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Abstract

The vast majority of human mutations have minor allele frequencies (MAF) under 1%, with the 

plurality observed only once (i.e., “singletons”). While Mendelian diseases are predominantly 

caused by rare alleles, their cumulative contribution to complex phenotypes remains largely 
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unknown. We develop and rigorously validate an approach to jointly estimate the contribution of 

all alleles, including singletons, to phenotypic variation. We apply our approach to transcriptional 

regulation, an intermediate between genetic variation and complex disease. Using whole genome 

DNA and lymphoblastoid cell line RNA sequencing data from 360 European individuals, we 

conservatively estimate that singletons contribute ~25% of cis-heritability across genes (dwarfing 

the contributions of other frequencies). The majority (~76%) of singleton heritability derives from 

ultra-rare variants absent from thousands of additional samples. We develop a novel inference 

procedure to demonstrate that our results are consistent with pervasive purifying selection shaping 

the regulatory architecture of most human genes.

Editorial summary:

An approach to estimate the contribution of all alleles to phenotypic variation is applied to 

transcription regulation using whole-genome sequencing and transcriptome data. Ultra-rare 

variants contribute ~46% of cis-heritability across genes.

INTRODUCTION

The recent explosive growth of human populations has produced an abundance of genetic 

variants with minor allele frequencies (MAF) less than 1%1. While many rare variants 

underlying Mendelian diseases have been found2, their role in complex disease remains 

unknown3–8. Evolutionary models predict that the contribution of rare variants to complex 

disease is highly dependent on selection strength9,10, and that population growth can 

magnify their impact10–12. Recent methodological breakthroughs13,14 have enabled 

researchers to jointly estimate the independent contributions of low and high frequency 

alleles to complex traits, often demonstrating a large rare variant contribution likely driven 

by natural selection5,15–18. However, these studies excluded the rarest variants15 or included 

only well-imputed variants5 – this is a problematic limitation given that some plausible 

evolutionary models predict that the largest contributions to phenotypic variance could be 

from the rarest variants9–11,19. Directly querying the role of all variants with large-scale 

sequencing and sensitive statistical tests has the potential to reveal important sources of 

missing heritability, inform strategies to increase the success rate of association studies, and 

clarify how natural selection has shaped human phenotypes.

In this work, we develop, validate, and apply an approach for inferring the relative 

phenotypic contributions of all variants, from singletons to high frequency. We focus on the 

narrow-sense heritability (h2) of gene expression because a growing body of literature 

suggests that genetic variants primarily affect disease by modifying gene regulatory 

programs20–23, and recent examinations have identified significant rare variant effects on 

transcription8. To characterize the genetic architecture of gene expression, we analyze 360 

unrelated individuals of European ancestry with paired whole genome DNA24 and RNA25 

sequencing of lymphoblastoid cell lines (LCLs). We evaluate the robustness of our approach 

to genotyping errors, read mapping errors, population structure, rare variant stratification, 

and a wide range of possible genetic architectures.
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RESULTS

Building and testing our model

We developed a new method to estimate the effect of rare alleles on trait variance, and 

validated our approach with an extensive set of simulations. Before analyzing real 

expression data, we performed a rigorous series of simulations to identify an approach for 

estimating heritability that is robust to possible confounding factors. In our simulations, we 

use real genotype data [all variants within 1 megabase (Mb) of the transcription start or end 

sites of genes] and generate gene expression phenotypes across individuals while varying the 

number of causal variants contributing to the phenotype (from 1 to 1,000), the distribution of 

effect sizes (including uniform, frequency-dependent, and an evolutionary-based model), 

and the distribution of causal allele frequencies (ranging from predominantly rare to 

predominantly common; see Supplementary Note). In total, we simulated 440 different 

genotype-phenotype models that span the range of genetic architectures that likely underlie 

complex phenotypes such as gene expression, and analyzed each simulated dataset using 

multiple distinct methods. These include fitting a linear mixed model (LMM) via restricted 

maximum likelihood (REML26,27) and Haseman-Elston (H-E) regression, an alternative 

approach based on regressing phenotypic covariance on genotypic covariance26 that is more 

robust in small samples (see Supplementary Note).

Similar to previous work28, we found that for many simulation settings, jointly analyzing all 

variants together can result in a substantial over- or underestimate of heritability (Fig. 1a, 

which shows results when true h2 = 0.2). One common solution is to partition sites by 

frequency5,15,29. We find that simply isolating rare (MAF < = 1%) from common variants 

using two partitions and performing joint inference15 can improve the accuracy for most 

models. However, when there are many causal rare variants, the estimator remains upwardly 

biased. Partitioning alleles into five or more categories by MAF5 alleviates this problem. 

Notably, not only does the overall bias decrease as the number of MAF categories increases, 

but the bias for each MAF bin also decreases substantially across all models (see Fig. 1b–f, 

Supplementary Note). These simulations suggest that with our sample size, partitioning 

SNPs into 20 MAF bins results in the smallest bias in our estimate of total heritability 

(h2
total) as well as the smallest bias for each bin across all simulated parameters (though see 

Supplementary Note for further discussion of models that can induce bias). We note that 

further partitioning can improve results even further (see Supplementary Note), but variance 

will likely increase unless prior knowledge about causal variation exists.

When partitioning variants into multiple MAF bins, singletons are inevitably isolated into 

their own category. Intuitively, if some fraction of singletons are causal, then individuals 

with higher singleton load will be more likely to be phenotypic outliers (indeed, individuals 

with outlier expression patterns have been observed to have an enrichment of nearby rare 

variants8). It is therefore reasonable to ask what contribution singletons make to patterning 

phenotypic variation across a population. We investigated the theoretical properties of 

heritability estimation from singleton variants, and show analytically that when genotypic 

covariance is estimated using singletons alone, H-E regression is equivalent to regressing 

squared standardized phenotypes against singleton counts (see Supplementary Note).
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A direct implication of our derivation is that H-E regression is unbiased unless singletons 

have large non-zero mean effect sizes (violating an explicit assumption of standard LMMs), 

which are the only simulation scenarios where heritability estimates remain upwardly biased 

(Fig. 1a, blue points). We develop an alternative approach that produces unbiased estimates 

of both heritability and mean effect size in all examined cases. Intuitively, the method 

(SingHer) conditions on total singleton count (per cis window) in order to (a) appropriately 

estimate total cis-heritability and (b) partition singleton heritability into directional and 

random components (see Supplementary Note). However, because H-E regression is well 

understood and flexible, we recommend its use when mean effect sizes are near zero. For the 

data we analyze below, SingHer estimates that mean effect sizes are near zero, and we 

therefore proceed with H-E regression.

Singletons drive genetic architecture of gene expression

In order to characterize the genetic architecture of human gene regulation, we partitioned the 

heritability of gene expression into 20 MAF bins. We used n = 360 unrelated individuals of 

European descent with both RNA sequencing data from GEUVADIS25 and whole genome 

sequencing data from 1000 Genomes Project (1000G)24. After extensive quality control to 

remove genes not expressed in LCLs, our data set includes 10,203 autosomal genes (see 

Supplementary Note). For each gene, we extracted all variants within 1Mb of the 

transcription start or end sites (corresponding to an average of 13,839 variants per gene, 

35.2% are singletons); we do not consider trans-effects because of the small sample size 

(though we do analyze the effects of varying the window size in the Supplementary Note).

To control for possible non-normality, population structure, and batch effects, we quantile-

normalize expression values and include the first 10 principal components (PCs) from both 

the genetic and phenotypic data in all analyses, and present the average h2 estimate across 

genes in each MAF bin in Fig. 2a (blue curve). We find that h2 is highest for the first MAF 

bin (singletons). However, using a novel trans-permutation procedure, we detected evidence 

for residual population stratification in low frequency (but not high frequency) SNPs that 

could not be accounted for using PCs (pink curve and see Supplementary Note, and note that 

differential population structure among common and rare variants is a documented, though 

understudied, phenomenon in human genetics30). We correct for this population 

stratification bias by subtracting the permutation-based estimate from the raw PC-corrected 

h2 estimate, shown in purple and henceforth indicated as h2’. We find that the plurality of h2’ 

comes from singletons, but common variants also contribute a substantial amount towards 

h2’. Low and intermediate frequency SNPs make a minimal contribution to h2’. Note that 

this is a conservative correction because our trans-permutations capture both the effect of 

stratification and true trans-heritability.

Fig. 2b shows the proportion of h2’ explained by each MAF bin, showing that singletons 

represent ~25% of the total h2’, dominating the estimates from other MAF bins. Based on 

population genetic theory9,10,12,31, we hypothesized that purifying selection has constrained 

causal regulatory alleles to low frequency. To test this hypothesis, we sorted our singletons 

by their population MAF, as inferred from a large, external database. We reasoned that some 

of the singletons in our dataset will be evolutionarily neutral and have an intermediate 
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population frequency, but the singletons that are most deleterious will almost always be 

constrained to low population frequency. We therefore partitioned singletons observed in our 

data by their MAF observed in the gnomAD dataset (representing high coverage whole 

genome sequencing on >15,000 individuals), and performed H-E inference of h2’ across 20 

singleton bins based on their MAF observed in gnomAD (we also partitioned by functional 

predictions and evolutionary conservation, see Supplementary Note). The inset in Fig. 2b 

shows that the vast majority (>90%) of singleton h2’ derives from variants that have 

gnomAD MAF < 0.01%. This is strong evidence that natural selection constrains alleles 

with the largest effects on gene regulation to very low frequency. Note that we found that 

31% of our singletons were not reported in gnomAD, but this subset of variants (indicated 

with MAF = “*” in Fig. 2b) nonetheless explains ~80% of h2’
singleton. We confirm that the 

majority of this signal derives from true-positive singletons by analyzing a subset of 58 

individuals with high coverage whole genome sequencing, and estimate that 88% of 

h2’
singleton derives from variants that validate (Supplementary Note). Previous work has 

shown that additionally partitioning common variants by linkage disequilibrium (LD) 

resulted in minimal change after partitioning by MAF5.

Studies of heritability typically filter out rare variants5,15,32. We show that removing any 

SNPs based on MAF has a direct impact on the estimate of heritability. Fig. 2c shows the 

cumulative h2 inferred as a function of MAF for different minor allele count (MAC) 

thresholds (averaged over all genes). We find that adding progressively rarer variants to the 

analysis results in a monotonic increase in the inferred heritability. Including all variants 

down to singletons (purple curve) increases h2′
total

 by approximately 50% (h2′
total

= 0.061)

compared to the case when only common variants (MAF ≥ 5%) are analyzed (brown curve, 

h
2′

common
= 0.04), indicating that common variants are not able to tag heritability from lower 

frequency variants (i.e. “synthetic association” tagging33 is minimal, though rare variants 

can tag some common variant heritability, see Supplementary Note). However, not all 

singletons contribute equally to heritability, and pooling them together can deflate h2’ 

estimates (a “singleton LD” effect previously only reported for common variants5,28, see 

Supplementary Note). Partitioning singletons into 6 bins based on their observed MAF in 

gnomAD (red curve) increases our h2′
total

 estimate to 0.082, and shows that nearly half of 

the total heritability (46.6%) is explained by the 27.6% of variants that are globally rare 

(with MAFgnomAD < 0.1%).

Recent studies of gene expression variation in humans have suggested that one-quarter of 

Neanderthal-introgressed haplotypes have cis-regulatory effects34, and that expression 

outliers are enriched for having nearby rare structural variants (SVs) compared to non-

outliers8. However, the overall contribution of these classes of variants to expression 

variation had not been characterized. We performed H-E regression on four disjoint 

categories of singletons (Neanderthal-introgressed, indels/SVs, globally rare singletons, and 

other singletons), and found that globally rare singletons (i.e., singletons in our data that are 

also singletons across all 2,504 samples in 1000 Genomes Project24) contribute the vast 

majority (97%) of singleton heritability (Fig. 2d). Rare indels/SVs also have an enriched 

contribution to gene expression variation (representing 2.8% of singletons, but 6.8% of 
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h2
singleton), but Neanderthal-introgressed singletons and other singletons make a negligible 

contribution to h2’
singleton.

Genotype quality does not drive inference of heritability

One possible confounding factor is the effect of genotyping error on heritability 

estimation35. If heritability is biased by genotyping error, and genotyping error also varies as 

a function of MAF, there could be differential bias across frequency bins when analyzing 

real data. We simulated a range of genotyping error models, and found that all investigated 

forms of genotyping error increase variance of heritability estimation, but did not induce a 

detectable upward bias (Supplementary Note).

We also performed several analyses to examine possible confounding effects in these data 

(Supplementary Note). First, we ranked singletons by their reported genotype likelihood as 

reported for the individual carrying the singleton allele in 1000G24, and partitioned them 

into four equal groups (quartiles). We then ran H-E regression with these four groups of 

singletons (along with 10 PCs). Notably, we find that only those singletons with high SNP 

quality contribute positively to our inference of heritability (see Supplementary Note). 

Second, since both the DNA and RNA sequencing are based on lymphoblastoid cell lines, it 

is conceivable that difficult-to-sequence regions of the genome could result in correlated 

errors that confound our inference. To test this, we restricted our analysis to regions of the 

genome passing the 1000G Strict Mask24, and found that our inference of heritability was 

unchanged. We further ranked genes based on the number of exon bases passing the strict 

mask, and found no difference in the genetic architecture of genes having high versus low 

overlap with the Strict Mask (see Supplementary Note). Finally, a subset of n = 58 samples 

were sequenced at high coverage by Complete Genomics Inc (CGI) as part of the 1000G24. 

We identified the singletons carried by these individuals, and partitioned them into four 

groups by cross classifying them as being present or absent in the CGI or gnomAD datasets. 

Running H-E regression on this subset of individuals shows that h2’
singleton is predominantly 

driven by singletons that replicate in the CGI data but are not reported in gnomAD 

(consistent with Figure 2), and that singletons that are absent from CGI (and are therefore 

more likely to be false-positives) contribute negligibly to h2’
singleton (Supplementary Note).

Selection drives genetic architecture of gene expression

We found that rare variants are a major source of heritability of gene expression, which we 

hypothesized was due to purifying selection constraining the frequencies of large-effect 

alleles. To test this hypothesis, we performed extensive simulations of human evolutionary 

history36,37, and developed a novel method to infer the parameters of an evolutionary model 

for complex traits (see Supplementary Note). Our three-parameter phenotype model extends 

a previously described model of the pleiotropy of causal variation11 (captured by ρ, where 

increasing values indicate higher correlations among expression effect sizes and the fitness 

effects acting on causal variants), and the scaling relationship between expression effect 

sizes and selection coefficients9 (τ, where increasing values indicate that the distribution of 

effect sizes has a longer tail toward strong effects), to include the overall strength of 

selection (ϕ, a mixture parameter between strong and weak selection distributions, where ϕ= 

1 corresponds to strong selection). We inferred approximate posterior distributions for each 

Hernandez et al. Page 6

Nat Genet. Author manuscript; available in PMC 2020 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of these parameters by rejection sampling38, which compares a set of informative summary 

statistics from genetic data simulated under a model of European demography39 and 

selection40,41 to the observed data (see Supplementary Note). Note that our inference 

procedure allows each parameter to vary across genes, but we only seek to infer the 

distribution of the average values of ρ, τ, and ϕ across genes because we do not have 

statistical power to infer ρ and τ for each gene. We rigorously evaluated the performance of 

this inference procedure with simulations, and found that we can infer ρ and τ with fairly 

high accuracy, but ϕ (while broadly unbiased) is less informative (Supplementary Note).

Applying this model to our data, we find that purifying selection has had a major impact on 

the genetic architecture of human gene expression, and that a range of previously explored 

evolutionary models can plausibly explain the empirical data. In Fig. 3a, we plot the 

posterior distributions of the mean values of ϕ, ρ, and τ, which suggest that on average: 

fitness effects acting on causal variants tend to follow the distribution inferred from 

conserved non-coding loci (ϕ ≈ 0), but selection is pervasive in the sense that gene 

expression effect sizes are highly correlated with the fitness effects acting on causal variants. 

Fig. 3b shows that our data are consistent with a ridge of evolutionary scenarios that connect 

models in which causal alleles are highly modular (e.g. effect sizes are correlated with 

dampened fitness effects, as in the model of Eyre-Walker9, which assumes ρ = 1 with 

intermediate τ) and models with highly pleiotropic causal alleles and more extreme effect 

sizes (e.g., the Simons et al.11 model, which assumes τ = 1, but a more moderate ρ). This 

observation could only be identified using our integrated model, and suggests highly 

heterogeneous processes acting on individual genes. Our parameter inference suggests that 

while mean ρ, τ, and ϕ can vary substantially among the best-fitting models, individual genes 

tend to have extreme values (i.e., either 0 or 1) for all three parameters (Fig. 3a). Fig. 3c 

shows the cumulative proportion of h2 as a function of MAF from 1,000 bootstrap draws 

from our posterior distribution, along with the cumulative proportion of h2’ inferred from 

our data. As compared to a neutral evolutionary model (pink), the posterior draws (grey, 

representing points along the ridge of evolutionary phenotype models show in Fig. 2b) are 

all highly concordant with our data.

DISCUSSION

There is great interest in characterizing the genetic basis for complex traits to improve our 

understanding of human health and disease, and substantial resources are being spent to 

collect ever-larger cohorts to investigate the role of rare variants. Such studies will clarify 

what we have learned from our relatively small study of just 360 individuals. We developed, 

tested, and applied a novel technique for interrogating the role of rare variants in gene 

regulation using a relatively small cohort of n = 360 individuals who had whole genome 

DNA and RNA sequencing performed on their derived lymphoblastoid cell lines. We 

estimate that the total narrow sense heritability of LCL gene expression is ~8.2%, and that 

the largest contributors to gene expression heritability are the rarest of variants in our data: 

singletons, where just one copy of the allele has been observed in our sample of 720 

chromosomes (MAF = 0.0014). Globally rare variants (MAFgnomAD < 0.01%) explain ~90% 

of h2
singleton, implying that many of these causal variants would remain singletons even if 
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tens of thousands more samples were sequenced (and many more singletons would be 

discovered). However, given that the plurality of variants are ultra-rare, do we infer more 

heritability than would be expected given the fraction of variants observed at these 

frequencies? In the Supplementary Note, we show that heritability enrichment is “U” shaped 

as a function of MAF (on a log-scale), suggesting that both rare and common alleles 

contribute >2-fold excess of heritability, while intermediate/low frequency variants (MAF 

0.1%−5%) compose a dearth of heritability. This does not give us direct insight into the 

underlying distribution of regulatory effect sizes per causal variant, but would be reasonable 

to speculate that the distribution of effect sizes for rare causal variants may be considerably 

larger (in absolute value) than common variants.

This excess of heritability due to ultra-rare variants is best explained by pervasive purifying 

selection, where most cis-acting regulatory variants are deleterious. We inferred parameters 

of an evolutionary model that are consistent with these data, and found that for ~2/3 of 

genes, effect sizes of cis-regulatory variants are highly correlated with how deleterious the 

fitness effects are on causal variants. Further, for the majority of genes, the fitness effects are 

more consistent with broadly defined conserved non-coding regions of the genome40 than 

the strongly selected nonsynonymous41 or ultra-conserved regions of the genome42. 

However, while these parameters allow us to generate simulated data consistent with our 

observations, they remain post hoc parametric models that do not necessarily represent a 

generative model of how the genetic architecture of cis-regulatory variation evolved, and do 

not incorporate potentially important contributions from other modes of natural selection 

(such as positive selection or balancing selection, which may be rare but can have substantial 

impact on gene expression when they act43).

Our estimate of total cis-heritability is slightly larger than the previous estimates of h2
cis = 

0.057 and h2
cis = 0.055 in blood and adipose respectively44, but lower than recent twin-

based estimates of overall narrow-sense heritability h2 = 0.26, 0.21, and 0.16 in adipose, 

LCLs, and skin respectively45 as well overall broad-sense heritability H2 = 0.38 and 0.32 for 

LCLs and whole blood46. It is therefore plausible that rare variants account for some 

“missing heritability” in human gene expression, but differences in population, tissue, and/or 

technology could also explain some of these patterns, and there could also be differences 

between the genetic architecture of cis-regulation and trans-regulation.

A concurrent examination of rare variant heritability via an allele specific expression 

approach47 reports a lower, but still substantial, contribution to heritability from rare 

variation. However, there are fundamental differences between our analyses that likely 

contribute to the difference in estimates. First, their work examines a much narrower 

window around genes. This will lead to differences if selection has acted differently in 

promoters compared to more distal regulatory regions48 (Supplementary Note). Second, 

their work uses a smaller sample size and so their definition of rare is less stringent than 

ours. Finally, they do not reclassify rare variants according to external reference panels, 

which greatly increased our estimates of rare variant heritability.

While it might at first seem logical to genotype some (or all) of these singletons in a larger 

panel of individuals to statistically identify the causal ones, our analysis uncovered a major 
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challenge with this approach: our results can only be explained if the causal alleles driving 

heritability are evolutionarily deleterious, with effect sizes often scaling with the strength of 

selection acting on them. This means that the alleles that have the greatest impact on gene 

expression are likely to be extremely rare in the broader population, and are unlikely to exist 

in more than a few unrelated individuals in any given population. Indeed, our analysis shows 

that 90% of the singleton heritability derives from alleles that are either not reported or have 

MAF < 0.01% in the n > 15,000 samples in gnomAD. We therefore conclude that 

identifying causal alleles for transcriptional variation will likely require the incorporation of 

new biological information, possibly including large-scale experimental testing of singleton 

variants to improve functional predictions.

As the number of samples with detailed phenotype data and WGS data increases, it will be 

possible to apply the approach we have developed here to characterize the genetic 

architecture of additional complex traits. Indeed, in a recent WGS study of height and BMI, 

we found that rare variants comprise essentially the entirety of “missing heritability” for 

these traits49. By integrating such methods with functional genomic data, we may also learn 

more about the biology of causal variants, which could enable improved identification of 

clinically actionable variants in some cases. However, it is not clear that risk prediction from 

genomic data for most diseases will be feasible for otherwise healthy individuals with 

limited family history information. Population genetic theory tells us that rare variants will 

only be a significant source of heritability when causal alleles are evolutionarily deleterious. 

But the biology of human health and disease is complex. While not all human diseases will 

themselves impart a strong fitness effect, extensive pleiotropy resulting from tightly 

interconnected networks of interacting proteins experiencing cell-specific regulatory 

mechanisms could. Indeed, under the omnigenic model of disease, variants that affect any 

one of these components could contribute to an individual’s risk for any disease involving 

any downstream pathway23.

We developed an approach to examine the heritability of singleton variants, and the results 

have important implications for future genetic studies. We rigorously evaluated the 

performance of our inference procedure using extensive simulations and multiple types of 

permutations (see Supplementary Note). While we employed several approaches to test for 

the presence of confounders from population structure, genotyping/mapping error, and cell 

line artifacts, there may be other unknown confounders that have biased the results of this 

study. We conservatively used quantile normalization on the expression phenotypes to 

enforce normality, and this often reduces the overall heritability estimates (see 

Supplementary Note) by diminishing the impact of outliers8,50. There are several other 

contributors to broad sense heritability that we have not attempted to model and may also 

account for some of the heritability estimated in family-based studies, such as gene-gene 

interactions, gene-environment interactions, and other non-additive components.

ONLINE METHODS

The full methodological details can be found in the Supplementary Note accompanying this 

manuscript (along with simulation results, testing robustness of model assumptions, and 
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evolutionary modeling). Here we provide details of the primary methods used for data 

analysis.

Frequency binned Haseman-Elston (H-E) regression

Given genotypes at M SNPs over N individuals we consider additive phenotypic models 

such that the phenotype of individual i is: y
i

=
j = 1

M
g

i j
β

j
+ ϵ

i
;   ϵ

i
N 0, σ

e
2 , where g

i j
 is the 

genotype of individual i at SNP j, β
j
 is the effect size of SNP j, and ϵ

i
 is the residual, i.i.d. 

normally distributed noise of individual i. We partition the SNPs into K disjoint sets 

determined by the minor allele frequency (MAF) of each SNP (or some other characteristic 

indicated in the text) and wish to estimate the contribution of SNPs in the kth set to the 

heritability of y: h
k
2 =   σ

k
2/σ

y
2; where σ

k
2 is the genetic variance contributed by all of the SNPs 

in the kth partition, σ
g
2 = ∑

k = 1
K

σ
k
2 is the total genetic variance, and σ

y
2 = σ

g
2 + σ

e
2  is the total 

phenotypic variance, assumed equal to 1 going forward.

To infer the heritability of gene expression levels across individuals, we primarily rely on 

Haseman-Elston (H-E) regression26. The premise of H-E regression is that heritability can 

be estimated by the correlation between the phenotypic covariance across individuals and 

the genotypic covariance across individuals. In practice, for a single gene, we estimate the 

phenotypic covariance (P) as the upper triangle of the outer product of quantile-normalized 

log2(FPKM) across our sample. For each of the K partitions, we estimate genotypic 

covariance with the upper triangle of a kinship matrix generated from all SNPs in the 

partition. Given a standardized genotype matrix of SNPs in the kth partition (Gk, with N 

rows and Mk columns, where each column has mean 0 and unit variance), the kth kinship 

matrix is R
k

= G
k
G

k
′/M

k
. H-E regression is then performed using the lm() function in R:

P R1 + … + R
K

Specifically, the regression is ordinary least squares applied to the (vectorized) strict upper 

triangles of these matrices (which, for N individuals has 
N

2
 elements). In H-E regression, 

with scaled and centered genotypes and phenotypes, the effect size for the kth term 

represents the genetic variance explained by the kth SNP partition (β
k

= σ
k
2), with the total 

genetic variance explained by all SNPs given by σ
g
2 =

k = 1

K
σ

k
2. In the absence of other 

genetic contributions to phenotypic variation, heritability is equal to the total additive 

genetic variance explained by SNPs, h2 = σ
g
2. Therefore, in most instances in this paper we 

simply refer to the genetic variance explained as heritability.

In general, we included the first 10 principal components (PCs) generated from our genome-

wide genotype matrix as well as the first 10 PCs generated from our transcriptome-wide 

expression matrix (described below). We show in our Supplementary Note that the number 

of PCs included does not qualitatively impact our results. Formally, we include the jth PC (or 

an arbitrary numerical covariate) by adding the upper triangle of the PC’s (or covariate’s) 
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outer product with itself to our symbolic regression equation above. Our results suggest that 

inclusion of PCs and other covariates did not completely account for population structure, 

especially in the low frequency bins. We therefore relied on a trans sampling approach (see 

Supplementary Note) to account for residual population structure. Importantly, these results 

suggest that other investigations into rare variant heritability may not be completely 

accounting for population structure by simply including PC covariates.

GEUVADIS data set and QC

GEUVADIS: Genetic European Variation in Health and Disease, A European Medical 

Sequencing Consortium25. RNA-sequencing gene expression data were downloaded from 

www.geuvadis.org. This dataset contains 375 individuals of European descent from four 

locations. Each of these individuals are contained in the 1000 Genomes Project, and genome 

sequence data were downloaded from www.1000genomes.org24.

The GEUVADIS data consists of RNA-seq data for 464 lymphoblastoid cell line (LCL) 

samples from five populations in the 1000 genomes project. Of these, 375 are of European 

ancestry (CEU, FIN, GBR, TSI) and 89 are of African ancestry (YRI). In these analyses, we 

considered only the European ancestry samples. Some individuals were previously identified 

as having cryptic relatedness by the 1000 Genomes Project24 using Identity by State (IBS) 

analyses and were therefore pruned. Our resulting dataset contains 360 unrelated individuals 

of European descent from four populations. Raw RNA-sequencing reads obtained from the 

European Nucleotide Archive were aligned to the transcriptome using UCSC annotations 

matching hg19 coordinates. RSEM [RNA-Seq by Expectation-Maximization, RSEM51] was 

used to estimate the abundances of each annotated isoform and total gene abundance is 

calculated as the sum of all isoform abundances normalized to one million total counts or 

transcripts per million (TPM). For each population, TPMs were log2 transformed and 

median normalized to account for differences in sequencing depth in each sample. The 

genotype data was obtained from 1000 Genomes Project Phase 3 V5 data set24. To remove 

potential confounders such as population structure and batch effects, we performed principal 

component analysis (PCA).

PCA analyses

PCA was performed on both genome-wide genotype data as well as transcriptome-wide 

expression data. We obtained expression PCs from www.geuvadis.org, and ran PCA on the 

WGS data as follows. Input files:

1000 Genomes Phase 3 V5 variant call files

VCFtools [v0.1.14]52 to filter out related individuals, exclude singletons sites, remove 

indels, filter out all non-biallelic sites.

PLINK [v1.90b3x]53 was used to identify sites approximately in linkage equilibrium r^2 < 

0.2 examining 50 kb windows in 5 site increments, extract these sites, and recode in an 

additive model (0, 1, 2).
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R (https://www.r-project.org/) was used to concatenate chromosomes, and run principal 

component analysis on the centered and scaled genotype matrix.

We also ran PCA on the genotype data with a higher MAF filter (MAF≥5%) and got highly 

correlated results. However, because our analysis is based on rare variants, we wanted to 

include signals of population structure that manifest primarily in rare variants, hence 

including all variants seen at least twice.

We then checked for residual population structure using permutations. We first applied the 

standard permutation style, whereby phenotypes are shuffled among individuals prior to 

running H-E. We found that this removed all signals in the data and gives h2 = 0. We then 

developed another permutation, which we refer to as a trans-permutation. In this case, we 

maintain the order of gene expression and genotypes among individuals, but we perform H-

E regression on the SNPs in a window around one gene with the expression values of a 

random autosomal gene (i.e., a gene in trans). We show the results of this permutation in 

Figure 1a and in several Supplementary figures. We find that there exists some degree of 

residual population structure for rare variants, but not common variants (despite the fact that 

we included rare variants in our PCA analysis). The main caveat with this approach is that 

we are unable to distinguish population structure from pervasive true trans-effects, but we 

argue removing the residual h2 from the trans-permutation is conservative.

Constructing bootstrap confidence intervals.

In main text Figure 2 and in the Supplementary Note, we compare heritability estimates in 

many ways. Our primary approach to estimating uncertainty was based on rigorous 

bootstrapping. Except where noted, all error bars (sometimes plotted as envelopes 

encompassing the mean) were calculated from the 95% interquantile range of 1,000 

bootstrap samples. This is an appropriate method for estimating uncertainty in i.i.d. data, and 

has previously been shown to work well in far broader settings50. Further, bootstrapping is a 

statistically appropriate way to estimate uncertainty when analyzing functions of correlated 

parameter estimates (for example, when estimating total h2, which is the sum across h2 

estimates per bin). These bootstrap intervals represent uncertainty in the across-gene average 

heritability estimates per category (indeed, the single gene uncertainties are much larger), 

and retains any across-gene correlations that are present in the real data. Hence, our SE 

estimates naturally account for correlated expression.

Evolutionary modeling and parameter inference

We suppose that gene expression is evolutionarily optimized, such that mutations that affect 

gene expression levels are deleterious. While many different evolutionary models can 

encode this qualitative behavior, we choose a previously studied theoretical model that 

allows for variation in pleiotropy and selection strength across genes (Uricchio et al.10).

We used rejection sampling to infer evolutionary parameters. Rejection sampling compares a 

set of informative summary statistics computed on the output of model-based simulations to 

observed genomic and phenotypic data. The simulations that generate summary statistics 

that are most similar to the observed data are retained, and the parameter values from the 
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retained simulations are used to generate a posterior distribution over the true parameter 

values. Here, we take the proportion of variance explained by alleles up to minor allele count 

x as summary statistics, for x in {1,2,5,10,20,60,120,180,240,360}. We focus on inferring 

the mean strength of selection (2Ns), the correlation between selection strength and effect 

size (ρ), and the mean shape of the effect size distribution (τ). We infer the posterior 

distribution of the mean of each of these parameters across genes as opposed to the 

parameter values for individual genes because single gene estimates proved too noisy to be 

reliably computed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Simulation results.

Across a broad range of parameters, the accuracy of heritability inference improves as the 

number of SNP bins (partitioned by MAF) increases. (a) Mean bias of total heritability 

(inferred-true) for different numbers of SNP bins (K), where each point represents the mean 

of 500 simulations for different parameters, and a box plot summarizing the bias distribution 

across all parameters (indicating median, upper/lower quartile, and twice the interquartile 

range). (b–f) The distribution of average bias across simulated parameters for each SNP bin, 

showing that both mean and variance of the bias decrease as K increases (n = 500 

simulations in each plot).
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Figure 2. Partitioning heritability.

Rare variants (RVs) dominate the genetic architecture of human gene expression. (a) 

Average heritability estimates across genes, partitioned across minor allele frequency (MAF) 

bins (h2’, purple) after correcting for population structure using PCA (blue) and eliminating 

residual rare variant structure identified using a trans-permutation (pink). (b) The proportion 

of heritability attributed to each MAF bin. Singletons represent ~25% of the total inferred 

heritability, the vast majority of which is due to variants that are extremely rare in the 

population (inset, partitioning singletons in our data by the MAF observed in gnomAD, n > 

15k; singletons not reported in gnomAD are indicated by *). (c) Cumulative h2’ inferred as a 

function of MAF for different frequency filter thresholds (purple, green, blue, brown), and 

when singletons are partitioned by population MAF (based on gnomAD, red). Including all 

SNPs and partitioning singletons by population MAF (instead of observed MAF) results in a 

substantially increased level of h2’. (d) Globally rare singletons represent 56% of all 

singletons, but contribute 93% of h2’
singleton. Rare INDELs and structural variants (SVs) also 

have enriched contributions to heritability (2.8% of singletons but 7.8% of h2’
singleton). 

However, singletons inferred to derive from Neanderthal introgression or have gnomAD 

MAF ≥ 10−4 make negligible contributions to h2’
singleton. In all cases, confidence intervals/

envelopes are based on the 95% quantile range of 1000 bootstrap simulations. PCA, 

principal component analysis; MAC, minor allele count.
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Figure 3. Pervasive purifying selection drives the genetic architecture of gene expression.

Our model infers the strength of purifying selection acting on causal variants (ϕ), the 

correlation between the fitness and the effect size of causal variants (ρ), and a scaling factor 

that transforms fitness into effect sizes (τ). (a) The posterior distribution of the mean of each 

parameter across genes (curves), as well as a histogram of the posterior parameter estimates 

for each gene. (b) The joint posterior distribution of the average ρ and τ across genes shows 

an evolutionary tradeoff between the correlation and scaling of fitness and effect sizes. (c) 

The cumulative proportion of heritability inferred from the gene expression data (dots) 

compared to the expected patterns from 1000 draws from the posterior distribution (grey) 

and neutral expectation (pink).
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