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ABSTRACT 

Inspired by neural computing, the pursuit of ultralow power neuromorphic architectures with highly 

distributed memory and parallel processing capability has recently gained more traction. However, 

emulation of biological signal processing via artificial neuromorphic architectures does not exploit 

the immense interplay between local activities and global neuromodulations observed in biological 

neural networks, and hence are unable to mimic complex biologically plausible adaptive functions 

like heterosynaptic plasticity and homeostasis. Here, we demonstrate emulation of complex 

neuronal behaviours like heterosynaptic plasticity, homeostasis, association, correlation and 

coincidence in a single neuristor via a dual-gated architecture. This multiple gating approach allows 

one gate to capture the effect of local activity correlations and the second gate to represent global 

neuromodulations, allowing additional modulations which augment their plasticity and enabling 

higher order temporal correlations at a unitary level. Moreover, the dual-gate operation extends the 

available dynamic range of synaptic conductance while maintaining symmetry in the weight-update 

operation, expanding the number of accessible memory states. Finally, operating neuristors in the 

sub-threshold regime enables synaptic weight changes with high gain, while maintaining ultralow 

power consumption of the order of femto-Joules. 
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With massive parallelism, highly distributed memory, fault tolerance, self-learning, robustness and 

ultra-low power consumption, neural computing transcends serial processing in traditional von 

Neumann architectures made of fault-sensitive electronic transistors.1,2 Learning in the human brain 

occurs via short and long-term strengthening and weakening of synaptic connections, 

interconnecting each neuron to up to 104 other neurons.3 This modification of synaptic strength is 

referred to as functional plasticity (as opposed to structural plasticity) and exists at various time 

scales of operation. Short-term plasticity refers to temporary rapid changes in synaptic strength that 

act on a timescale of tens of milliseconds to a few minutes unlike long-term plasticity, which lasts 

from minutes to hours.4 While short-term facilitation serves as a working memory, short-term 

depression removes auto-correlations.5 On the other hand, long-term potentiation (LTP) contributes 

towards spatial memory storage while long-term depression (LTD) also encodes spatial features, 

weakens synapses selectively and clears old memory traces.6 Combination of LTP and LTD, when 

triggered by spike time correlations is called spike time dependent plasticity (STDP).7 In contrast to 

conventional memory storage and logic operations, neuromorphic applications set unique 

requirements on the hardware switching devices, namely- non-abrupt analog-like switching 

transitions and continuous distribution of conductance states with a wide dynamic range and 

linearity. The massively parallel signal processing of the human brain also demands emulation of 

the interconnectedness seen in biological neural networks, but is often overlooked. This calls for the 

need of device configurations that can not only emulate fundamental local synaptic features, but 

which also incorporates response to global neuromodulations at an elemental level. 

 

While neuromorphic architectures based on conventional silicon circuitry are constrained by the 

requirement of additional clock cycles and peripheral circuitry for weight-updates and 

synchronisation, abrupt conductance transitions in drift-memristors limit the number of accessible 

states and hence, their plasticity.8-10 Investigations on electrolyte-gated thin film transistors and ion-

diffusive memristors have pushed the field forward with comprehensive emulation of short and 



 4 

long-term plasticity rules, but fails to emulate complex neuronal behaviours like heterosynaptic 

plasticity and homeostasis, dependent on interplay between local activities and global 

neuromodulations. With a gated control of channel conductance exploiting time-dependent 

hysteresis, the thin-film transistor (TFT) configuration is promising in achieving dynamic and linear 

plasticity. Emulation of multi-factor or heterosynaptic plasticity that accounts for the immense 

interplay between local and global neuromodulations, necessitates synergistic gating strategies to 

control charge trapping mechanisms and address distinct memconductance states of semiconducting 

channels. This would allow development of highly plastic neuromorphic circuitry emulating 

biological adaptation mechanisms with drastically lesser neural elements, mitigating strict circuit 

density requirements. Maximizing and controlling the degree of such plasticity also calls for the 

utilization of high capacitance gate dielectrics intimately modulating the carrier concentration at the 

semiconductor-dielectric interface and satisfying the quest for ultralow power operation.  

 

Very recently we demonstrated synergistic multiple gating of 2D chalcogenide neuristors which 

enabled metaplasticity and homeostasis in a single device.11 However, these devices were limited 

by complex exfoliation and fabrication techniques which presently limit scalability, and the 

metaplasticity features were encoded only with bias deflections. With high intrinsic carrier 

mobility, optical transparency, and an established process flow developed for display applications, 

amorphous oxides of post-transition elements (In, Ga, Sn, Zn, W) serve as ideal semiconducting 

platforms to encode memconductances based on the semiconductor-dielectric capacitive 

coupling.12,13 Low voltage operation of basic synaptic characteristics have been demonstrated by 

utilizing high-capacitance liquid electrolytes, but are disadvantaged by their chemically volatile 

nature.14,15 This necessitates development of solid-state ionic dielectrics for ultra-low power 

operation of artificial synaptic devices.  
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Herein, artificial synapses with intimate electronic-ionic coupling were realized in a dual-gated 

electric-double-layer neuristor (EDLN) configuration with semiconducting indium-tungsten oxide 

(IWO) channels and solid-state ionic dielectric based on poly (vinylidene fluoride- co -

hexafluoropropylene), P(VDF-HFP), and the ionic liquid 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl) imide, [EMI][TFSI]. High tensile strength of the structuring polymer 

allowed convenient fabrication of free-standing films and lamination on to the desired substrate via 

the ‘cut and stick’ processing strategy.16 Ionic migration-relaxation kinetics in the ion gel 

mimicking Ca2+ influx in dendritic spines modulated the electronic conductance-state of the 

semiconducting channel, in addition to carrier trapping-detrapping mechanisms at the IWO-SiO2 

interface, while charge transport pathways emulated the synaptic cleft, and channel-conductance 

defined the synaptic weight. Temporally correlated pre- and post-synaptic action potentials initially 

created short-term volatile changes in the channel conductance/weights, which further consolidated 

to long-term non-volatile changes upon persistent training. With a multi-gated architecture, these 

neuromorphic transistors or neuristors could operate independently in a pristine ionotronic mode-

capturing the effect of local activity correlations or electronic mode-capturing global 

neuromodulations. More importantly, they can operate synergistically in a dual-gated 

additive/subtractive mode addressing the immense interplay between local and global 

neuromodulations and accessing a multitude of memconductance states with dynamic linear 

plasticity. The dual gated approach created temporal cross-correlations among the various pre- and 

post-synaptic action potentials, introducing heterosynaptic or three-factor plasticity rules that 

emulate the effects of neuromodulators like dopamine or noradrenaline.17,18 Persistent classical 

conditioning experiments spurred associative learning between the gating modes with features like 

extinction and recovery temporally encoded into the training algorithms. Sub-threshold operation of 

transistors resulted in conductance/weight changes with maximum gain and was utilized to create 

highly sensitive coincidence detectors operating at ultra-low power. These comprehensive results 

portray the advantages of a multi-gated configuration and sub-threshold operation of oxide 
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neuristors for ultralow-power, high-gain weight changes, facilitating development of metaplastic 

architectures with biologically plausible adaptation mechanisms dependent on local activity and 

global neuromodulations. 

 

RESULTS AND DISCUSSION 

Learning and memory in the human brain happens through activity-dependent strengthening and 

weakening of synaptic connections, also known as synaptic plasticity.3 Action potentials trigger 

opening of voltage-gated Ca2+ channels, transducing electrical potentials into chemical signals 

through the release of neurotransmitters. The neurotransmitter-receptor interaction activates ligand 

gated ion-channels, depolarizing or hyperpolarizing the resting membrane potential based on the 

type of channel (Figure 1 A).19,20 Accumulated synaptic input may cause the post-synaptic cell in 

turn to fire an action potential and the temporal correlations between local pre-and post-synaptic 

firing activity is responsible for plasticity of the synaptic strengths. Similar activity triggered at 104 

such neuronal junctions/synapses forms the basis of parallel computing and distributed memory in 

the human brain. Successful emulation of these neuronal dynamics require effective translation of 

modulation of local postsynaptic strength via changes in ion flux due to local presynaptic action-

potentials. Additionally, since large groups of neurons receive common modulatory inputs in the 

form of neuromodulators such as dopamine, noradrenaline or acetylcholine signalling reward or 

surprise signals in biological networks, modulation of learning rules by such global factors need to 

be accounted for as well.21 While most studies focus only on the emulation of plasticity due to local 

temporally correlated activity, global neuromodulations are often overlooked diluting the 

achievable plasticity. In the investigated EDLN configuration, pre- and post-synaptic potentials at 

the gate and source terminals modulated the post-synaptic channel conductance, read via the drain 

terminal (Figure 1 A). While pure electronic-mode transistors exhibited a field-effect mobility of 

9 cm
2
V

-1
s

-1
, large electrical-double-layer (EDL) capacitance of the ion gels resulted in efficient 

carrier accumulation and hence, high-performance ionotronic transistors (field-effect mobility ~ 79 
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cm
2
V

-1
s

-1
) operating at ultralow voltage (Vgs ~ 1.5 V and Vds ~ 1-100 mV) and power. (Supporting-

Information Note-1 Figure S1). Each mode could be operated independently to program specific 

memconductance states into the semiconducting channel and exhibit plasticity. Concurrently, the 

dual-gating operation could be configured with one gate capturing the effect of local activity 

correlations and the second gate representing global neuromodulations, allowing the second gate 

terminal to modulate the weight changes caused by the first gate, augmenting the plasticity and 

enabling higher order temporal correlations at a unitary level.  
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Figure 1. Interplay between short and long-term plasticity in oxide neuristors. (A) Synaptic transmission steps 

(left) and the proposed multi-gated architecture of analogous artificial oxide neuristors (right). Frequency dependent 

volatile changes in conductivity/weights create high-pass filtering of signals in the (B) global-gated and (C) local-gated 

modes of operation. (D) Frequency of presynaptic action potentials determine the gain of temporal filters. (E) 

Comparison of the ON-state energy consumption per spike (Eon) of oxide neuristors in the global and local-gated modes 

of operation. 𝐸𝑜𝑛 was calculated from the equation 𝐸𝑜𝑛  =  𝐼𝑝𝑒𝑎𝑘,𝑓𝑖𝑟𝑠𝑡  ×  𝑡 × 𝑉𝑑𝑠 ; where Ipeak is the peak value of 1st 

generated EPSC, t is the spike duration, and Vds is the applied drain voltage.22 Scaling down of device dimensions and 

reducing spike durations to sub-millisecond levels could be also utilized as strategies to decrease the energy 

consumption per event even further. The values reported are for the best performing devices. (F) The forgetting 

curve depicts the decline of memory retention with time. Highest numerical value of the long-term weight changes in 

the two operational modes were normalized to compare the retention characteristics. Repetitive learning softened the 

forgetting behaviour in both modes as shown. (G) Relative timing between pre- and postsynaptic spikes created voltage 

differences across the neuristors, permanently strengthening and weakening the synaptic connections, also called Spike-

timing-dependent plasticity (STDP). While the weight change pattern in the global-gated mode followed a STDP rule, a 

“reverse” STDP (rSTDP) rule was exhibited in the local-gated mode. 
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Neuronal plasticity occurs at various levels of brain organization and involves changes in the 

efficiency of transmission-functional plasticity and/or changes in the number of connections 

between neurons- structural plasticity. Classified based on the timescales of operation, short and 

long-term plasticity rules defining learning and memory were studied by recording 

excitatory/inhibitory post synaptic currents (E/IPSCs) in response to pre- and post-synaptic training 

sequences.10,23-24 These standard plasticity rules were implemented independently in both global 

and local-gated modes of operation to benchmark the nature of plasticity achieved. A training 

sequence consisting of 10 presynaptic action potentials of pulse width 20 ms (presynaptic amplitude 

= + 20 V (global-gated mode) and + 1.5 V (local-gated mode), drain bias = + 1 V (global-gated 

mode) and + 0.1 V (local-gated mode)) induced dynamic high-pass temporal filtering of signals via 

volatile changes in channel-conductance with a frequency-dependent gain as shown in Figures 1 B-

D.25 An extension of the paired-pulse facilitation/depression phenomena (Supporting-Information 

Note-2 Figure S2), polarity of the presynaptic action potentials determined the nature of post-

synaptic signals (excitatory/ inhibitory) and the frequency of activation decided the gain. Slow 

nature of ion migration-relaxation dynamics of the ionotronic-mode (local-gated) resulted in 

superior facilitation (181 %) and depression indices (55 %) and thus, larger filter gains (209 at 33 

Hz) when compared to the electronic-mode (global-gated) (PPF = 138 %, PPD = 70 %, Gain = 18 at 

33 Hz, Figures 1 B-D, Supporting-Information Note-2 Figure S2, Table T1).11,26 Short and 

temporary nature of the training sequences resulted in the decay of post-synaptic currents (PSCs) 

back to the initial state due to carrier trapping (global-gated) and ion relaxation (local-gated) 

mechanisms, analogous to short-term plasticity.5 With neuristors pushed to operate at 1 mV (Vds), 

the local-gated operation augmented this high-gain behaviour with an ultralow power consumption 

~ 9.3 fJ per synaptic event (calculated from peak value of the 1st EPSC), comparable to biological 

synapses (~ 10 fJ per event) and one of the lowest reported till date (Figure 1 E, Supporting-

Information Note-3 Figure S3, Table T2).11  
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Persistent training sequences with longer pulse width consolidated the weight changes, leading to 

non-volatile changes in channel-conductance and hence long-term plasticity.10,27 Being an 

experience-dependent phenomena, the magnitude of weight changes could be tuned by the number 

and amplitude of presynaptic training spikes and the modulatory drain bias, resulting in controlled 

facilitation/depression in accordance with the quantal and probabilistic neurotransmitter release 

model.28 Slow relaxation nature of the ions in the local-gated mode once again resulted in larger 

weight changes and higher retention of the memory states as depicted by the Ebbinghaus 

forgetting curves (Figure 1 F, Supporting-Information Note-4 Figure S4). Spaced repetition 

resulted in softening of the downward slope of the forgetting curve, indicating modulation of the 

strength of memory and process of forgetting that occurs with the passage of time. 

 

Memory traces of past experiences were then encoded as temporal correlations between pre- and 

post-synaptic neurons, resulting in a temporally asymmetric form of Hebbian learning or Spike 

Timing Dependent Plasticity (STDP).29 Effective translation of temporal correlations into voltage 

amplitude differences created long-term facilitation/depression in global/local-gated synapses on 

the repeated arrival of presynaptic spikes a few hundred milliseconds before the postsynaptic action 

potentials. Positive effective writing voltages above the threshold resulted in permanent pinning of 

the ions in the ion gel at the semiconductor-dielectric interface saturating the Helmholtz layer, 

thereby causing facilitation in the local-gated mode. On the other hand, positive effective writing 

voltages resulted in depression in the global-gated mode indicating electron detrapping during the 

pulse application and subsequent slow trapping of carriers on removal of positive pulses/bias 

(Supporting-Information Note-4 Figure S4).11,30 Changes to the order of arrival reversed the polarity 

of effective writing voltages and direction of weight-change and followed an asymmetric Hebbian 

rule in the global-gated mode and an asymmetric anti-Hebbian in the local-gated mode of operation 

(Figure 1 G, Supporting-Information Note-5 Figure S5) similar to learning rules observed in apical 

dendritic synapses.31 Such reverse STDP rules have been shown to be computationally useful for 
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associative learning in concert with post-spike hyperpolarization.32,33 While the exact roles and 

interplay between Hebbian and anti-Hebbian rules are still not clear, it is reassuring that our 

neuristors can be configured to display either rule providing the flexibility desirable in 

neuromorphic hardware without the need for additional circuits as would be needed in standard 

CMOS implementations. 

        

Figure 2. Dual-gated configuration enables multi-level memory and higher order temporal correlations in 

neuristors. (A) Modulation of temporal filter characteristics with additional gating. Level shifting was achieved with 

the second control gate and without any additional circuitry. (B) Linear variation of channel conductance with write 

operations featuring 8 (3-bit storage) distinct conductance levels for all 3 operational modes but spanning different 

conductance ranges. Symmetric presynaptic voltage write-pulses of constant magnitude + 1.5 V (local-gated), +20 V 

(global-gated) and number (10) were applied to generate the conductance linearity curve. The memconductance states 

were addressed using a drain bias of + 0.1 V. (C) Controlled facilitation and depression were achieved in our devices by 

applying a series of potentiating and depressing presynaptic spikes. Potentiating spikes for the global-gated mode 

involved spikes of amplitude - 20 V and pulse width 500 ms, and + 1.5 V for the local-gated mode. The dual-gated 

mode allowed weight modulations with improved strength. For the dual-gated mode, both global and local presynaptic 

spikes were applied simultaneously. (D) The dual gating approach allowed the second gate terminal to modulate the 

weight changes caused by the first gate, augmenting the plasticity and enabling higher order temporal correlations. The 

nature and degree of the effective conductance/weight change depended on temporal correlations between the 

postsynaptic sequence and two different input sequences (pre-synaptic and modulatory), resulting in heterosynaptic 

plasticity. 
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Figure 3. Schematic of the concept of Pavlov’s dog experiment for associative memory. Prior to conditioning, the 

Pavlov’s dog salivated to unconditioned stimuli alone (stage: i). Here, 12 A was set as the threshold for salivation. 

Persistent training with simultaneous application of unconditioned and conditioned stimuli created association between 

them, after which the Pavlov’s dog salivated to independent application of conditioned stimuli (stages: ii-iii). The 

association was weakened and became extinct with time on training with conditioned stimuli alone (stage: iv). 

However, retraining helped recover this association within a shorter time scale (stage: v-vi). 

 

 

The proposed dual-gated architecture of the neuristors offer unique advantages in implementing 

traditional machine learning update rules as well as more bio-realistic plasticity mechanisms. Like 

all electronic hardware, neuromorphic circuitry also suffers from restricted tunability and unit-level 

fluctuations causing parameter inaccuracies to serious malfunctioning. In network implementations 

like the Hopfield model, this results in multiple solutions for each input due to the dynamically 

changing nature of threshold voltages of individual neurons which create localized minima states 

for each input.34,35 In competitive learning networks, high intrinsic firing rates of some neurons may 
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prohibit other neurons from learning unless homeostasis is introduced.36 However, inclusion of 

homeostasis in silicon synapses require additional circuits requiring more power and area.37 In the 

proposed multi-gated configuration, the additional gate could be biased using homeostatic feedback 

inputs, applying correction currents to the input of neurons as shown in Figure 2 A. Carrier 

accumulation in the local-gated mode could be modulated via necessary biasing at the global gate 

and vice versa, level-shifting the temporal filter characteristics. Positive biasing at the global gate 

shifted the entire temporal filter characteristics in the positive direction, whereas negative biasing 

resulted in a negative shift without affecting the frequency-gain characteristics. In contrast to the 

STDP-based homeostasis previously reported which focussed on only long-term weight changes, 

this implementation extends the homeostatic control to short-term plasticity rules, regulating the 

stability of neural networks at both time scales of operation.11 

 

While scaling strategies to increase the data storage capabilities of non-volatile memories are 

hampered by stringent photolithography and other fabrication complexities, development of 

multilevel memories seems to be a more viable alternative for neuromorphic machine learning. 

Creating such multilevel memories would require a device with dynamic wide linear conductance 

range and distinguishable read-out states.38 In terms of computing, cognitive tasks like pattern 

recognition and classification also demand synaptic devices with excellent conductance linearity 

(CL) and multi-level cell (MLC) characteristics.39 Most drift memristors depict restricted memory 

windows with non-linear weight updates and asymmetric behaviour between the processes of 

conductance increase (potentiation) and decrease (depression) due to the differences in switching 

kinetics of filament formation and dissolution.40 With a wide linear conductance range that can be 

modulated by pre and post-synaptic voltages, neuristors become superior substitutes for 

computationally intensive applications like dot product engines (DPEs), which require such ‘blind 

update’ schemes.41,42 As a proof of concept, linear symmetric postsynaptic conductance changes 

featuring 8 distinct levels (equivalent to 3-bit storage) were recorded for both global and local-gated 
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operational modes with symmetric presynaptic write-pulses of constant magnitude (Figure 2 B). 

The individual steps of linear increment depended on the net capacitive coupling in the three modes 

of operation. While conductance/ weight changes in the global-gated mode resulted from carrier 

trapping-detrapping mechanisms at the semiconductor-dielectric interface, ion migration-relaxation 

effects in the ion gel induced similar modulations of synaptic weights in the local-gated mode. With 

electrical-double-layer formation across nanometer thick Helmholtz layers, the local gate utilized 

stronger capacitive coupling to widen the linear conductance range. Configuring the neuristor in a 

dual-gated mode enhanced charge carrier accumulation due to a combination of carrier trapping and 

ion migration effects, resulting in a larger memory window. In system level operation with 

provisions for pulsing either gate or both, this leads to an increase in number of conductance states 

with an increased storage capacity of ~ 4.5 bits/synapse from the original 3 bits. Thus, adopting 

such multi-gated architectures to create multi-level memories becomes a superior alternative with 

reduced quantization errors in mapping continuous weights to discrete conductance levels. With 

more optimized writing schemes, the linear conductance range and the number of accessible states 

can be further widened and is limited only by the extent of triode region of the neuristor. 

 

Implementation of online learning requires symmetric weight increment and decrement operations 

for outer product weight update rules. This symmetry along with low “write” noise and low 

switching voltages and currents determine the efficiency of crossbar neuromorphic computational 

kernels like vector–matrix multiplication and parallel rank 1 weight updates, and significantly 

improves classification accuracy of backpropagation schemes.41 In contrast to structural 

transformations which decides the switching behaviour in memristors and phase-change memories 

(PCM), the gating mechanisms employed here create softer permanent changes in channel 

conductance in these neuristors, resulting in low “write” noises. The large electrical-double-layer 

capacitances also result in ultralow switching voltages with the local-gated mode of operation. 

Pulsing the neuristors with optimized writing schemes resulted in near-linear weight changes with 
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symmetry in facilitation and depression. With extremely large electrical-double-layer capacitances, 

the rate of modulation with local-gated mode always dominated the global-gated mode at low 

biases, exhibiting a much larger memory window. Additive operation of the two modes 

strengthened the degree of facilitation/depression with higher slopes compared to the independent 

operation (Figure 2 C). Analogous to homeostasis, subtractive operation of the second gate could 

be utilized to create a negative feedback to offset excessive excitation or inhibition in the other 

mode.43,44 For example, potentiation with the global-gate could be depressed by local-gated mode at 

a rate different from a pure global-gated operation (Supporting-Information Note-6 Figure S6). 

Thus operation in the dual-gated mode allowed programming of weight changes with fine precision, 

with the net weight change defined by the overall capacitive coupling across the semiconducting 

channel.  

 

Co-existence of multiple forms of synaptic plasticity would increase the processing capability and 

memory storage capacity of neuristors. In this configuration, the additional gate control terminal 

was utilized as a switch controlled via presynaptic rate-coded schemes or neuromodulation schemes 

like dopaminergic, noradrenergic, muscarinic, and nicotinic receptors to dynamically regulate 

weight changes, resulting in a higher order of plasticity, also called heterosynaptic plasticity or 

three-factor learning.17,45–50 Dual-gating resulted in superposition of carrier trapping-detrapping 

and ion migration-relaxation effects with tuneable additive/subtractive operation, resulting in 

heterosynaptic plasticity. Compared to metaplastic memristive implementations based on activity 

priming, this incarnation supports weight updates based on time differences between three signals, 

facilitating complex learning algorithms involving interactions between local temporal correlations 

and presence or absence of global neuromodulatory signals, modulating the STDP windows on 

demand (Figure 2 D, Supporting-Information Note-7 Figure S7 A).51,52 Implementing such higher 

order correlations in CMOS requires added circuits in the synapse and periphery.53,54 However, in 

the proposed dual-gated neuristor configuration, the second presynaptic terminal created temporally 
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correlated voltage amplitude differences across the channel in addition to the ones created by the 

first gate, resulting in multiple correlated terms without aid of any additional peripheral circuitry. 

The nature and degree of the effective conductance/weight change here depended on temporal 

correlations between the postsynaptic sequence and two different input sequences (pre-synaptic and 

modulatory), resulting in higher order correlations that can be used as a supplementary selection 

node. For example, in standard STDP measurements, operation in the local-gated mode resulted in 

long-term depression on repeated arrival of the presynaptic spikes a few hundred milliseconds 

before the postsynaptic action potentials. On activation of the dual-gated mode, this net long-term 

depression was further modulated by temporal correlations of the additional global modulatory 

terminal, which added to the depression if repeated arrival of the modulatory spikes occurred a few 

hundred milliseconds after the postsynaptic action potentials. Repeated arrival of the global 

modulatory input a few hundred milliseconds before the postsynaptic action potentials created 

facilitation effects that counter acted the depression due to the first set of pre-post spikes. It should 

be noted that homeostasis can be obtained by connecting the pre-synaptic spikes to both the gates -- 

it is thus a subset of the range of possible dynamics achievable by this neuristor.  

 

Classical conditioning experiments also created association between the presynaptic inputs as 

shown in Figure 3.55,56 Initially, while unconditioned ionically gated stimuli (equivalent to food) 

activated salivation / unconditioned post-synaptic response (PSC > 12 A), electronically gated 

voltage pulses / conditioned stimuli (equivalent to bell) failed to trigger salivary response (PSC < 

12 A, stage: i) in the artificial Pavlov’s dog. Persistent simultaneous training resulted in effective 

association between the two stimuli marked by post-synaptic responses higher than the salivation 

response threshold with large retention (stages: ii-iii). However, repeated training sequences with 

the unconditioned stimuli alone resulted in extinction of the association (stage: iv), akin to 

forgetting in the human brain. But the association could be recovered back by lesser number of 

retraining sequences, analogous to the biological learning curve (stages: v-vi). Compared to the 
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associative learning demonstrated between the excitatory photonic and ionic gating modes, this 

implementation represents a more robust form of association because of the counteracting nature of 

conductance change observed with the ionic (facilitation) and electronic (depression) gating modes 

for the same polarity of training sequences.11 Persistent conditioning of the semiconducting channel 

with the dominating capacitive coupling of the ionic gating helped overcome this counteracting 

nature and established robust association between the two gating modes. 

 

Figure 4. Sub-threshold operation of neuristors enable weight changes with high gain while maintaining ultralow 

power operation. (A) Schematic of the neuronal basis underlying interaural time difference (ITD) based audio signal-

processing, (B) Input spikes applied with a delay at two physically separate gate terminals, akin to ITD as proposed by 

Jeffress model, created symmetric weight changes or coincidence. Coincidence detectors operating in the sub-threshold 

region depicted a wider weight change window, reflecting higher sensitivity. (C-D) Long-term weight changes and 

STDP learning rules programmed in the sub-threshold region yielded higher conductance changes when compared to 

above-threshold region. (E-F) Programming of neuristors create long-term weight changes in channel conductance 

(weight), reflected as threshold voltage (Vth) shifts of neuristors as a function of the programming gate voltage.  

 

 

Finally, we provide insight into advantages of operating neuristors in the sub-threshold region, 

where the gate voltages are less than the threshold voltage and the current changes exponentially 

with change in gate voltage.57 The versatility of the neuristor is demonstrated by using it to mimic 

coincidence detection properties of auditory brainstem neurons (Figure 4 A).58,59 Spatial location 

           
     

     

    

    

    

    

    

        

       
           

           
            

           

  
  
  

  
  
  

  
  
  
   
   
  

                   

 

   

  

                

 

  

  

  

  

   

   

         
 
 
  
  
  

  
  
   

  
  

  
  

   
  

  
  
  

 

                

                   

   

   

   

 

  

  

  

   

      
 
 
  
  
  

 
  
  

   
  

  
  
 

              

   

        

 

 

  

  

  

  

  

 
  
  

   
  

  
  
 

                   

 

 

 

 

 

                    
         

  

 

 

 

 

 

 

 

 

 
        μ  

 

 

                
            

               
       

              

                
       

              

                
                

           

              
          

            
          

             

               

                   

      

      Δ 



 18 

of a sound source is estimated by an organism using the interaural time differences (ITD) as 

proposed by Jeffress model. Though details of the architecture differ between models, the general 

architecture of tapped delay lines from each ear going to temporal correlators is a common feature. 

Spike trains with different delays coming from the two ears were presented to two physically 

separated gate terminals of the neuristor, operating independently in the global and local-gated 

modes (Figure 4 B, Supporting-Information Note-7 Figure S7 B). Akin to interaural sound 

localization schemes, symmetric weight-changes were obtained as a function of the delay between 

the two gates, irrespective of the order of their arrival. The sensitivity of the weight change to 

changes in delay was 2 to 4 times more when the neuristor was biased in sub-threshold regime as 

opposed to above-threshold regime due to exponential change in currents. Thus, sub-threshold 

operation resulted in detectors more sensitive to spatiotemporal correlations with a wider memory 

window. 

 The sub-threshold operation also provided higher sensitivity for long-term weight change 

experiments. Temporally correlated STDP measurements were performed at each step of gate 

voltage corresponding to the transfer characteristics. Input waveforms were designed in such a way 

that the reading voltages were equivalent to the minimum voltage level (Vmin) and the effective 

writing voltages corresponded to the difference between the maximum and minimum voltage levels 

(Vmax-Vmin) as shown in Figures 4 C-F, Supporting-Information Note-7 Figure S7 C. These 

temporally correlated waveforms created voltage amplitude differences, resulting in weight changes 

corresponding to Vmax-Vmin while the order of arrival of pre and post-synaptic sequences decided 

their facilitative/depressive nature. Normalizing the weight changes to the weights resulted in a gate 

dependent behaviour related to the threshold voltage shift of the neuristors. Clearly, smaller gate 

voltages corresponding to sub-threshold operation resulted in higher percentage weight changes for 

the same temporal differences pointing to increased sensitivity. Operation in the global-gated mode 

was chosen as the model here due to ease of understanding due to hysteresis-free behaviour; 

however, the conclusions are valid for local-gated mode as well. The cross-over point of the weight-
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changes and absolute weights indicated the region at which the neuristor could be biased for a good 

trade-off between high-sensitivity in weight change as well as high value of absolute weights.  

 

CONCLUSIONS  

Previous reports on artificial neuromorphic devices explored the role of liquid electrolytes in 

demonstrating basic synaptic characteristics like short and long-term plasticity. However, most 

studies ignore the interplay between local activities and global neuromodulations and hence, fail to 

emulate complex biologically plausible adaptive functions like heterosynaptic plasticity and 

homeostasis. In this work, the dual-gated architecture enables emulation of complex neuronal 

behaviours like heterosynaptic plasticity, homeostasis, association, correlation and coincidence in a 

single neuristor . The ionotronic mode captures the effect of local activity correlations while the 

electronic mode represents global neuromodulations, allowing additional modulations, augmented 

plasticity and higher order temporal correlations at a unitary level. The additional modulatory gate 

could be biased using homeostatic feedback inputs, applying correction currents to the input of 

neurons, regulating neural network activity at short-time scales. Extension of this concept to longer 

time scales results in a homeostatically controlled STDP behaviour. With optimized writing 

schemes, the dual-gate operation extends the dynamic range of synaptic conductance, increasing the 

data storage ability of the neuristors. Limited only by the triode region of operation, these neuristors 

exhibit symmetry in the weight-update operation, significant for cognitive tasks like pattern 

recognition and classification and online machine learning algorithms. The dual gating 

configuration also creates temporal cross-correlations between the charge coupling modes, resulting 

in higher order temporal relations beyond the standard doublet STDP rules- akin to hetersosynaptic 

plasticity. Compared to other metaplastic implementations where specific bias voltages at the 

second and third gates modulated the STDP window, this implementation establishes temporal 

cross correlations between the gating modes emulating metaplasticity in a more biorealistic fashion 

and resembling complex neuronal models like triplet STDP rules.11 Classical conditioning 
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experiments creates associative learning between the gating modes with features like extinction and 

recovery temporally encoded into the training algorithms. Sub-threshold operation of transistors 

results in conductance/weight changes with maximum gain and is utilized to create highly sensitive 

coincidence detectors operating at ultra-low power of the order of femto-Joules. While thermal 

noise in sub-threshold FETs is higher than its above-threshold counterparts, the signal to noise ratio 

(SNR) can be improved by summing outputs of many synapses together and scales as square root of 

N where outputs of N synapses are summed. This is exactly the mode of operation in neural 

networks and hence sub-threshold operation is a good fit for these kinds of applications where the 

fundamental operation is a vector-vector multiply.60 The second issue of capacitive crosstalk is 

largely mitigated by the three terminal structure of the memristive device and hence sneak paths can 

be cut-off effectively using floating gates.61 Compared to previous reports on artificial synapses 

which focus on only local pre- and postsynaptic activities, such dual-gated neuristors facilitate 

emulation of more complex biological adaptation mechanisms encompassing local activities and 

global neuromodulations, paving way for more intelligent computing systems. 

 

EXPERIMENTAL 

Solid-state ionic dielectric preparation and characterization: The ionic liquid [EMI][TFSI] was 

initially dried in vacuum for 24 hours at a temperature of 70 °C. Next, P(VDF-HFP) and 

[EMI][TFSI] were codissolved in acetone with a weight ratio of 1:4:7. The ion gels were further 

dried in vacuum at 70 °C for 24 hours to remove the residual solvent, after which it was cut with a 

razor blade, and then laminated onto the substrate of choice.  

Neuristor fabrication and characterization: IWO thin films (thickness ∼7 nm) were deposited on 

SiO2/Si wafers at room temperature using a RF magnetron sputtering technique with a In2O3:WO3 

(a-IWO) (98 : 2 wt %) target at a gas mixing ratio of Ar : O2 (20 : 1), total chamber pressure of 5 

mtorr and RF power of 50W. ITO source and drain contacts (thickness ∼100 nm) were then sputter 

deposited through a shadow mask using a In2O3: SnO2 (90 : 10 wt %) target. The devices were then 
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annealed at 200°C for 30 minutes in ambient environment for optimized transistor performance. Ion 

gels were laminated on to these to create dual-gated neuristors. Electrical measurements were 

carried out in a Desert Cryogenics (Lakeshore) probe station using Keithley 4200-SCS 

semiconductor characterization system. Capacitance measurements were carried out using an Alpha 

A Analyzer, Novocontrol analyser over a frequency range of 1 Hz to 10 kHz.  
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Note 1: Transistor Characteristics  

 

Figure S1. Transfer and Output characteristics of IWO TFTs in (A-B) electronic global-gated mode (C-D) ionotronic 

local-gated mode. While SiO2 serves as the back-gate dielectric in the global-gated mode, ion gel serves as the top-gate 

dielectric in the local-gated mode. 

 

The linear field-effect mobilities were extracted from the transfer characteristics using the equation 

dig

d

VWC

L

V

I


d

d , where L is the channel length (300 μm), W is the channel width (1000 μm) and 

Ci is the gate dielectric capacitance. The mobility was calculated to be around 9 cm2V-1s-1 for the 

global-gated mode, and 79 cm2V-1s-1 for the local-gated mode. The large electrical-double-layer 
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(EDL) capacitance resulted in efficient carrier accumulation within the small electrochemical 

window of the ion-gels, resulting in ultralow voltage and power operation. 

 

Devices in the global-gated mode clearly depicted a negligible clockwise hysteresis, while local-

gated mode exhibited a larger anticlockwise hysteresis window of 1 V. Ultrafast interfacial trapping 

and detrapping of electrons in the forward and reverse voltage scans due to surface adsorbates or 

presence of defects at the semiconductor-dielectric interface explained for the small clockwise 

hysteresis in the global-gated mode.1 In the local-gated mode, the anticlockwise hysteresis was 

attributed to migration-relaxation kinetics of mobile ions in the dielectric, which in turn doped and 

de-doped the channel based on the direction of voltage scan.2 Forward scan resulted in migration of 

cations towards the ion-gel – semiconductor interface, accumulating electrons in the IWO layer to 

form a conductive channel. This resulted in lower voltage requirements for the subsequent channel 

formation in the reverse scan, accounting for the anticlockwise hysteresis.  

 

Note 2: Short-term Plasticity 

Paired-pulse facilitation (PPF) refers to a short-term form of homosynaptic facilitation in which 

the postsynaptic response to the second action potential is increased dramatically relative to the first 

due to the accumulation of residual Ca2+ in the presynaptic terminal from the two pulses.3 This 

increase in EPSCs extends beyond the two presynaptic activations leading to synaptic facilitative 

responses to high-frequency stimulation as seen in Figures 1 B-D. An indication of low initial 

probability of neurotransmitter release, the PPF behaviour is believed to underlie information 

processing in the human brain. The degree of facilitation is greatest when the Ca2+ ions are not 

allowed to return to the baseline concentration prior to the second stimulus, that is, when the pulse 

interval is kept shortest.4 Analogous to this, action potentials separated by minute pulse intervals (< 

50 ms), triggered higher excitatory post synaptic currents (EPSCs) in the second presynaptic spike, 

resulting in paired pulse facilitation (PPF) indices well above 100 %. While the global-gated mode 
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of operation exhibited PPF indices of ~138%, the local-gated mode depicted much higher indices of 

~181% for a pulse interval of 10 ms. Increasing intervals resulted in an exponential reduction of the 

facilitation indices in accordance with the Ca2+ residual hypothesis (Figures S2 A-C Table T1). 

Higher facilitation indices and higher retention of the local-gated mode indicated larger residual 

carriers in the channel due to slower ion relaxation mechanism when compared to ultrafast 

detrapping mechanisms depleting the channel in the global-gated mode. 

 

Figure S2. A pair of presynaptic action potentials (pulse width = 20 ms, interval = 10 ms, input waveforms are shown 

as inset) triggered a pair of excitatory postsynaptic currents (EPSCs) with increasing amplitude due to hysteresis. This 

phenomenon known as paired pulse facilitation (PPF) reflects the number of residual carriers during trapping-

detrapping mechanisms in the global-gated mode (A) and ion migration relaxation kinetics in the local-gated mode (B). 

(C) PPF index, defined as [𝑃𝑃𝐹 = (𝐴2𝐴1) ∗ 100%)] is plotted as a function of inter-spike interval to demonstrate the 

decay process. It quantifies the degree of facilitation and indicates the vesicular release probability, in agreement with 

the residual Ca2+ hypothesis by Katz and Miledi.4 (D-F) Reversal of polarity of presynaptic action potentials result in 

short-term depression or paired pulse depression, with the indices dependent on pulse width and interval of the 

presynaptic action potentials, similar to facilitation. 

 

 

In resemblance to the coupling of biological neurons, PPF variation with pulse interval fitted well 

with an exponential decay function as shown below.  
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𝑦 =  𝐵1 ∗ exp (− 𝑥𝑡1) +  𝑦0 

where x is pulse interval time, y0 is resting facilitation magnitude, B1 is facilitation constants, and t1 

is characteristic time constants. Detailed comparison of the decay time constants is presented in 

table T1 below.  

Configuration           y0 

(facilitation/depression) 

           B1 

(facilitation/depression) 

            t1 

(facilitation/depression) 

       R-Square 

(facilitation/depression) 

Electronic 103.15/98.06 84.22/-109.32 11.27/-7.41 99.11/98.49 

Ionotronic 113.1/97.49 147.87/-89.59 14.66/-13.67 94.98/98.98 

          Table T1. Best fit values of PPF decay as a function of pulse interval. 

 

On activation with presynaptic pulses of opposite polarity, a decrease in short-term conductance 

was observed, equivalent to synaptic depression (Figures S2 D-F). An indication of high vesicular 

release probability, this stems from inactivation of voltage-gated Ca2+ channels or decreased pool of 

releasable synaptic vesicles.5,6 The local-gated mode depicted higher depression reflected by lower 

values of depression indices ~55%, when compared to the global-gated mode ~70%, again 

indicating the slower relaxation of ions in this mode. 

 

When pulsed with positive gate voltages for short time durations like in the case of PPF, the 

increase in the 2nd EPSC possibly indicates carrier trapping at the semiconductor-dielectric interface 

on removal of the pulse, i.e. during the pulse interval; which then detraps/releases upon subsequent 

pulsing and adds on to the current response to the 2nd voltage pulse resulting in a higher 2nd EPSC 

or PPF. Shorter intervals do not allow sufficient time for driving this process to completion and 

hence, the 1st EPSC is not allowed to return back to its original state. When the 2nd voltage spike is 

applied before complete relaxation of the 1st EPSC, the subsequent detrapping process adds on 

carriers to the 2nd current response, resulting in a higher 2nd EPSC and hence PPF. On reversing the 

gate polarity, the same phenomenon happens in the opposite direction, resulting in a lower 2nd 

EPSC and hence, paired pulse depression. This behaviour has been observed before in conventional 
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thin film transistor configurations, but on a longer time scale.5,7 The depression behaviour in our 

case is observed at both short and long time scales probably because of the nature and number of 

available trap states at the semiconductor-dielectric interface. Similar trapping-detrapping 

behaviour has been observed before in 2D TMDC based conventional transistor configurations.1,8 

 

Note 3: Energy Consumption  

Reference 

9Yang, Chuan 

Sen, et 

al. Advanced 

Materials 29.27 

(2017): 1700906. 

 

10Yang, Jing‐Ting 
et al, Advanced 

Materials (2018): 

1801548. 

 

11Xu, Wentao, 

et al. Nano 

Energy 48 

(2018): 575-

581. 

 

12Zhu, Jiadi, 

et al. 

Advanced 

Materials 30

.21 (2018): 

1800195. 

 

13Sun, 

Linfeng, et al. 

Nano 

letters 18.5 

(2018): 3229-

3234. 

 

This work 

Device MoO3 transistor WO3 transistor 

Conjugated 

polyelectrolyte 
based 

memristor 

 

WSe2 
transistor 

MoS2 device 

with metal-
insulator 

transition 

IWO transistor 

Energy 

Consumption 

per spike (fJ) 

9600 36000 10 30 72  9.3 

Table T2. Comparison of Energy Consumption with state of the art. 𝐸𝑜𝑛 was calculated from the equation 𝐸𝑜𝑛  =  𝐼𝑝𝑒𝑎𝑘,𝑓𝑖𝑟𝑠𝑡  ×  𝑡 × 𝑉𝑑𝑠  ; where Ipeak is the peak value 

of the 1st generated EPSC for a single spike event, t is the spike duration, and Vds is the applied 

drain voltage.14 Scaling down of device dimensions and reducing spike durations to sub-millisecond 

levels could be utilized as strategies to decrease the energy consumption per event even further 

(Figure S3). 
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Figure S3. Variation of energy consumption with device scaling 

 

Note 4: Long-term Plasticity 

Long-term synaptic plasticity is a fundamental property of the nervous system, defined by long-

lasting, activity-dependent changes in synaptic efficacy.  Widely considered a primary mechanism 

for learning and memory,  long-term plasticity can bi-directionally modify synaptic strength—either 

potentiation or depression.15 Long-term synaptic plasticity was mimicked in our neuristors via 

persistent training sequences lasting up to several seconds, creating permanent changes in channel-

conductance. Figure S4 depicts the long-term weight changes associated with the two independent 

modes of operation under different polarities of training. While persistent pulsing at – 20 V 

activated long-term potentiation in the global-gated mode, + 1.5 V activated long-term potentiation 

in the local-gated mode. Application of 10 facilitating pulses of pulse width 500 ms resulted in a 

larger weight change of 57 % for the local-gated mode when compared to 18 % in the global-gated 

mode.  

For long-term weight analysis the following approach was used in the manuscript throughout.  

1. Read the channel conductance with Vds = 0.1 V. 
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2. Apply necessary voltage waveforms to induce non-volatile weight change/ long-term plasticity.  

3. Monitor the channel conductance 30 minutes after application of the waveforms and compare it 

to the initial conductance state to calculate weight %. 

Presynaptic polarities of opposite polarity reversed the direction of conductance change as 

expected, with the local-gated mode depicting a larger depression when compared to the global-

gated mode. In the global-gated mode of operation, non-volatile changes in conductance indicated 

permanent trapping and detrapping of electrons at the semiconductor-dielectric interface upon 

persistent pulsing/stressing at the gate terminal. On the other hand, permanent pinning of ions in the 

ion gel or creation of additional oxygen vacancies accounted for larger non-volatile changes in 

channel conductance and hence higher weight changes in the local-gated mode. Such time-

dependent channel hysteretic behaviour due to charge-trapping dynamics has been previously 

observed in transistors via current transient measurements.1,16  

        

Figure S4. Representative Long-term potentiation (LTP) (A) and depression (LTD) (B) in global-gated mode. LTP (C) 

and LTD (D) in the local-gated mode. The devices were pre-programmed to a common initial conductance state prior to 

these measurements for a fair analysis. 
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Note 5: Spike-timing dependent plasticity (STDP) 

 

Figure S5. Input waveforms used for STDP measurements in the (A) global-gated and (B) local-gated modes 

respectively. A read pulse of + 0.1 V is applied at the drain terminal to read the memconductance states before and after 
the STDP write operations.  

 

Spike-timing-dependent plasticity (STDP): A refinement of Hebb’s theory, STDP is considered 

to be the first law of synaptic plasticity and forms the basis of associative learning.17,18 In pristine 

excitatory connections, precedence of presynaptic action potentials results in LTP whereas 

presynaptic activity following postsynaptic spikes causes long-term depression (LTD) 

[Antisymmetric Hebbian]. For excitatory to inhibitory connections, LTP and LTD can be induced in 

the opposite manner [Antisymmetric anti-Hebbian], while in neocortex and neuromuscular 

junctions, the order does not play a role [Symmetric anti-Hebbian and Hebbian].17 The precise 

relative timing of pre- and postsynaptic spikes significantly affects the sign and magnitude of long-

term synaptic modification. Portraying a variety of functional consequences in neural information 

processing, these different STDP forms reflect the complexity of the underlying cellular 

mechanisms. Initially, the channel conductance was read by a reading spike (Vread = + 0.1 V, 10 

ms). Spike patterns (Vwrite) corresponding to Figure S5 were then applied and the change in 

conductance/weight was recorded as a function of the pulse interval between pre- and postsynaptic 
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spikes. The timing difference created effect writing voltages (f(Vpre-Vpost), t) across the device, 

which when crossed the threshold voltage, created long-term weight changes in the channel. The 

resultant conductance change was finally read again with the Vread pulse. Weight changes were 

predominant at small pulse intervals, and weakened with increase in the interval, reflecting strong 

temporal correlations between the pre- and postsynaptic spikes. The STDP time windows shown 

here in milli-seconds and weight changes are comparable to biological values and could be further 

tuned by modulating the pulse width, number and shape of the input spikes.19 

 

Note 6: Dual-gated approach enables ultra-fine modulation of weights 

 

Figure S6. Modulations of strength of LTP-LTD realized via multiple gating. (A) Long-term potentiation achieved in 

the global-gated mode is regulated by depression in the global, local and dual-gated modes via selective gating. The 

slopes of depression depend on the operation mode activated to homeostatically stabilize the runaway synaptic 

potentiation. Long-term potentiation in the local (B) and dual-gated modes (C) are regulated by depression in the other 

modes. Potentiating spikes for the global-gated mode involved spikes of amplitude - 20 V and pulse width 500 ms, and  

+ 1.5 V for the local-gated mode. For the dual-gated mode, both global and local presynaptic spikes were applied 

simultaneously.  

 

The dual-gating approach enabled ultrafine modulation of synaptic weights with 

additive/subtractive operation. The net capacitive coupling defined the effective weight change and 

hence, the  large electrical-double-layer capacitances in the local-gated mode  dominated the global-

gated mode at low biases. Additive operation of the two modes increased the slope of 

facilitation/depression and the memory window. The device could also be operated with one mode 

defining the facilitation window and the second gate defining the depression window as depicted in 

Figure S6 above.  
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Note 7: Input waveforms for heterosynaptic plasticity, coincidence detection and long-term 

weight changes as a function of gate voltage  

 

Figure S7. (A) Higher order temporal correlations were achieved via interaction between two different presynaptic 

action potentials and the postsynaptic action potential, creating real-time modulations of the standard STDP behaviour. 

(B) Spikes applied at two physically separate local and global gates with a delay created symmetric short-term plasticity 

behaviour which can be used for coincidence detection. The depicted waveforms represent an example of the above-
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threshold region of operation. (C) Input waveforms used for STDP measurements at each step of gate voltage 

corresponding to the transfer characteristics of the neuristor. Weight changes were defined by effective write voltages 

(Vwrite=Vmax-Vmin) and read voltages equivalent to Vmin were used to read the memconductance states.  
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