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INTRODUCTION

Reconstructing character states on a molecular phylogeny 
is a powerful tool for investigating trait evolution. Traits being 
“reconstructed” range from morphology and ancestral areas 
to ancestral ecologies and chromosome numbers. The factors 
determining state reconstructions are the statistical framework 
used, whether maximum parsimony, maximum likelihood, or 
Bayesian methods (D.R. Maddison, 1994; W.P. Maddison, 
1995; Maddison & Maddison, 2006; Pagel, 1994, 1999a; Pagel 
& al., 2004), the model of state change (Cunningham & al., 
1998; Mooers, 2004), the density of taxon sampling (Salisbury 
& Kim, 2001; Mooers, 2004; Gascuel & Steel, 2010), and the 
extent of rate heterogeneity in a dataset (Skinner, 2010). Over 
the past ten years, the mathematical, statistical, and biologi-
cal difficulty, or indeed the impossibility, of ancestral state 
reconstruction (ASR) on trees has been explored and become 
increasingly clear (Mossel, 2003; Ekman & al., 2008; Losos, 
2011; Royer-Carenzi & al., 2013). Nevertheless, trying to infer 
ancestral states remains an important activity in comparative 
biology and can set up strong hypotheses for further testing. 
In this note, we focus on an underappreciated problem, namely 
the lack of a criterion by which to choose the best branch length 
model for an ASR problem at hand.

The effect of branch length on ASR. — An important 
parameter in ASR is the way the branch lengths in the tree 
are modeled. Traditionally, workers have preferred ultrametric 
trees, and we have repeatedly experienced reviewers and edi-
tors who insist that ultrametric trees must be used for ASR. The 
first maximum likelihood ASRs were all carried out on ultra-

metric trees (Schluter & al., 1997; Mooers & Schluter, 1999; 
Pagel, 1999a), reflecting the notion that in living species we 
expect the amount of change to be related to the amount of time 
that has elapsed along a branch, not the number of substitutions 

in the (often short) stretches of DNA sequenced for a particu-

lar study. Most ASR studies have acted on this expectation 
even when a few plant studies showed that phenotypic evolu-

tion and molecular branch lengths can be correlated (Davies 
& Savolainen, 2006; Smith & Donoghue, 2008; animal studies 
so far show no such correlation: Davies & Savolainen, 2006). 
Given this possibility, exploring the effects of doing ASR on 
either ultrametric trees or phylograms seems expedient, per-
haps especially when working on plants or on traits likely to 
reflect changes in an organism’s DNA organization, such as 
changes in chromosome number (below).

To our knowledge, only Litsios & Salamin (2012) have 
studied effects on ASR of using either ultrametric trees or 
phylograms. Their study used 5000 simulated trees with 64 
tips (species) and branch lengths corresponding to time; various 
levels of substitution rate heterogeneity were then introduced 
and the initially ultrametric trees transformed into phylograms. 
From each of the 5000 phylograms, Litsios & Salamin (2012) 
produced four types of ultrametric trees, one with uncorrelated 
rates in BEAST (Drummond & Rambaut, 2007) and three with 
correlated rates using the penalized likelihood (PL) approach 
of Sanderson (2002) with the smoothing factor ranging from 
0 (complete parametric estimation) over 10 to 10,000 (nearly 
strict clock). On all tree types, they simulated the evolution 
of continuous characters using a Brownian motion model as 
well as characters that evolved in a manner uncorrelated to 
branch length and they then reconstructed the characters on the 
phylograms and chronograms using maximum likelihood. For 
each simulated dataset, they summed the differences between 
the inferred and the true ancestral states at each node to obtain 
one value per tree as a measure of the error in the character 
state reconstructed. They also measured the phylogenetic signal 
using the K (Blomberg & al., 2003) and λ (Pagel, 1999b) indi-
ces. As expected, states were most confidently reconstructed 
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on the tree type on which their evolution had been simulated. 
More surprisingly, characters that had been simulated on a 
tree with uncorrelated rates (specifically, a PL tree with low 
smoothing) were reconstructed equally well on phylograms 
or ultrametric trees. This is an important insight, suggesting 
that phylograms should not be automatically disregarded in 
ASR. Litsios & Salamin (2012) recommended that workers pre-

fer the tree with the higher phylogenetic signal, that is, the one 
in which traits evolve as they would under a random walk on 
the phylogeny, measured with K or λ, the latter having higher 
power. However, the dogma that traits must be reconstructed 
on ultrametric trees persists (for a recent example see Pellicer 
& al., 2014), even when obtaining these trees means a huge 
analytical effort that involves forcing branch lengths using 
congruification (Zanne & al., 2014).

In the present study, we want to highlight the sensitivity of 
ASRs to branch length, extending Litsios & Salamin’s (2012) 
exploration from continuous characters to discrete multistate 
unordered characters (note that tree topology is not an issue, 
only the way branch lengths are modeled). The specific multi-
state unordered character we focus on are changes in plant 
chromosome numbers. While multistate unordered character 
coding is commonly used, inferring past changes in such char-
acters presents huge challenges because the trait space is near 
infinite and because of the lack of a test statistic for measuring 
accuracy. The test statistics used by Litsios & Salamin (2012), 
Pagel’s (1999b) λ & Blomberg’s (2003) K, were designed for 
continuous characters. Discrete data require different mea-

sures of phylogenetic signal, which is why Fritz & Purvis (2010) 
developed a test statistic for binary characters. No measure of 
phylogenetic signal applicable to multistate unordered char-
acters has so far been developed. Nevertheless, the fitDiscrete 
function in Harmon & al.’s (2008) Geiger package v.1.3-1 for R 
can calculate λ also for discrete characters, and in the present 
study we use this to investigate how λ behaves in the case of 
ASRs of multistate unordered characters. A problem in Litsios 
& Salamin (2012) was that with the empirical data, correla-

tions between λ (as well as K) and the extent of difference in 
state reconstruction were not significant (adjusted R2 = 0.19 
and 0.002). The model underlying the λ statistic is the simple 
Brownian motion, and Boettiger & al. (2013) found that in small 
phylogenies, λ cannot be trusted (their phylogenies ranged from 
13 to 281 tips). In sum, the utility of Pagel’s λ for choosing 
among different branch length models for ASR input trees is 
limited, and the statistic is probably inappropriate for multistate 
characters and phylograms.

The lack of a test statistic is one reason why we chose 
not to follow the simulation approach of Litsios & Salamin 
(2012). Instead, we here (1) document the extent to which branch 
length depiction in phylograms, ultrametric trees with corre-

lated rates, or ultrametric trees with uncorrelated rates affects 
ASRs in nine datasets ranging from 7 to 113 tips (Electr. Suppl.: 
Table S1 in Appendix S1) and (2) explore whether λ or other 
tree parameters correlate with differences in ASRs (see Electr. 
Suppl.: Table S2 in Appendix S1). The empirical data we chose 
for our investigation involve ancestral state reconstructions of 
chromosome numbers.

Reconstruction of chromosome number evolution. — 

Changes in chromosome number are common, especially in 
ferns and flowering plants, clades in which such change is a 
powerful driving force of speciation. Changes can be due to 
chromosome fusion or fission, polyploidization, or transloca-

tion events, in which an entire chromosome becomes inserted 
into other chromosomes (Schubert & Lysak, 2011). The empiri-
cally documented shifts in chromosome numbers even among 
close relatives have led to numerous studies, especially by bota-

nists, trying to infer the history of chromosome number change 
on phylogenies (reviewed in Cusimano & al., 2012). Inference 
can be done in a likelihood framework, using the program 
ChromEvol (Mayrose & al., 2010). ChromEvol also implements 
a Bayesian approach, and the obtained posterior probabilities 
around inferences yield a statistically well-understood measure 
of confidence in the results.

The ChromEvol approach was tested using simulated and 
empirical datasets in the original work by Mayrose and col-
leagues, and has been used in at least 11 studies (Mayrose & al., 
2011: 63 clades of vascular plants; Ness & al., 2011: Pontederi-
aceae; Cusimano & al., 2012: Araceae; Ocampo & Columbus, 
2012: Portulaca; Cristiano & al., 2013: leafcutter ants (tribe 
Attini); Harpke & al., 2013: Crocus; Metzgar & al., 2013: fern 
genus Cryptogramma; Soza & al., 2013: Thalictrum; Pellicer 
& al., 2014: Melanthiaceae; Sousa & al., 2014: Areae; Chacón 
& al., 2014: Colchicaceae, see Electr. Suppl.: Appendix S1 for 
information about the study groups). Regarding tree branch 
lengths, Mayrose & al. (2010) used either ultrametric trees or 
phylograms from five empirical datasets, but they did not focus 
on the effect of branch lengths on the reconstructions. Of the sub-

sequent studies, Ness & al. (2011), Ocampo & Columbus (2012), 
and Pellicer & al. (2014) used ultrametric trees, Cristiano & al. 
(2013), Harpke & al. (2013), and Soza & al. (2013) a phylogram, 
and Cusimano & al. (2012), Metzgar & al. (2013), Chacón & al. 
(2014), and Sousa & al. (2014) both types of trees. In the latter four 
cases, inferences often differed depending on the tree type used.

To investigate the causes of different ASRs on phylograms 
versus ultrametric trees, we carried out a meta-analysis of all 
datasets that had relied on the program ChromEvol by late 
2013 (including our own). The data represent different tree 
sizes, lengths (root-to-tip distances), and chromosome number 
ranges (see Electr. Suppl.: Appendix S1 for detailed Methods). 
Since the true history of chromosome number change in none 
of the datasets is known and since there is no test statistic 
(see previous section), it is difficult to judge the accuracy of 
the ASRs, although knowledge of plant cytogenetics can help 
assess scenario plausibility; for example, sudden jumps from 
high to low numbers seem implausible given what is known 
about polyploidy.

RESULTS

The nine empirical datasets are Crocus, Passiflora, Aris-

tolochia, Cryptogramma, Portulaca, Areae, Araceae, Col-
chicaceae, and Melanthiaceae (for details see Electr. Suppl.: 
Appendix S2 and Figs. S1–S12), and we infer chromosome 
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Table 1. Reconstruction of chromosome evolution in the nine clades analyzed or re-analyzed here.
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Aristolochia P 1.09 0.1 cr 8 1 2.6 1 0 4.6 1 S1A

PL 2.85 0.1 cr 8 0.9 2.5 1 0 4.4 1 S1B

UCLN 2.02 0.12 cr 8 0.9 6.7 1 0 8.6 1 S1C

Cryptogramma P 0.39 0.13 crde 30 0 1 1.7 0 2.7 1 S2A

PL 0.36 0.1 crde 30 0 1 1.7 0 2.7 1 S2B

Portulaca P 0.63 0.16 crde 5 (4) 0 5.7 2.7 22.5 30.9 0.76 S3A

 PL 0.6 0.1 crde 4 0 6.4 2.6 21.4 30.4 0.63 S3B

Colchicaceae P 0.79 0.1 crd 7 (8) 5.8 6.5 8 5.9 26.2 0.90 S4A

PL 2.53 0.1 crd 7 13.5 0 7.3 9.1 29.9 0.98 S4B

UCLN 1.55 0.13 crd 7 (6) 15.6 0 6.4 8.7 30.7 0.92 S4C

Araceae P 1.55 0.22 crd 18 (17–19) 0 77.9 8.4 7.8 94.1 1 S5A

PL 6.03 0.1 crd 15 0 64.5 10.5 8.1 83.1 1 S5B

PL 4.12 0.1 crd 15 0 65.8 9.7 6.6 82.1 0.99 S5C

UCLN 1.78 0.1 crd 18/19 0 81.6 8.9 8.3 98.8 0.98 S5D

Areae P 2.17 0.17 crde 14 1.8 38.3 27.1 6.3 73.5 0.84 S6A

PLexp −10 3.86 0.1 crde 7 6.8 16.7 39.2 5.4 68.1 0.96 S6B

 PLexp+10 3.39 0.1 crde 7 4.3 12.4 36.2 6 58.9 0.96 S6C

UCLN 4.71 0.2 crde 14 2.7 36 31.6 4 74.3 0.87 S6D

Crocus + outgroups P 1.23 0.14 crd/crde/lrd/lrde 9 /10 44.4 92.3 13.3 6.7 156.7 0.98 S7A

PL 7.07 0.1 crd/ crde 5 13.1 14.5 19.4 19 66 1 S7B

Crocus P 2.24 0.15 crd/lrd/lrde 5 34.9 63.8 18.3 13.5 130.5 0.96 S8A

PL 10.26 0.14 crde/lrd 5 11.2 15.3 17.6 20.4 64.6 1 S8B

Passiflora + outgroups P 0.6 0.12 crnd 12 /13 0 14.3 0 0 14.3 1 S9A

 PL 2.43 0.1 crd 6 1 0 4.8 2 7.8 1 S9B

UCLN 2.03 0.15 crd 6 1 0 4.9 2 7.9 1 S9C

Passiflora P 0.77 0.13 crnd 12 0 13.3 0 0 13.3 1 S10A

PL 3.48 0.13 crd 6 1 0 3.8 2 6.8 1 S10B

Melanthiaceae + outgroups P 0.45 0.1 cr/crd/crde 10 0 10.2 10.5 5.1 25.8 1 S11A

PL 2.67 0.1 crde 5 2.1 0 13.3 5.6 21 1 S11B

Melanthiaceae P 0.61 0.09 crde 5 5.3 0 11.4 3.7 20.4 1 S12A

PL 2.46 0.09 crde 5 2.9 0.5 11.1 3.8 18.3 1 S12B
a Tree: P, phylogram; PL, ultrametric tree with correlated rates, the superscript shows the penalty lambda (smoothing factor), where only one 

ultrametric tree was used, its lambda was that with the lowest cross-validation value; UCLN, ultrametric tree with uncorrelated rates.
b Models: cr, constant rates with duplication; crd, constant rates with demi-duplication rate = duplication rate; crde, constant rates with demi-

duplication rate ≠ duplication rate; crnd, constant rates without duplications; lrd, linear rates with duplication; lrde, linear rates with demidupli-
cation rate ≠ duplication rate; if AIC of different models did not differ significantly, all best-fitting models are reported (in all cases inferring the 
same root number and similar numbers of events); the parameters shown are of the best fitting model, which is indicated in bold. 

a, inferred ancestral chromosome number; λ, Pagel’s lambda indicating the phylogenetic signal.
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number change on maximum likelihood phylogenies and ultra-

metric trees with correlated rates as obtained with PL (Sander-
son, 2002) and, for five of the datasets, also with uncorrelated 
rates as obtained with BEAST (Drummond & al., 2012, see 
Electr. Suppl.: Appendix S1 for detailed Methods). Comparison 
of the resulting ASRs on phylograms versus ultrametric trees 
shows four patterns (Table 1): The reconstructions for three 
of the datasets (Electr. Suppl.: Figs. S1–S3) were essentially 
unaffected by the type of input tree used, for another three 
(Electr. Suppl.: Figs. S4–S6), ASRs differed mostly in terms of 
the changes inferred along the backbones of the trees. For one 
of these, the reconstructions on the two kinds of ultrametric 
trees were identical, whereas in the other two, they differed on 
every tree used. In the last three cases (Electr. Suppl.: Figs. S7, 
S9, S11), both the inferred node numbers and scenarios of chro-

mosomal change differed completely depending on whether 
they were inferred on an ultrametric tree or a phylogram. The 
three cases in which tree type made no difference included a 
tree with 67 tips, one with 9 tips, and one with 29 tips, with 
percentages of known tip states ranging of 17%, 88%, and 26% 
(Electr. Suppl.: Table S1 in Appendix S1). The datasets in which 
tree type had the greatest effect on ASRs were Crocus with 88 
tips and chromosome counts representing 88% of the species 
in that clade, and Passiflora with 59 tips and chromosome 
counts representing 11% of the species. Pagel’s λ is uncorre-

lated with the characteristics of our data (Table 1; see Electr. 
Suppl.: Appendix S2 for detailed Results). Regression analyses 
to test whether differences in total tree length, tree imbalance, 
or stemminess correlate with reconstruction results, did not 
yield any significant result, probably due to the few, and partly 
dependent, data (Electr. Suppl.: Fig. S13, but see Conclusions).

CONCLUSIONS

Our results show that branch lengths can have large effects 
in ASRs of multistate unordered characters just as is the case 
for continuous characters (Litsios & Salamin, 2012). The good 
news is that some ASRs are insensitive to the way branch 
lengths are modeled. On the other hand, in our “worst” dataset, 
the Areae, ASRs differed on every one of the four input trees. 
Given these findings, the essential questions concern (1) ways 
to predict which kinds of datasets are prone to yielding differ-
ent ASRs depending on branch lengths models, and (2) which 
ASRs to prefer in those cases where tree type changes the 
reconstructions. Regarding the first question, tree parameters 
influencing the reconstructions are total tree length, tree imbal-
ance, and stemminess, all of which are interrelated (Electr. 
Suppl.: Table S2 in Appendix S1). A factor setting apart the 
three datasets for which tree type had essentially no effect on 
ASRs from those where it did, is internal stemminess. The rea-

son probably is that in stemmy trees, the proportional lengths 
of branches are changed especially drastically as one changes 
from a phylogram to an ultrametric depiction of ones data. On 
our stemmiest trees, the total tree length was six or four times 
higher in ultrametric trees compared to phylograms (Table 1). 
By contrast, in cases where tree type hardly affected ASRs, 

the lengths of the ultrametric tree and the phylogram were 
nearly the same or differed only by a factor of three. Where 
the stemminess is due to a distant outgroup, the problem might 
sometimes be overcome by excluding that outgroup from the 
analysis (Electr. Suppl.: Figs. S8, S10, S12), which often reduces 
total tree length drastically. When applying this “workaround” 
to the Crocus and Melanthiaceae datasets, the inferred haploid 
number at the root became the same (ancestral chromosome 
number a = 5) in the different types of trees (Electr. Suppl.: Fig. 
S9). However, if a long stem is in the ingroup, as is the case in 
the Colchicaceae (Electr. Suppl.: Fig. S4), exclusion of a single 
long branch is clearly not an option.

Regarding the second question, which ASRs to prefer, 
there does not appear to be a ready answer apart from data 
consilience when knowledge is available from other fields of 
science, in our case cytogenetics. For example, comparative 
FISH analyses can reveal if a decrease in chromosome number 
is gradual by end-to-end fusion of chromosomes, which can 
leave interstitial telomere signals (Souza & al., 2014). Such 
external evidence may often be the only way to choose among 
contrasting ASRs (Skinner, 2010), because no statistical mea-

sure of phylogenetic signal is available for multistate discrete 
characters (first section of this Point of View), and Pagel’s λ in 
our study did not relate to whether or not trees yielded dras-

tically different ASRs (Table 1). Even if λ were suitable for 
phylograms, there is clearly a continuous range of possible 
branch length depictions (for the same tree topology) rang-

ing from phylograms with various levels of rate smoothing to 
ultrametric trees.

Our recommendation then is to run ASRs on more than 
one type of branch length depiction. In the absence of external 
evidence, the simpler scenarios, explaining the data with fewer 
inferred steps, should probably be preferred, and this might be 
one way to decide in cases where phylograms and ultrametric 
trees yield models of different complexity (but see Pirie & al., 
2012, who showed that this is only true when rates are low).

Remaining aware of the limits of ASR. — Inferring the 
evolution of multistate unordered characters is difficult because 
of the immense trait space. It is important to be aware of the 
limits of what can be inferred rather than getting carried away 
by the positively loaded name of the game, namely “reconstruc-

tion”. Mathematical and computational studies show that it is 
impossible to reconstruct ancestral states at the root of “deep” 
phylogenetic trees with high mutation rates and suggest that it 
may not be possible to predict the best method of ASR recon-

struction on a particular tree (Mossel, 2003; Royer-Carenzi 
& al., 2013). The reason is the stochastic nature of trait change. 
Besides branch length, taxon sampling density, character cod-

ing, and the model of trait change (cf. Introduction), molecular 
trees lack information about extinct species, which may be 
the single largest problem in ASR. Expecting simple rules, 
or worse, defending dogmatic attitudes about this or that tree 
type or inference approach always deserving preference, is 
naïve and inappropriate. As concluded by Ekman & al. (2008: 
153): “Obviously, ancestral state reconstructions need to be 
conducted with more than one method while awaiting clarifica-

tion of the statistical properties of each method.”
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