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Abstract—This paper presents a massively parallel processing
array designed for the 0.13µm 1.5V standard CMOS base process
of a commercial 3-D TSV stack. The array, which will constitute
one of the fundamental blocks of a smart CMOS imager currently
under design, implements isotropic Gaussian filtering by means
of a MOS-based RC network. Alternatively, this filtering can
be turned into anisotropic by a very simple voltage comparator
between neighboring nodes whose output controls the gate of the
elementary MOS resistor. Anisotropic diffusion enables image
enhancement by removing noise and small local variations while
preserving edges. A binary edge image can be also attained by
combining the output of the voltage comparators. In addition to
these processing capabilities, the simulations have confirmed the
robustness of the array against process variations and mismatch.
The power consumption extrapolated for a VGA-resolution array
processing images at 30fps is 570µW.

Index Terms—Diffusion, RC network, Gaussian filtering,
anisotropic filtering, resistive fuse, low-power, voltage comparator

I. INTRODUCTION

3-D IC technologies [1], [2] are changing the way in
which circuit design has been traditionally approached. The
development of new techniques, from transistor level up to
system architecture, which take advantage of vertical across-
chip interconnections will dramatically boost the performance
of the targeted functionality. In particular, with regard to smart
CMOS imagers based on focal-plane sensing-processing [3],
the availability of TSVs removes the trade-off arising when it
comes to allocate silicon area for sensors and processors on the
same plane. A top sensor layer can be now integrated and ver-
tically interconnected with other layers exclusively dedicated
to processing. Consequently, smart imagers with fill factors
close to 100% and very high resolution can be achieved. When
compared to planar implementations [4], [5], the absence
of photosensitive devices at the processing layers releases
a significant amount of area to be occupied by processing
circuitry. However, this circuitry represents a major source of
power consumption, especially for early vision tasks, where
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the lattice of processing elements must ideally have a similar
resolution to that of the sensor layer. The design of ultra-
low-power building blocks is therefore mandatory to exploit
the additional computational power provided by the vertical
integration without shooting up the power consumption.

This paper focuses on this crucial issue. We present a
massively parallel processing array for image enhancement
and edge detection designed for the 0.13µm 1.5V standard
CMOS base process of the TSV stack commercialized by
Tezzaron Semiconductor. The backbone of the array is a MOS-
based RC network carrying out isotropic diffusion [6]. On
this, we incorporate now a low-power time-controlled voltage
comparator between neighboring nodes. The output of each
comparator enables diffusion only between those nodes whose
difference is less than a programmable threshold. Anisotropic
filtering is thus performed, preserving large pixel differences
— that is, edges — while suppressing noise and small local
variations. Additionally, the outputs of the comparators are
combined in order to deliver a binary edge image. The array
features no static consumption apart from leakage currents.
A dynamic consumption of 570µW for VGA resolution at
30fps is extrapolated from simulation. Finally, the proposed
circuitry, which will be part of a smart CMOS imager provid-
ing additional early vision capabilities, can be reprogrammed
to accommodate global process variations, being also robust
against mismatch.

II. RELATED WORK

The primary drawback of multiscale image description
based on isotropic diffusion was clearly spelled out in [7].
Gaussian filtering does not distinguish between natural bound-
aries of objects and essentially flat regions containing only
noise or textures. As a result, the edges are shifted as coarser
scales are generated, preventing them from being accurately
located. In order to solve this issue, a new definition of the
scale-space representation is proposed [7]. It is also based
on the diffusion equation, but the diffusion coefficient is now
chosen to vary spatially at any scale, that is:

∂V (x, y, t)

∂t
= ∇ · [D(x, y, t)∇V (x, y, t)] (1)

where V (x, y, t) is a brightness function defined over a con-
tinuous plane and D(x, y, t) represents the spatially-variant
diffusion coefficient. The point is tuning this coefficient across
the plane in such a way that intraregion filtering is given
priority over filtering across region boundaries.
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Fig. 1. RC network performing linear diffusion.

Resistive networks [8] constitute the basis for most of the
VLSI implementations of this content-aware multiscale repre-
sentation. These networks render a distribution of either cur-
rents or voltages that is equivalent to apply a diffusion process
during a certain time interval over the input sources. In order
to achieve anisotropic filtering, resistive fuses are introduced.
These circuit elements behave as resistances of value R only
when the voltage difference across their terminals is less than a
certain threshold Voff. Otherwise, they behave as open circuits.
By adjusting Voff, edges are prevented from being filtered
while small brightness variations do undergo smoothing. A
spatially-variant diffusion coefficient is thus emulated. There
are however two significant problems associated with the first
practical implementations of resistive fuses reported [9]–[11].
To start with, they rely on subthreshold operation. This makes
them very dependent of the characteristics of the process,
parameter variations and mismatch. And second, this depen-
dance causes in turn a very restricted range for R and Voff,
greatly constraining the set of filters attainable. These aspects
are solved differently in [12] and [13]. Discrete-time switched
capacitor techniques are applied in [12] in order to implement
the horizontal resistors of a resistive network. The control of
the amount of charge exchanged between neighboring nodes
enables tunnable filtering. Voff also features a wider voltage
swing. In [13], the image pixels are represented by means of
currents. The current difference between neighboring nodes is
compared to a programmable threshold. The binary output of
this comparison controls the gate of a single transistor acting
as the horizontal resistor of a resistive network. The amount of
smoothing realized can be adjusted through the common-mode
input level of the pixels.

Despite these successful implementations in terms of func-
tionality, resistive networks present a major drawback: their
static consumption. The input sources must continuously in-
ject current into the grid in order to get the filtering done.
Alternatively, Gaussian filtering can be also achieved by an
RC network like that of Fig. 1. A real diffusion process takes
place now within the network. An uneven charge distribution
at the capacitors is diffused across the network and along time
with a pace which is determined by the time constant τ = RC.
We demonstrated in [6] that an accurate approximation of an

Fig. 2. Elementary cell of the anisotropic diffusion network proposed.

ideal RC network can be obtained by substituting every resistor
by a MOS transistor biased in the ohmic region. Moreover,
the value of the pixels can be easily mapped to the initial
conditions of the capacitors and, without any additional energy
contribution, the network will carry out isotropic filtering. In
order to turn this filtering into anisotropic, the MOS resistors
must be turned into resistive fuses. And to accomplish it,
we propose a time-controlled voltage comparator based on
a differential pair. The inputs of this comparator correspond
to the neighboring nodes linked by a MOS resistor. Its bi-
nary output, together with a global diffusion enable signal,
determines whether that resistor is activated or turned off. A
time-controlled elementary resistive fuse is thus emulated. We
must remark at this point that the MOS-based RC network for
anisotropic filtering proposed in [13] works quite differently. It
makes intensive use of current mode operation, leading again
to high static consumption.

III. ELEMENTARY CELL

Consider Fig. 2. It corresponds to the elementary cell of the
network in Fig. 1 after substituting the elementary resistors
interconnecting neighboring cells by MOS transistors biased
in the ohmic region and incorporating additional circuitry to
achieve anisotropic diffusion. Notice that the south and east
connectivity suffice to make up the entire grid. Cells located
at the bottom and rightmost edges will not obviously include
south and east connection, respectively. The key component
of this elementary cell is the voltage comparator. It outputs a
logic ‘1’ when the absolute value of the difference between
its input voltages exceeds a certain programmable threshold
Voff. This turns the corresponding transistor off, no matter
the logic value of the global active-low diffusion enable signal
DIFF_EN . If the output of the comparator is ‘0’, diffusion
between the neighboring nodes will take place during the time
interval t in which DIFF_EN is active, that is, is set to ‘0’.
The output of the comparators is also combined in order to
obtain a binary edge image represented by Vbeij .
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(a)

(b)
Fig. 3. Time-controlled voltage comparator (a) and its layout (b).

We propose to implement the voltage comparator as de-
picted in Fig. 3(a). It is based on a differential pair where the
current-to-voltage conversion is not carried out as usual, that
is, with resistive or MOS loads. In order to reduce the power
consumption, the conversion takes place on the capacitors Cp.
They are first precharged by turning on the pMOS switches
connected to VDD for Tp seconds. Subsequently, they are
discharged during a certain time interval Td. The pace of
discharge for each capacitor is determined by the current
flowing through each branch of the differential pair. Small
differences between Vin1

and Vin2
will imply small differences

between Vp1
and Vp2

at the end of the discharge whereas
remarkably different input voltages will cause large differences
between Vp1 and Vp2 . By adequately adjusting Td through the
control signal ctrl, both Vp1

and Vp2
can be situated over

the input threshold voltage of the XOR gate for differences
between the input voltages less than Voff. In such a case, the
output of the XOR is set to ‘0’. For differences larger than
Voff, either Vp1 or Vp2 will be situated over the gate input
threshold whereas the other one will be situated below, setting
the output to ‘1’. Notice that this output is latched in order to
avoid the effects of leakage over Vp1

and Vp2
.

Let us analyze how Voff can be adjusted. Consider a signal
range of [0.75V,1.5V] for the pixel values. This range is
chosen according to the criteria described in [6]. Bear in
mind that the pixels are represented by the voltages Vij ,
which in turn constitute the inputs of the voltage comparators
across the network. Suppose a voltage comparator where
Vin1 = 0.75V and Vin2 = 0.8V. The corresponding voltage
difference, 0.05V, is considered too small to belong to an
edge. Consequently, the comparator must output a logic ‘0’.
However, for the same Vin1

but Vin2
= 1V, the difference

reaches 0.25V. The existance of an edge is assumed now
and the comparator must therefore output a logic ‘1’. We
have depicted in Fig. 4 the precharge of the capacitors to
VDD for 30ns and the subsequent discharge for different
time intervals, 40ns, 70ns and 120ns, in the two cases above
proposed. In these simulations, VDD is 1.5V, Cp is 200fF and
Vbias is 0.6V, what is translated into a bias current of 3.5µA.
We have used the transistor models in HSPICE provided
by Tezzaron/Globalfoundries as well as standard cells of the
technology. For the sake of reference, the straight line crossing
each diagram corresponds to the input threshold voltage of the
standard XOR gate. It can be seen that, for Vin1

= 0.75V and
Vin2 = 0.8V, intervals of Td = 40ns and Td = 70ns still
keep Vp1 and Vp2 over the gate input threshold, as targeted.
However, an interval of Td = 120ns is too long since Vp2

reaches a voltage below that threshold, setting the output to
‘1’. For Vin1

= 0.75V and Vin2
= 1V, a discharge of 40ns

is too short to highlight the pixel difference from the point
of view of the XOR gate. As a result, the output is set to
‘0’. The adequate output is attained for discharges of 70ns
and 120ns. It can be therefore concluded that Td = 70ns
achieves the targeted behavior for both cases. Notice that,
because of the intrinsic structure of the comparator, any Vin2

greater than 1V — keeping Vin1 = 0.75V and Td = 70ns
— will make Vp2 go below the gate input threshold. As Vp1

stays, under these conditions, always above it, no matter the
value of Vin2

considered, any pixel difference greater than
0.25V will be processed as an edge. In order to demonstrate
the programmability of Voff, we have set Vin1

= 0.75V and
then Vin2 has been swept from 0.8V up to 1.5V with steps of
0.05V. This sweeping has been simulated for different intervals
of discharge, registering for each the smallest pixel difference
from which the voltage comparator starts to output a logic ‘1’.
In other words, we have obtained the voltage Voff featured
by the elementary MOS resistive fuse of the RC network for
each interval. The result is that Voff ranges from 0.6V to
0.05V for discharges between 50ns and 120ns, respectively.
The effect of the parasitics over these intervals is negligible,
according to the simulations of the extracted layout shown
in Fig. 3(b). Due to the nonlinearity of the transistors, these
values of Voff will undergo distortion when considering other
possible combinations of input voltages, that is, other possible
sweepings. However, this distortion can be compensated via
calibration of Voff, as described in Section IV.

Finally, a comment about the power consumption and area
usage of the elementary cell just described. The efficiency of
the MOS-based RC network was previously mentioned and ex-
perimentally proved in [6]. The energy cost of the digital cells
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Vin1 = 0.75V, Vin2 = 0.8V, Td = 40ns Vin1 = 0.75V, Vin2 = 0.8V, Td = 70ns Vin1 = 0.75V, Vin2 = 0.8V, Td = 120ns

Vin1 = 0.75V, Vin2 = 1V, Td = 40ns Vin1 = 0.75V, Vin2 = 1V, Td = 70ns Vin1 = 0.75V, Vin2 = 1V, Td = 120ns

Fig. 4. Simulation results of the voltage comparator for different input voltages and different time intervals of discharge.

included now, with an order of magnitude of tens of nW/MHz
at most, is also really small for typical frame rates of most
vision applications. The main source of power consumption is
the precharge of the capacitors at the voltage comparators. It
must be noticed that the bias current simply makes the charge
stored at these capacitors flow through the differential pair. No
further energy contribution is involved in its operation. All in
all, according to the simulations realized and the datasheet
of the standard cells used, a pessimistic estimation of power
consumption would be 1.85nW per elementary cell at 30fps.
Extrapolating this figure to an VGA array, the total power
consumption would be 570µW at 30fps. This calculation
exclusively considers the power consumption associated with
the processing capabilities of the array. We have therefore
obviated the energy cost of mapping the pixel values to
the initial conditions of the capacitors in the RC network.
Concerning the area usage, we must say that the capacitors
finally implemented in the targeted CMOS smart imager are
going to be smaller than those considered in this paper. These
elements, with their current values, require the largest area by
far. Thus, for example, in the layout of Fig. 3(b), each capacitor
of 200fF has been realized by using four MOS capacitors of
dimensions 4.06×8.14µm2, leading to a total comparator area
of 19.72×16.62µm2. Smaller capacitors, apart from possible
mismatch considerations, simply mean changes in the timing
of the control signals, making the processing dynamics faster.

IV. SIMULATION OF A 32×32 ARRAY

In order to corroborate the results obtained for a single
elementary cell, we have built a 32×32 array in HSPICE.

Original image Edge binay image

Fig. 5. Simulation results showing edge detection.

A larger array was not possible due to the heavy memory
and computational requirements of the simulations. In any
case, as the binary edge image only depends on the immediate
neighborhood of each pixel, a 256×256-px image was divided
into 32×32-px subimages. Each subimage was mapped into
the array, on which we incorporate an additional row and
column at the bottom and rightmost sides, respectively. This
allows for taking into account the neighbors of the pixels at the
edges of every subimage. The outcome can be seen in Fig. 5.
The discharge interval was Td = 70ns. Notice that the binary
edge image is available just after this discharge has finished,
independently of a possible subsequent anisotropic diffusion.
According to the simulations described in the previous section,
a first estimation of Voff for such interval would be 0.25V.
This leads to a percentage of false/missing edge locations
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Original image Anisotropic diffusion Isotropic diffusion

Fig. 6. Image enhancement achieved by anisotropic diffusion.

of 2.52% with respect to an ideal array extracting edges
without error. However, it is still possible to find the voltage
Voff better emulated by the network. To this end, we have
swept Voff from 0V up to 0.3V in the ideal array. For
each value of Voff, the output image is compared to the
image provided by our non-ideal array. The minimum error
percentage, 0.68%, is achieved for Voff = 0.15V. That is to
say, the edge threshold implemented by our array, whose first
approximation was 0.25V, is really 0.15V. Under mismatch
conditions, making use of the MOSFET statistical models
provided by the manufacturer, the minimum error is 2.78%
for Voff = 0.14V. Notice that this calibration of Voff can be
easily realized off-chip as a previous step of further analysis of
a scene. Once the edge detection functionality is confirmed,
let us move on to the other one: image enhancement. The
dynamics of the entire RC network is now involved in the final
output. This prevents us from making use of images of higher
resolution in the same way as for edge detection. The original
32×32-px noisy Lena image mapped into the array is first
shown in Fig. 6. The second image corresponds to the output
represented by the voltages Vij after enabling anisotropic
diffusion for t = 50ns. The value of the elementary capacitor
of the RC network simulated is 1pF whereas the dimensions
of the elementary MOS resistor are 0.15/1. According to the
design methodology described in [6], these elements render
a time constant τ = 118ns. Consequently, the width of the
Gaussian filter applied is σ =

√
2t/τ = 0.92. It can be seen

that this filter is adequate to remove the noise while preserving
the contrast of the image. For the sake of comparison, we also
show the resulting image after applying the same filter via
isotropic diffusion. The noise is removed, but at the cost of
clearly worsening the contrast. Finally, we must remark that
the proposed circuitry can easily accommodate global process
variations by adjusting both t and Td. The value of t will
be determined by the equivalent resistance of the elementary
MOS resistor at the point of the design space considered [6].
The adjustment of Td at that same point will permit to get an
estimation of Voff. We have tuned these parameters for the
different corners of the technology in order to carry out the
same processing as that of Fig. 6. The maximum RMSE of
any of the resulting images with respect to their counterpart for
typical conditions is only of 2.7% for the ‘FF’ corner, being
t = 44ns and Td = 28ns at this corner. Concerning mismatch
variations, we have performed 10 Monte-Carlo simulations of
the array. Again, we have compared the output images of each
simulation with that of Fig. 6, finding a maximum RMSE of
3.7%. These results demonstrate the flexibility and robustness

Author Tech. (µm) / Area Power Processing time
[Ref.] Year (µm2/cell) (µW/cell) (µs)

Yu et al [10] 2 / 1992 7500 2.5 < 10

Schemmel et al [12] 0.6 / 2002 2736 ∼30 < 2

Poikonen et al [13] 0.13 / 2010 ∼150 ∼50 ∼0.08

This work 0.13 / 2012 < 3000 0.002 ∼0.1

TABLE I
COMPARISON WITH PREVIOUSLY REPORTED IMPLEMENTATIONS.

of the design when it comes to address the unavoidable non-
idealities of the manufacturing process. Finally, Table I sum-
marizes the main reported features of other implementations of
anisotropic filtering. It can be seen that the circuitry described
in this paper presents a power consumption four orders of
magnitude below the lowest consumption previously reported
in the literature. However, it is not very competitive in terms
of area usage in its current version. As mentioned previously,
a much more area-efficient implementation will be finally
incorporated in the targeted smart CMOS imager.

V. CONCLUSIONS

The implementation of sensing-processing vision chips in
3-D TSV technologies demand low-power building blocks to
make the most of the additional computational power available
without dramatically rising the power consumption. Focused
on this issue, we present an ultra-low-power massively parallel
processing array for image enhancement and edge detection.
Its operation is based on anisotropic diffusion. In addition to its
energy efficiency, the array stands out for its programmability
and robustness against process variations.
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