα

R

∣∣∣
2
){∣∣∣Sββ

∣∣∣
2
(

4 log
mα

mβ
− 49

6

)
− 2

6

[(
Sββ∗

)2
+
(
Sββ

)2
]}

− m2
α

6

{
Sβα

L SββAS∗
LL + 2Sβα

L Sββ∗AS∗
LR + 2Sβα

R SββAS∗
RL + Sβα

R Sββ∗AS∗
RR

− 12
(
Sβα

L SββAT ∗
LL + Sβα

R Sββ∗AT ∗
RR

)
− 4

(
Sβα

R SββAV ∗
RL + Sβα

L Sββ∗AV ∗
LR

)

+ 6e2
(
Sβα

R SββKL∗
2 + Sβα

L Sββ∗KR∗
2

)
− 36mβ

mα

(
Sβα

R SββAT ∗
LL + Sβα

L Sββ∗AT ∗
RR

)

+
3mβ

2mα

[
Sββ

(
11Sβα

L AS∗
RL + 2Sβα

R AS∗
LL − 7Sβα

R AS∗
LR

)

+ Sββ∗
(
11Sβα

R AS∗
LR + 2Sβα

L AS∗
RR − 7Sβα

L AS∗
RL

)]

− 6mβ

mα

(
Sβα

L AS∗
RL − Sβα

R AS∗
LR

) (
Sββ − Sββ∗

)
log

mα

mβ

+
12mβ

mα

(
Sβα

L AV ∗
RL − 2Sβα

L AV ∗
RR + 2Sβα

R AV ∗
LL − Sβα

R AV ∗
LR

) (
Sββ − Sββ∗

)
log

mα

mβ

+
3mβ

mα

[
Sββ

(
−11Sβα

L AV ∗
RL + 14Sβα

L AV ∗
RR − 14Sβα

R AV ∗
LL + 7Sβα

R AV ∗
LR

)

+ Sββ∗
(
−11Sβα

R AV ∗
LR + 14Sβα

R AV ∗
LL − 14Sβα

L AV ∗
RR + 7Sβα

L AV ∗
RL

)]

− 4 e2 mβ

mα

{[
Sβα

L

(
KL

2

)βα∗
+ Sβα

R

(
KR

2

)βα∗
] (

Sββ + Sββ∗
)(

6 log
mα

mβ
− 21

2

)

+

[
Sβα

L Sββ
(
KL

2

)βα∗
+ Sβα

R Sββ∗
(
KR

2

)βα∗
](

π2 + 6 log2 2 − 6 log2 mα

mβ

)}
+ c.c.

}}
,

(A.12)

where in this expression AI
XY =

(
AI

XY

)βββα
. Replacing eqs. (A.4) and (A.5) into eq. (A.12)

one finds full agreement with eq. (A.9) to order O
(

mβ

mα

)
. This proves explicitly the equiv-

alence between both parametrizations in the calculation of ℓ−
α → ℓ−

β ℓ+
β ℓ−

β mediated by a

pure pseudoscalar.
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