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ABSTRACT
Robust speech enhancement is considered as the holy grail of audio

processing and a key requirement for human-human and human-

machine interaction. Solving this task with single-channel, audio-

only methods remains an open challenge, especially for practical

scenarios involving a mixture of competing speakers and background

noise. In this paper, we propose UltraSE, which uses ultrasound sens-

ing as a complementary modality to separate the desired speaker’s

voice from interferences and noise. UltraSE uses a commodity mo-

bile device (e.g., smartphone) to emit ultrasound and capture the

reflections from the speaker’s articulatory gestures. It introduces

a multi-modal, multi-domain deep learning framework to fuse the

ultrasonic Doppler features and the audible speech spectrogram. Fur-

thermore, it employs an adversarially trained discriminator, based

on a cross-modal similarity measurement network, to learn the cor-

relation between the two heterogeneous feature modalities. Our

experiments verify that UltraSE simultaneously improves speech

intelligibility and quality, and outperforms state-of-the-art solutions

by a large margin.
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1 INTRODUCTION
Human auditory system is remarkably capable of singling out a

speech source amid a mixture of interfering speakers and noises,

which remains a key challenge for machine hearing. The problem

has witnessed a surge in today’s digital communication systems for

human-human and human-machine interaction. Examples include

mobile VoIP, voice commands, post-production of live speech, etc.
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Figure 1: UltraSE targets the scenario where the user holds the

smartphone to record the speech in a noisy environment. Ul-

traSE uses ultrasound sensing as a complementary modality to

separate the desired speaker’s voice from interferences.

The related research problem of speech separation and enhancement

(SSE) is often considered as the holy grail of audio processing.

Since the problem is inherently ill-posed, classical solutions need

to rely on prior knowledge (i.e., per-speaker feature engineering) [1]

or directional microphone arrays [2] to isolate the desired source

from ambient sounds. In the past several years, deep learning tech-

niques have proliferated and significantly advanced the field, en-

abling single-microphone speaker-independent SSE [3]. State-of-

the-art solutions have demonstrated around 10 dB improvement in

average audio quality, in separating a mixture of 2 clean speeches [4].

However, the challenging scenario of more than 2 speakers mixed

with background noise received little attention [5]. A very recent

preliminary test [6] revealed that existing deep learning models often

underperform in such cases, because the unstructured background

noise compromises their ability to identify separable structures in

the speech streams. In addition, existing audio-only approaches can-

not solve the label permutation problem, i.e., associating the model

outputs to the desired speaker. Audio-visual algorithms [6] leverage

video recordings of the speakers’ faces to simultaneously solve the

SSE and permutation problems. However, the need for a camera at

specific view angle and under amenable lighting condition limits

their practical usability [7].

In this paper, we propose to utilize ultrasound sensing as a com-

plementary modality to separate the desired speaker voice from

noises and interferences. Our method, called UltraSE, is applicable

to commodity mobile devices (e.g., smartphones) equipped with a

single microphone and loudspeaker. Figure 1 illustrates our basic

idea. During the voice recording, UltraSE continuously emits an

inaudible ultrasound wave, which is modulated by the speaker’s

articulatory gestures (lip movement in particular) close to the smart-

phone. The signals recorded by the microphone thus contain both the

audible sounds and inaudible reflections. As illustrated in Figure 1,

whereas the audible sounds (“Green”) mix the targeted clean speech

(“Black”) and other interferences plus background noise (“Blue”),

the inaudible reflections (“Orange”) only capture the targeted user’s

articulatory gesture motion which is correlated with the clean speech.

UltraSE employs a DNN framework to capture such correlation and

denoise the audible sounds.
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UltraSE faces 3 core design challenges. i) How to characterize the

articulatory gestures by ultrasound despite interference? It is chal-

lenging to capture the fine-grained articulatory gestures since they

are fast (−80 ∼ 80 cm/s) and subtle (< 5 cm displacement). More-

over, mutual interference exists between the speech and ultrasound

due to harmonics and hardware artifacts. To address the challenge,

we fully exploit the advantages of ultrasound, i.e., high sampling

rate and perfect alignment with the clean speech in the time do-

main. We design the transmitted ultrasonic waveform to capture the

short-term high-resolution Doppler spectrogram, and apply a one-

time transmission volume calibration to reduce the cross-modality

interference.

ii) How to design a DNN model to fuse the two modalities and

represent their correlation? Since the physical feature characteristics

of the two modalities are different, we design a two-stream DNN

architecture to process each and a self-attention mechanism to fuse

them. Further, no existing method has addressed the cross-modal

noise reduction problem which is fundamental to UltraSE, i.e., using

one modality (ultrasound) to reconstruct another modality (speech)

which is polluted by noise/interference. We thus propose a condi-

tional GAN (cGAN) based training model, with a novel cross-modal

similarity measurement network, to enable this capability.

(iii) How to improve both intelligibility and quality for the en-

hanced speech? It is known that the amplitude of time-frequency

(T-F) spectrogram is critical for speech intelligibility, whereas the

phase determines the speech quality [8]. We thus expand UltraSE

into a two-stage multi-domain DNN architecture, which prioritizes

the optimization of intelligibility in the T-F domain, and then recon-

structs phase in the T domain to improve speech quality. We place

the multi-modal fusion network inside the T-F domain, based on the

empirical observation that the articulatory gestures are more related

to the speech intelligibility.

To evaluate UltraSE, we develop an Android app to collect a

new speech dataset called UltraSpeech, which contains 22.2 hours

of clean speech and corresponding ultrasound sensing signals from

20 users. We then combine UltraSpeech with the DARPA TIMIT

speech corpus [9] and AudioSet ambient noise dataset [10] to create

a 300 hours noisy speech dataset. Our evaluation results show that

UltraSE can separate the targeted speech in a sophisticated environ-

ment with multiple speakers and ambient noise , improving SNR

by 10.65 to 17.25 dB. UltraSE achieves an SNR gain of 6.04 dB

on average over state-of-the-art single-channel speech enhancement

methods, across various interference/noise settings. Its performance

gain is even comparable to multi-channel (audio-visual) solutions.

UltraSE represents the first audio-only method to bring the SSE

performance close to multi-channel solutions, while overcoming the

label permutation issue. Through the UltraSE design, we make the

following technical contributions:

• We design a multi-modal multi-domain DNN framework for

single-channel speech enhancement which fuses the ultrasound and

speech features, and simultaneously improves speech intelligibility

and quality.

• We design a cGAN-based cross-modal training model which

effectively captures the correlation between ultrasound and speech

for multi-modal denoising.

• We collect a new speech dataset—UltraSpeech, and verify Ul-

traSE’s performance in comparison with state-of-the-art solutions.

2 RELATED WORK

2.1 Audio-only Speech Enhancement

Despite decades of research, speech enhancement remains a chal-

lenging open problem that attracts extensive research today [6, 11–

13]. Classical model-driven solutions [14–16] typically build on

various assumptions, such as stationarity of signals, uncorrelated

clean-speech and noise, independence of speech and noise in the

time-frequency domain, etc. Thus, they often lack robustness in

real-world environment [3]. More recent solutions adopt supervised

learning instead [3], and can be categorized by their domain of

feature processing.

T-F domain methods: Time-Frequency (T-F) domain methods

aim to learn a spectrogram mask, i.e., a weighting matrix that can

be multiplied with the noisy speech spectrogram to recover the de-

sired clean speech [12]. The key problem lies in i) what type of mask

should be used, and ii) how to use DNN to predict such a mask. Early

stage solutions only estimate the amplitudes of a spectrogram by

using real-valued Ideal Binary Mask (IBM) [17], Ideal Ratio Mask

(IRM) [18] or Spectral Magnitude Mask (SMM) [19]. They then

directly apply the original noisy phase on each T-F bin to generate

the enhanced speech. Although these amplitude masking methods

benefit speech intelligibility, they suffer from poor speech perceptual

quality due to the unavoidable phase error. Complex Ideal Ratio

Mask (cIRM) [20] and Phase-Sensitive Mask (PSM) [21] are then

proposed to incorporate phase information. Recently, PHASEN [12]

and Ni et al. [22] found that the estimated cIRM tends to downgrade

to IRM, since the T-F domain phase is close to white noise especially

for low-amplitude T-F bins. Thus, they proposed two-stream [12]

or two-stage [22] networks to take both the IRM and cIRM and

derive a combined training loss. For the model design, most T-F

domain methods deem the T-F spectrogram as an image, and de-

sign DNN/CNN-based models [20, 23] to minimize the MSE/MAE

loss between the estimated mask and ground truth. PHASEN [12]

and Ouyang et al. [24] observed that the fundamental frequencies

and speech harmonics are separated afar, and the correlation can-

not be fully captured by CNN. So they adopt dilated convolution

and frequency-domain attention instead. Unlike the hand-crafted

MSE/MAE loss function, Soni et al. [25] further used GAN to dis-

criminate whether the enhanced results are clean or noisy.

T domain methods: Time (T) domain methods divert around the

error-prone phase prediction problem by processing the waveform

directly. For example, Rethage et al. [26] modified the WaveNet;

TCNN [27] proposed an encoder-decoder architecture with an ad-

ditional temporal convolutional net; SEGAN [28] utilized a GAN-

based network to generate the 1D waveform of clean speech. Yet

the performance of such methods is not among the top tier, since

the speech auditory patterns, such as proximity in time/frequency,

harmonics, and common amplitude/frequency modulation, are more

prominent on a T-F spectrogram [3].

Multi-domain methods: In recent concurrent work TFTNet [13],

a learnable decoder replaces the iSTFT in the T-F domain to realize

a joint T-F and T domain model for speech enhancement. Unlike

TFTNet, our key insight is that the speech intelligibility is much

more important than speech quality for speech enhancement. We

thus design a two-stage multi-domain DNN network to prioritize
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the optimization of speech intelligibility in the T-F domain, and then

reconstruct phase in the T domain to improve the speech quality.

Speech source separation: Although most of the aforementioned

approaches demonstrated acceptable performance for non-speech

noise, they still can not handle the cocktail party scenario involving

multiple interfering speakers. To resolve such speech separation

problems, Deep clustering [29] trained speech embedding for each

source and then uses clustering algorithms to separate them. PIT

[30] iteratively changed the permutation of sources in the training

process to train a permutation invariant speech separation model.

These methods still need to know the number of speakers a priori,

and do not work well for the case with more than 3 speakers plus

noise [31]. Further, the label permutation problem persists—They

can separate multiple sources of speech, but cannot automatically

identify which is from the targeted speaker, which may hinder cer-

tain machine-operated back-end tasks (e.g., voice assistant on a

smartphone). UltraSE overcomes all these deficiencies.

2.2 Multi-modal Speech Enhancement

To tackle the permutation issue, audio-visual (AV) methods use a

video recording of the subject’s face as a hint for the audio [32,

33]. Specifically, Ephart et al. [6] trained a speaker-independent

speech separation model based on a large set of YouTube videos [6].

Afourasl et al. [7] found that even partially occluded videos of lip

motion can assist speech separation. Nonetheless, AV approaches

bear many drawbacks. Besides microphone, they need an additional

camera pointing to the subject’s face under good lighting conditions,

which is inconvenient and even infeasible in many typical use cases.

Moreover, camera is unusable in many privacy-sensitive locations.

The idea of using ultrasound as a complementary modality to

enhance speech has been explored by previous works [34, 35]. How-

ever, these works [34, 35] all require special ultrasonic hardware.

In comparison, UltraSE only needs the single audio channel on the

smartphone and overcomes practical challenges such as mutual inter-

ference between modalities. Besides, they use traditional methods,

i.e., non-negative matrix factorisation [35] and nonlinear regression

[34], and only show the performance of speech enhancement on am-

bient noise rather than speech interference. UltraSE further pushes

the limits of this idea by designing a multi-modal multi-domain DNN

framework to achieve similar performance for speech separation and

enhancement with the audio-visual methods.

2.3 Device-free Ultrasonic Sensing

Device-free ultrasonic sensing techniques can leverage the loud-

speakers and microphones on commodity mobile devices to track the

distance/direction changes of nearby objects [36]. State-of-the-art

ultrasonic gesture tracking schemes [36–40] can achieve mm-level

accuracy. Besides location and hand gesture tracking, recent studies

also attempted to use ultrasonic sensing for lip reading [41]. How-

ever, due to insufficient spatial resolution, they only fit coarse sensing

applications, e.g., liveness detection [42, 43]. SilentTalk [41] uses

a model-based method to classify the Doppler shift features caused

by 12 basic mouth motions and recognize specific short sentences.

SilentKey [44], EchoPrint [45], LipPass [46], and VocalLock [47]

use the ultrasounic sensing features introduced by mouth motion for

biometric authentication. In contrast, UltraSE is the first to demon-

strate that ultrasonic sensing can serve as a complementary modality

(a) Speech harmonics create interference within the ultrasound band.
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(b) Doppler shift spectrogram of a single-tone 18 kHz transmitted signal and the correspond-

ing T-F spectrogram of speech w/o interference.

Figure 2: T-F domain features of an example speech segment:

“Don’t ask me to carry an oily rage like that.”

to solve the cocktail party problem and bring speech enhancement

to the next level.

3 SENSING THE ARTICULATORY

GESTURES

In this section, we first provide a primer on the relationship between

speech and articulatory gestures. Then we introduce UltraSE’s ultra-

sound sensing signal design, along with mechanisms to mitigate the

mutual interference between speech and ultrasound.

Human speech generation involves multiple articulators, e.g., tongue,

lips, jaw, vocal cords, and other speech organs [42]. Coordinated

movement of such articulators, including lip protrusion and closure,

tongue stretch and constriction, jaw angle change, etc., is used to

define the phonological units, i.e. phoneme in phonology and lin-

guistics [48]. Thus, assuming that we can fully capture and interpret

the articulatory gestures, it would be possible to recover the speech

signals. However, it is challenging to capture the fine-grained ges-

ture motion of all articulators by using a single microphone [41].

First, the articulators are close to each other. Some are inside the

mouth/throat. So it is hard to discriminate their motion. Second, the

articulatory gestures are always fast and subtle. Each typically lasts

100 ∼ 700 ms and involves < 5 cm moving distance for lip and jaw

[49]. Thus, state-of-the-art sensing methods can only recognize a

limited number of words or phrases by using COTS microphones

[41], and the accuracy in the wild is typically quite low [50]. In

UltraSE, we do not expect that the captured articulatory gesture

features can directly synthesize the speech signals. We propose to

take these features as coarse complementary information to facilitate

the SSE.

3.1 Transmitted Ultrasound Signals Design

Modality advantages: Compared to other approaches such as cam-

era, ultrasound possesses two advantages in sensing articulatory
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gestures. First, the ultrasound sensing signals are captured by us-

ing the same sensor (i.e. microphone) as the speech signals. This

introduces an automatic “feature alignment” in the time domain,

which means the captured ultrasound sensing features are well syn-

chronized and matched with the clean speech signals. Second, the

sampling rate of the ultrasound sensing (typically 48 kHz or 96 kHz)

is much higher than vision-based methods (typically 24 ∼ 120 fps),

which enables finer time resolution when capturing the articulatory

gestures.

Design goals: Compared to previous works on ultrasound based

gesture sensing especially hand gestures [36, 37, 39, 51], UltraSE

needs to satisfy the following additional design goals to fully ex-

ploit the modality advantages: (i) The extracted features require high

sampling rate to achieve high T-F resolution. The velocity of users’

articulatory gestures ranges from −80 ∼ 80 cm/s (−160 ∼ 160 cm/s

for propagation path change) [49], which will introduce −100 ∼

100 Hz Doppler shift when the transmitted signal’s frequency is

20 kHz. Meanwhile, each articulatory gesture corresponds to a sin-

gle phoneme lasting 100 ∼ 700 ms [42], which is approximately 5

times shorter than hand gestures [52]. Therefore, to characterize the

articulatory gestures, the ideal way is to characterize the short-term

high-resolution Doppler shift. (ii) The extracted features need to

be robust to different kinds of noises introduced by multipath and

frequency-selective fading. UltraSE thus needs to remove the reflec-

tions from static objects, mitigate the multipath from moving objects

(e.g., body parts), and extract the signal features from articulatory

gestures alone.

Ultrasonic sensing signal design: To satisfy these requirements,

we choose multiple single-tone continuous waves (CWs) with lin-

early spaced frequencies as our transmitted signals. Although mod-

ulated CW signals, such as FMCW [53], OFDM [51] and Pseudo-

Noise (PN) sequences [37, 39], can measure the impulse response to

resolve multipath, they all suffer from the aforementioned low sam-

pling rate problem. The fundamental reason is that the modulation

processes signal in segments (i.e., chirp period or symbol period).

Thus, each feature point of the modulated CW signal characterizes

the motion within a whole segment, which is typically longer than 10

ms (960 samples) at a sampling rate of 96 kHz. Thus, only 10 ∼ 70

feature points can be output for each articulatory gesture with typical

duration of 100 ∼ 700 ms [42], which can hardly represent the fine-

grained instantaneous velocity of gesture motion. In comparison,

each sampling point of the single-tone CW can generate one fea-

ture point (Doppler shift estimation) to represent the micro motion

with duration of 0.01 ms ( 1
96000 ) at a sampling rate of 96 kHz. To

further resolve the multipath effect and frequency selective fading,

we combine multiple single-tone CWs with equal frequency spac-

ing, resulting in a transmitted waveform 𝑇 (𝑡) =
∑𝑁

𝑖=1𝐴𝑖 cos 2𝜋 𝑓𝑖𝑡 ,

where 𝑁 , 𝐴𝑖 and 𝑓𝑖 denote the number of tones, the amplitude and

frequency of the 𝑖𝑡ℎ tone, respectively.

To alleviate the spectral leakage across different tones when gen-

erating the spectrogram in later stage, we ensure that the STFT

window size (1024 points) is a full cycle of all the transmitted tones

at the maximum sampling rate (48 or 96 kHz allowable by COTS

microphones). We empirically set the first frequency 𝑓0 = 17.25 kHz,

the frequency interval Δ𝑓 = 750 Hz, and the number of tones 𝑁 = 8.

We decrease the amplitude 𝐴𝑖 of the sub-20kHz frequencies to make

sure that the transmitted signals will not disturb users.

3.2 Mitigating Sensing Interference

Despite the orthogonality in frequency, mutual interference exists

between speech and ultrasound in the following two cases, which

causes ambiguity of Doppler features.

First, the speech harmonics may interfere the Doppler features

due to non-linearity of microphone hardware. The speech and ul-

trasound signals generated in UltraSE are combined in the air, re-

sulting in 𝑆𝑖𝑛 (𝑡) = 𝑣 (𝑡) +
∑𝑁

𝑖=1𝐴𝑖 cos 2𝜋 𝑓𝑖𝑡 , where 𝑣 (𝑡) represents

the speech signals, and
∑𝑁

𝑖=1𝐴𝑖 cos 2𝜋 𝑓𝑖𝑡 is the high-frequency ultra-

sound sensing signals. Due to the microphone non-linearity [54–56],

the captured signals can be modeled as 𝑆𝑜𝑢𝑡 ≃ 𝐴1𝑆𝑖𝑛 +𝐴2𝑆2𝑖𝑛 [54],

which contains speech harmonics on the inaudible ultrasonic band,

i.e., 𝑆𝑛𝑜𝑖𝑠𝑒 =

∑𝑁
𝑖=1𝐴

2
𝑖 𝑣 (𝑡) cos 2𝜋 𝑓𝑖𝑡 . As shown in Figure 2(a), these

speech harmonics often leak into the ultrasonic band, and will cor-

rupt the articulatory gestures’ Doppler features. Fortunately, when

we decrease the amplitude of the ultrasound 𝐴𝑖 , the second order

term (harmonics’ amplitude 𝐴2) decreases faster than the first order

term (Doppler shift amplitude 𝐴1). Our empirical experiments reveal

that, when the total amplitude of transmitted ultrasound is set to

< 80 dBz (flat weighting) sound pressure level (measured at 5 cm

away from the speaker), the interference effect becomes negligible.

We thus always use this setting as the default ultrasound amplitude

in UltraSE. It is worth noting that previous ultrasound based hand

gesture sensing schemes [36, 37, 39] did not address this interfer-

ence issue because they are typically tested without strong close-by

speech interference.

Second, when a user speaks close to the microphone, some phonemes,

e.g., /p/ and /t/, may blow air flow into the microphone which gener-

ates high-volume noise. As an example, Figure 2(a) shows the T-F

spectrogram introduced by the phoneme /t/. Amid the high-volume

air flow, the microphone has to prevent saturation by calling on

its auto gain control (AGC), which scales down all incoming sig-

nals and consequently renders the Doppler features negligible. In

UltraSE, instead of removing the corrupted samples, we harness

them as part of the ultrasonic sensing features, which helps char-

acterize the sampling period corresponding to specific phonemes

(e.g., the /t/).

4 AN OVERVIEW OF ULTRASE DNN MODEL

For ease of exposition, we will first introduce the basic DNN ar-

chitecture of UltraSE, and then discuss the challenges and design

principles of each design component in the following sections. Our

first step is to create the DNN input features from the raw signals

(Section 5). Then, we design a two-stage, multi-modal, multi-domain

DNN model, which comprises three key modules, as briefed below.

T-F domain multi-modal amplitude network (Section 6). This

network module generates the amplitude Ideal Ratio Mask (aIRM),

i.e., the ratio between the magnitudes of the clean and noisy spectro-

grams, by using both speech and ultrasound as the input. It consists

of two subnetworks.

Subnet (i) Two-stream feature embedding: Our model starts by

using the noisy speech’s T-F spectrogram and the concurrent ultra-

sound Doppler spectrogram as input (Section 5). We then design a
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Figure 3: Overview of UltraSE’s multi-modal multi-domain DNN design. Convolution layer notation: Channels@Kernel size

two-stream feature embedding architecture, to transform the differ-

ent modalities into the same feature space, while maintaining their

time-domain alignment.

Subnet (ii) Speech and ultrasound fusion network: Then, we con-

catenate the features of each stream in the frequency dimension. A

self-attention mechanism is further applied to fuse the concatenated

feature maps to let the multi-modal information “crosstalk” with

each other. The fused features are subsequently fed into a BiLSTM

layer followed by three FC layers. The resulting output is an am-

plitude mask which is multiplied with the original noisy amplitude

spectrogram to generate the amplitude-enhanced T-F spectrogram.

cGAN-based cross-modal training (Section 7). As shown in

Figure 4, we design a cGAN-based training method to further de-

noise the amplitude-enhanced T-F spectrogram. In our cGAN model,

the generator is the above T-F domain multi-modal amplitude net-

work; the discriminator is designed to discriminate whether the

enhanced spectrogram corresponds to the ultrasound sensing fea-

tures.

T domain phase network (Section 8). We use the iSTFT (a fixed

1D convolution layer) [57] to transform the amplitude-enhanced T-F

spectrogram into T domain waveform. To fine-tune the phase of

the enhanced signals, we design an encoder-decoder architecture to

reconstruct the phase to be close to the clean speech in the T domain.

5 DNN INPUT FEATURE DESIGN

In this section, we discuss the preprocessing steps to generate the

DNN input features for the two signal modalities. Figure 5 illustrates

the workflow.

Speech feature extraction: Typical speech sound ranges from

approximately 300 Hz to 3.4 kHz [58], and the signals above 8 kHz

barely affect the speech intelligibility and human perception [59].

Thus, we first use a low-pass elliptic filter to extract the signals below

8 kHz. Then we resample the signals to 16 kHz by using a Fourier

method. The final enhanced speech is also sampled at 16 kHz which

suffices to characterize the speech signals. Higher sampling rate may

unnecessarily increase the optimization space and model complexity.

The speech feature input for the DNN model is the T-F domain

speech spectrogam, generated by applying STFT on the time domain

waveform. The STFT uses a Hann window of length 32 ms, hop

length of 10 ms, and FFT size of 512 points under 16 kHz sampling

rate, resulting in 100 × 257 × 1 complex-valued scalars per second.

Ultrasound sensing features: We first use a high-pass elliptic

filter to isolate the signals above 16 kHz. Then, we create the ul-

trasound sensing features within the T-F domain, by extracting the

Doppler spectrogram induced by articulatory gestures and aligning

it with the speech spectrogram. The key consideration for this step

is to balance the trade-off between time resolution and frequency

resolution of the STFT under the limited sampling rate (96 kHz

maximum). First, to guarantee time alignment between the speech

and ultrasound features, their hop length in the time domain should

be the same. The STFT uses a hop length of 10 ms to guarantee

100 frames per second, resulting in 10 ∼ 70 frames per articulatory

gesture which is enough to characterize the process of an articulatory

gesture (Section 3). Second, the frequency resolution, determined by

the window length, should be as fine-grained as possible to capture

the micro Doppler effects introduced by the articulatory gestures,

under the premise that the time resolution is sufficient. A window

length 85 ms is the longest length for STFT to make it shorter than

the shortest duration of an articulatory gesture (100 ms) [42]. Over-

all, under the 96 kHz sampling rate, the STFT is computed using a

window length 85 ms, hop length of 10 ms, and FFT size of 8192

points, resulting in 11.7 Hz ( 960008192 ) frequency resolution.

In addition, to mitigate the reflections from relatively static ob-

jects, we remove the 3 central frequency bins and leave 8 × 2 = 16

frequency bins corresponding to Doppler shift [−11.7 × 8,−11.7)

and (11.7, 11.7 × 8] Hz. Finally, we run a min-max normalization

on the ultrasound Doppler spectrogram. The resulting T-F domain

ultrasound features is 100 × 16 × 8 scalars per second, where 8 is the

number of ultrasonic tones. The reason why we fuse the ultrasound

sensing features in T-F domain instead of T-domain will be evident

in the latter multi-domain design (Section 8).

The origin of the ultrasound feature and its correlation with

the speech feature: Figure 2(b) uses one example speech segment to

visualize the alignment between the ultrasound Doppler spectrogram

and the clean speech spectrogram. The ultrasound sensing features

mainly consist of the −100 ∼ 100 Hz Doppler shift introduced by

relatively large motion from the lip, tongue and jaw. It can not

capture the high-frequency micro-vibration motions introduced by

the vocal folds [60], since the vocal vibration displacements (about

20 𝜇m [61]) are much shorter than the ultrasound wavelength (about

2 cm).

Some obvious characteristics in this example corroborate the cor-

relation between the ultrasound sensing features and corresponding
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Figure 4: Overview of UltraSE’s cGAN-based cross-modal

training.

Figure 5: DNN input feature design

clean speech features. For example, each word in the speech signals

is well aligned with a burst of Doppler shifts from the articulatory

gestures. Meanwhile, negative Doppler shift is introduced by mouth

open gestures slightly before the onset of each word. Our DNN

model is designed to learn such cross-modality correlation for the

purpose of SSE.

6 MULTI-MODAL FUSION DESIGN
The multi-modal fusion network aims to first appropriately learn

the F domain features of the two modalities respectively, and then

fuse them together to exploit the T-F domain correlation. The F do-

main of the ultrasound signal features represents the motion velocity

(Doppler shift) of the articulatory gestures, while that of the speech

sound represents the frequency characteristics such as harmonics

and consonants. Meanwhile, the size of the two modalities’ fea-

ture maps are different (Section 5). So one cannot straightforwardly

concatenate these two feature maps into a scalar. We thus design a

two-stream embedding architecture to transform them into the same

feature space.

6.1 Two-stream Feature Embedding

Speech feature embedding: The input of the speech feature embed-

ding subnetwork is the T-F domain amplitude spectrogram, denoted

as 𝑆𝑎
𝑛𝑜𝑖𝑠𝑒 ∈ R1×𝑇×𝐹𝑎

. 𝐹𝑎
= 257 is determined by the STFT win-

dow size. The “blue” part in Figure 3 shows the architecture of this

subnetwork, which comprises traditional 2D convolution layers and

3 “TFS-Conv” blocks. The “TFS-AttConv” block, borrowed from

PHASEN [12], employs both the ResNet [62] and self-attention

mechanism [63] to learn the global correlation of sound patterns

across T-F bins. In contrast, the small kernels of CNN cannot capture

such long-range correlations. Figure 6 shows the structure of a single

“TFS-AttConv” block. It contains 2 “CF-Att” blocks at the begin-

ning and the end to learn the global correlation. In each “CF-Att”,

Figure 6: Two-stream feature embedding. Convolution layer no-

tation: Channels@Kernel size

a self-attention mechanism is used to fuse the channel-wise infor-

mation following a SENet-based design [63]. Then, the “Freq-FC”

layer applies a learnable frequency transformation matrix to enable

frequency-domain self-attention at each point in the T domain. We

omit other details of this block which has been covered in PHASEN

[12].

Ultrasound feature embedding: The input of the ultrasound

feature embedding is𝑈 𝑠 ∈ R𝑇×𝐹𝑠×𝐶𝑠
, where𝐶𝑠

= 8 is the number of

ultrasound tones, and 𝐹𝑠
= 16 is the maximum number Doppler shift

frequency bins introduced by the articulartory gestures (Section 5).

Since the motion speed always changes continuously, the F domain

ultrasound features are mainly local Doppler shift features. Small

kernels suffice to capture such feature correlation because the size of

the F domain is only 16. Therefore, instead of the “TFS-AttConv”,

we design a “TFU-Conv” block which removes the attention layers

and reduces the kernel size of the F domain in all the 2D convolution

layers. To maintain the time alignment of the two modalities after

feature embedding, we keep the T domain kernel size the same as in

the “TFS-AttConv” block. For convenience of concatenating the two

modalities’ features, we choose the same output channel number for

all the 2D convolution layers.

Finally, after 3 “TFU-Conv” and “TFS-AttConv” blocks respec-

tively, the channel number of the two streams reduces to 𝐶𝑠
𝑟 = 8 and

𝐶𝑎
𝑟 = 8 by applying a 1 × 1 2D convolution.

6.2 Speech and Ultrasound Fusion Network

After the feature embedding, we concatenate the feature maps of the

two streams: 𝑆
𝑓
𝑖𝑛 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑀𝑎

𝑜 ,𝑈
𝑠
𝑜 ), where 𝑆

𝑓
𝑖𝑛 ∈ R𝐶𝑟×𝑇×𝐹𝑎𝑠

and

𝐹𝑎𝑠
= 𝐹𝑎 + 𝐹𝑠 . This concatenated feature map is then fed into the

“Self-Att Fusion” to learn the relationship between the two modalities.

The “Self-Att Fusion” block is similar to the “CF-Att” block, but the

size of the feature maps differs. First, since the meaning of channel in

ultrasound sensing and speech is different, we first use a channel self-

attention to learn the correlation across different channels. Second,

to enable these two modalities’ features to “crosstalk” with each

other in the F domain, the self-attention for the F domain is realized

by using a learnable transformation matrix on the fused features.

Third, the feature after self-attention fusion is concatenated with the

original feature and fused by a 1 × 1 2D convolution.

Finally, the whole feature map is fed into a BiLSTM and 3 fully

connected (FC) layers to predict the aIRM ∈ R𝑇×𝐹𝑚×1 of the noisy

speech. The predicted aIRM is then multiplied with the original noisy
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Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 BLSTM10 FC11 FC12 FC13

Num Filters 48 48 48 48 48 48 48 48 8 Hidden Size 300

Filter Size 1 × 7 7 × 1 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 1 × 1 Output Size 600 600 5

Table 1: Layers comprising ultrasound subnetwork

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 Conv10 Conv11 Conv 12 Conv 13

Num Filters 48 48 48 48 48 48 48 48 48 48 48 48 8
Filter Size 1 × 7 7 × 1 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 1 × 1
Dilation 1 × 1 1 × 1 1 × 1 1 × 2 1 × 4 1 × 8 1 × 16 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 1 × 1

Table 2: Layers comprising speech subnetwork (BLSTM and FC layers parameters are the same as the ultrasound subnetwork.)

Figure 7: Architecture of the T-F domain cross-modal similarity

measurement network (i.e., the Discriminator).

speech’s amplitude spectrogram to generate the amplitude-enhanced

T-F spectrogram.

Note that all the convolutional layers in the multi-modal fusion

network use zero padding, dilation= 1 and stride= 1 to make sure the

output feature map size is the same as the input speech/ultrasound

spectrogram. Also, each 2D convolutional layer is followed by batch

normalization (BN) and ReLu activation.

7 CGAN-BASED CROSS-MODAL TRAINING
The fundamental problem for UltraSE is multi-modal noise reduc-

tion, i.e., using one modality (ultrasound) to recover another modal-

ity (speech) which is polluted by noise/interference. The former

modality has low sensing resolution but is interference-free and cor-

related with the latter. Although we intentionally maintain the time

alignment between the two (Section 6), it is hard to force the multi-

modal fusion network to “understand” such multi-modal correlation,

because a traditional loss function (e.g., MSE) can only train the

network to clean up the T-F spectrum end-to-end. We thus propose

a cGAN-based training method, which implicitly incorporates the

maximization of cross-modal correlation itself as a training goal.

7.1 Cross-modal Similarity Measurement

A key element in any GAN design is to define the similarity met-

ric used by the discriminator. Unlike traditional GAN applications

(e.g., image generation) which compare between the same type of

features, our cross-modal cGAN needs to discriminate whether the

enhanced T-F speech spectrogram matches the ultrasound Doppler

spectrogram (i.e., whether they are a “real” or “fake” pair). We pro-

pose a cross-modal Siemese neural network to meet this challenge.

A Siamese neural network uses shared weights and model ar-

chitecture while working in tandem on two different input vectors

to compute comparable output vectors. It is traditionally used to

measure the similarity between two inputs from the same modal-

ity, e.g., two images [64]. To enable a cross-modal Siamese neural

network, we create two separate subnetworks (Figure 7), aiming to

characterize the correspondence between the T-F domain features of

the speech and ultrasound, respectively. The basic architecture for

these 2 inputs is a CNN-LSTM model. Since human speech contains

harmonics and spatial relationship in the F domain, the speech CNN

subnetwork uses dilated convolutions for frequency domain context

aggregation. The Doppler shifts from ultrasound sensing mostly

encompasses local features. Thus, the ultrasound CNN subnetwork

only contains traditional convolution layers. Following the convolu-

tion, a Bi-LSTM layer is used to learn the long-term time-domain

information for both modalities. Finally, three fully connected (FC)

layers are introduced to learn two comparable output vectors respec-

tively. We emphasize that the architecture and parameters are not

shared in this cross-modal design, which differs from the traditional

Sieamese networks.

As shown in Figure 7, we use the Triplet loss [65] to train the

cross-modal Siamese network. The triplet loss function accepts 3

inputs, i.e., an anchor input 𝑈 𝑠 is compared to a positive input 𝑆𝑎
𝑔𝑟

and a negative input 𝑆𝑎
𝑜𝑢𝑡 . It aims to minimize the distance between

“real” pair 𝑈 𝑠 and 𝑆𝑎
𝑔𝑟 , and maximize the distance between “fake”

pair 𝑈 𝑠 and 𝑆𝑎
𝑜𝑢𝑡 . In our model, the anchor input 𝑈 𝑠 is the ultra-

sound sensing features, the positive input 𝑆𝑎
𝑔𝑟 is the corresponding

clean speech amplitude spectrogram, and the negative input 𝑆𝑎
𝑜𝑢𝑡 is

the noisy speech amplitude spectrogram. Thus, our network model

minimizes the following Triplet loss:

L𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝐷) = E𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆
𝑎
𝑜𝑢𝑡∼𝑝𝑑𝑎𝑡𝑎 (𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆

𝑎
𝑜𝑢𝑡 )

[ ( ‖𝑓𝑢 (𝑈
𝑠 ) − 𝑓𝑠 (𝑆

𝑎
𝑔𝑟 ) ‖

2 − ‖𝑓𝑢 (𝑈
𝑠 ) − 𝑓𝑠 (𝑆

𝑎
𝑜𝑢𝑡 ) ‖

2 + 𝛼, 0) ]
(1)

where 𝑓𝑢 is the ultrasound subnetwork, 𝑓𝑠 is the speech subnetwork,

and 𝛼 is a margin distance between “real” and “fake” pairs.

We use a speech and ultrasound dataset collected on COTS smart-

phones (Section 9.1) to train the cross-modal Siamese network, and

verify its effectiveness in a benchmark experiment. The training and

testing sets contain 3 h and 0.5 h speech corpus for 15 and 5 users,

respectively. The T-F domain speech feature input is a 1 × 498 × 257

scalar (5 s segment), and the T-F domain ultrasound feature input is

a 8 × 498 × 16 scalar.

Figure 8 shows the probability density function (PDF) of outputs,

where a smaller value indicates higher similarity. It is obvious that

the output PDFs for the real pairs and fake pairs are perfectly sep-

arated, which means that our similarity measurement network can

effectively discriminate whether a pair of speech and ultrasound

inputs are generated by the same articulatory gestures.
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Enc1 Enc2 Enc3 Enc4 Enc5 Enc6 Enc7 Dec7 Dec6 Dec5 Dec4 Dec3 Dec2 Dec1

Num Filters 16 32 32 64 64 128 128 128 64 64 32 32 16 1

Table 3: Layers comprising T domain phase network. Kernel size = 32, Stride = 2, Padding = 15.
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Figure 8: PDF of outputs from the cross-modal similarity mea-

surement network.

7.2 cGAN-based Model Training

Now we discuss how to leverage such similarity measurement as a

discriminator in a cGAN to further fuse the multi-modal informa-

tion. Our cGAN model aims to not only minimize the MSE of the

speech amplitude spectrogram (relative to the ground-truth), but also

guarantee high similarity between the “fake” pair (i.e., the enhanced

speech and ultrasound sensing features) and the “real” pair (i.e., the

clean speech and ultrasound sensing features).

cGAN has been widely used to add a conditional goal to guide a

generator to automatically learn a loss function which well approx-

imates the goal [66]. Figure 4 shows the structure of the UltraSE

cGAN model. The generator “𝐺 (𝑆𝑎
𝑛𝑜𝑖𝑠𝑒 ,𝑈

𝑠 )” is the aforementioned

multi-modal network (Section 6), which takes the noisy speech am-

plitude spectorgram 𝑆𝑎
𝑛𝑜𝑖𝑠𝑒 and ultrasound sensing spectrogram 𝑈 𝑠

as the input. 𝐺 (·) is trained to output amplitude-enhanced T-F spec-

trogram of the speech 𝑆𝑎
𝑜𝑢𝑡 , which not only minimizes the traditional

amplitude MSE loss [12], but also tries to “fool” an adversarially

trained discriminator “𝐷 (𝑆𝑎
𝑜𝑢𝑡 , 𝑆

𝑎
𝑔𝑟 ,𝑈

𝑠 )”, which strives to discrimi-

nate the fake pair (𝑆𝑎
𝑜𝑢𝑡 ,𝑈

𝑠 ) from the “real” pair (𝑆𝑎
𝑔𝑟 ,𝑈

𝑠 ) under the

aforementioned triplet loss function. More specifically, The “D” loss

is L𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝐷) (see Eq. (1)), and the “G” loss is
L(𝐺) = E𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆

𝑎
𝑛𝑜𝑖𝑠𝑒

∼𝑝𝑑𝑎𝑡𝑎 (𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆
𝑎
𝑛𝑜𝑖𝑠𝑒

),�∼𝑝�

[L𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝐷 (𝐺 (𝑈 𝑠 , 𝑆𝑎
𝑛𝑜𝑖𝑠𝑒 ), 𝑆

𝑎
𝑔𝑟 ),𝑈

𝑠 ) ] + 𝜆 ‖𝐺 (𝑈 𝑠 , 𝑆𝑎
𝑛𝑜𝑖𝑠𝑒 ) − 𝑆𝑎

𝑔𝑟 ‖
2

where 𝜆‖𝐺 (𝑈 𝑠 , 𝑆𝑎
𝑛𝑜𝑖𝑠𝑒 ) − 𝑆𝑎

𝑔𝑟 ‖
2 is the traditional MSE amplitude

loss. The reason why we use the amplitude MSE loss here rather

than complex-valued loss or combined loss [12] will be clarified in

Section 8.

Our cGAN design represents a general model for cross-modal

noise reduction, which may be reused in other sensor fusion prob-

lems involving heterogenous sensing modalities.

8 MULTI-DOMAIN SPEECH ENHANCEMENT

In this section, we first investigate the pros and cons of T-F domain

vs. T domain speech enhancement by using statistical analysis and

experimental validation. Our key insight is that improving intelligi-

bility is more critical than enhancing quality, since the top priority

for speech enhancement lies in helping users/machines to understand

the speech in noisy environment. This motivates us to expand the

aforementioned T-F domain network into a two-stage multi-domain

model, which first pushes the limits of intelligibility and then refines

the speech quality.
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Figure 9: Benchmark of the T-F domain methods

8.1 Understanding the Pros and Cons of T-F

Domains Speech Enhancement

Speech sounds and interferences usually exhibit rich auditory pat-

terns in the T-F spectrogram. In this section, we intend to understand

the impact of phase in the T-F spectrogram to enlighten our multi-

domain model design.

How does the T-F spectrogram phase affect the speech intelli-

gibility and quality? We first conduct an experiment by using the

UltraSpeech dataset (detailed in Section 9), where we keep the clean

speech’s amplitude in the T-F spectrogram while replacing its phase

with the noisy speech phase, just as in aIRM (Sec. 2). We use two

metrics to evaluate the impact. (i) Scale-invariant Signal-To-Noise

Ratio (SiSNR) characterizes the speech quality [67]:

L𝑆𝑖𝑆𝑁𝑅 = 10 log10

(

| |
〈ŝ,s〉s
| |s | |2

| |2

| |
〈ŝ,s〉s
| |s | |2

− 𝑠 | |2

)

(2)

where s and ŝ are the T domain clean speech and enhanced speech

signals, respectively. (ii) Word Error Rate (WER), representing

speech intelligibility, is the probability that a word cannot be cor-

rectly recognized by an automatic speech recognition (ASR) algo-

rithm [68] and human perception.

As shown in Figure 14(b), when applying the noisy T-F spectro-

gram phase directly, the SiSNR degrades slightly. On the other hand,

phase does not affect the WER in a noticeable way. The noisy phase

with a very low SNR of −9 dB only decreases the WER by 0.7%

when using AWS Transcribe [68]. Meanwhile, human subjects can

clearly understand the speech and only feel a little jittering effect. In
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Figure 10: T domain phase network. Convolution layer nota-

tion: Channels@Kernel size

summary, the phase in the T-F spectrogram barely affects the speech

intelligibility and only slightly degrades the speech quality.

What is the appropriate training loss function for recovering

the speech intelligibility? Figure 9(c) plots the CDF of phase dif-

ference between the clean and noisy speech spectrogram across the

T-F bins. We see that the phase difference is almost uniformly dis-

tributed for low-SNR speech. This means the phase values in all the

T-F bins are distorted in the spectrogram which makes the phase

recovery challenging. Since phase is not critical to intelligibility, we

proceed to study the performance of different DNN loss functions in

recovering the T-F spectrogram amplitude.

We examine 3 different loss functions. The first is the amplitude

MSE loss which only considers the T-F spectrogram amplitude:

L𝑎 = 𝜆‖𝐺 (𝑈 𝑠 , 𝑆𝑎
𝑛𝑜𝑖𝑠𝑒 ) − 𝑆𝑎

𝑔𝑟 ‖
2. The second is the complex-valued

MSE loss which accounts for both the T-F spectrogram amplitude

and phase: L𝑝 = ‖𝑆𝑐
𝑜𝑢𝑡 − 𝑆𝑐

𝑔𝑡 ‖
2 The third is a combined loss used in

PHASEN: L𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 0.5×L𝑎+0.5×L𝑝 , where 𝑆𝑎
𝑜𝑢𝑡 , 𝑆𝑎

𝑔𝑡 and 𝑆𝑐
𝑜𝑢𝑡 ,

𝑆𝑐
𝑔𝑡 are the power-law compressed (𝐴0.3) amplitude spectrogram

and complex-valued spectrogram. We apply these 3 training loss

functions to the architecture in Section 6 and 7. Figure 9(d) shows

the validation amplitude MSE loss. Obviously, upon convergence,

training with amplitude MSE loss leads to lower validation error in

amplitude MSE, and hence better speech intelligibility, than the two

alternative loss functions.

8.2 Two-stage Multi-domain Network Design

Based on the above studies, we derive 3 design principles for our

multi-domain architecture: (i) The T-F spectrogram amplitude con-

tributes to the speech intelligibility whereas the phase is related to

the speech quality. (ii) The T-F spectrogram phase is hard to pre-

dict by using DNN models. (iii) Training DNN models with aIRM

MSE loss in the T-F domain optimizes speech intelligibility. We now

elaborate on the detailed design, which follows the flow in Figure 3.

Stage 1: T-F domain multi-modal amplitude speech enhance-

ment. The DNN architecture and training model of this stage has

been covered in Sec. 6 and Sec. 7. The amplitude-enhanced T-F

spectrogram output is multiplied with the original noisy phase to

generate a complex-valued T-F spectrogram. Then, the iSTFT [57]

is used to transform the T-F spectrogram to the T domain waveform

and output the amplitude-enhanced T-domain waveform.

Stage 2: T domain speech phase enhancement. The goal of

this stage is to fine tune the T-domain waveform to further improve

the speech quality, using the SiSNR (Eq. (2)) as the training loss

function. Inspired by SEGAN [28], our T domain network is an

encoder-decoder network as shown in Figure 10. The encoder con-

tains 7 1D convolution layers to transform 5 s of time domain wave-

form to a 128× 675 scalar. The decoding stage reverses the encoding

operation by means of fractional-strided transposed convolutions.

We connect each encoding layer to its homologous decoding layer

to fully capture the low-level details of the original features. The

network parameters are listed in Table 3. All the 1D convolutional

layers are followed by parametric rectified linear units (PReLUs)

[69]. We also tried a cGAN training model similar to Section 7 in

this stage, but observed negligible performance gain. Thus, we only

enforce the cGAN training in the T-F domain.

Notably, the first and second stage output can be used to satisfy

different applications, e.g., for ASR and human listener, since they

are trained for speech intelligibility and quality, respectively.

9 ULTRASE IMPLEMENTATION

9.1 UltraSpeech Dataset

Traditional speech datasets only contain raw speech without ultra-

sound sensing signals [9, 70]. To evaluate UltraSE, we thus create a

new dataset called UltraSpeech which comprises both.

Data collecting: We recruited 20 fluent English speakers (4 fe-

male, 16 male, average age 25) to collect the UltraSpeech dataset.

Each participant was asked to say at least 300 sentences in the TIMIT

speech corpus [9] by using 2 typical phone holding styles (“Phone

Call” mode and “Towards Mic” mode, shown in Figure 12(b)) in

quiet environment. Meanwhile, we use a custom-built Android app

called UltraRecord, to emit the ultrasonic signals and capture the

audio segments at 96 kHz sampling rate, through the bottom speaker

and microphone on a smartphone. Note that we do not constrain the

user to hold the smartphone at a specific distance from the mouth.

In total, we collected 8k 5-second clean speech segments for each

holding style.

We follow existing SSE work [6, 12] to generate the noisy speech

dataset through synthetic mixture. The interfering speech comes

from the TIMIT data set [9], which contains 6300 different English

sentences, generated by 630 speakers lasting 3.5 hours in total. The

ambient noise dataset comes from AudioSet [10] which contains

more than 1.7 million 10-second segments of 526 types of noise from

real-life, including a wide range of human and animal sounds, musi-

cal instruments and genres, and common everyday environmental

sounds.

Training/testing dataset generation: Each segment of train-

ing/testing data is synthesized by a linear combination of 3 pieces:

〈𝑆 𝑗 ,𝑈 𝑗 , 𝑆𝑖𝑛𝑜𝑖𝑠𝑒 〉, where 𝑆 𝑗 and 𝑈 𝑗 are the clean speech segment and

corresponding ultrasound features from UltraSpeech; 𝑆𝑖𝑛𝑜𝑖𝑠𝑒 is the

𝑖𝑡ℎ noisy sound segment.

Besides, we generate a training set where the interfering speech

and clean speech come from the same speaker. This is widely recog-

nized as the most challenging case of SSE [71], since the interference

bears the same auditory patterns that are indistinguishable from the

desired speech. We add this into the training dataset to force the

model to exploit the ultrasound features in addition to the audible

features.

Our training dataset contains 15 participants’ clean speech col-

lected by the Samsung Galaxy S8 smartphone. Each participant’s

clean speech is mixed with 20 different noise settings. For each noise
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setting, the number of interfering speakers 𝑛 is uniformly distributed

in [0, 4], and the SNR is uniformly distributed in [−9, 6] dB (-1.5 dB

average). In total, the training data contains 120k 5-second segments

of noisy speech (300 hours).

9.2 UltraSE DNN Implementation
We implement the UltraSE DNN model in Pytorch. The dimension

of feature maps and the parameters of each layer are shown in Figure

3, 6, 10 and Table 1, 2, 3. ReLU activations follow all layers except

for the last layer, where a sigmoid is applied. For training, we use

Adam optimizer with a 1𝑒 − 04 initial learning rate, dropping by 25%

every 5 epochs for a total of 20 epochs. UltraSE has 15.5 M and 3.1

M parameters for the first and second stage DNN.

10 EXPERIMENTAL EVALUATION
We evaluate UltraSE using 4 metrics commonly adopted in SSE

research.

• SDR [72]: Signal-to-distortion ratio, which considers not only

noise/interference, but also acoustic artifacts (e.g., burbling sound)

as distortion to the ground-truth speech;

• SiSNR [73]: Scale-invariant signal-to-noise ratio (Sec. 8.1) which,

unlike the classical SNR, ensures rescaling the estimated signal will

not unfairly improve the metric;

• STOI [74]: Short-time objective intelligibility measure (from 0 to

1);

• PESQ [75]: Perceptual evaluation of speech quality, which models

the mean opinion score ranging from 1 (bad) to 5 (excellent);

10.1 Micro Benchmark Comparison
In this section, our default testing dataset includes another 5 partic-

ipants’ clean speech in the “Towards mic” mode, collected using

Samsung S8. Our testing environment includes 6 different interfer-

ence plus noise settings: 1𝑠 +𝑎, 2𝑠 +𝑎, 3𝑠 +𝑎, > 3𝑠 +𝑎, 2𝑠 (“s” and “a”

denotes interfering speaker and ambient noise) and the hardest case

>= 2 same-speaker intererences plus noise (>= 2𝑠𝑠 + 𝑎). The SNR

level of noisy speech signals is uniformly distributed in [−9, 6] dB.

All the results of UltraSE are from a single model generated from

the training dataset.

We compare UltraSE with 4 state-of-the-art SSE methods,

PHASEN [12] (T-F domain method), SEGAN [28] (T domain method),

AVSPEECH [6] (Audio-visual method), Conv-TasNet [4] (Speech

separation method). For a fair comparison, we reimplemented

PHASEN, SEGAN and Conv-TasNet and train and test them on

the UltraSpeech dataset. PHASEN and SEGAN only use the 1𝑠 + 𝑎

training set, since they are designed for speech enhancement, not

separation. The results for PHASEN and SEGAN under 1𝑠 + 𝑎 (see

Table 4) is similar to the original work, which shows the correct-

ness of our implementation. For the speech separation method, i.e.,

Conv-TasNet, we first train and evaluate it in the “2𝑠” environment

to check the correctness of our implementation. Then, we use the

“2𝑠 + 𝑎” dataset to train the model with the 2 speakers’ clean speech

as ground truth, and compare the results in other environments in

Table 4. For AVSPEECH, since our data set does not have the video

recordings, we directly use the results in [6] as baselines.

Compared to the state-of-the-art speech enhancement methods,

UltraSE significantly improves the speech quality and intelligibil-

ity in both noisy and multi-speaker environments. Table 4 shows

Environment Methods SDR SiSNR STOI PESQ

1𝑠 + 𝑎

UltraSE 17.14 17.25 0.87 3.52

PHASEN 15.63 15.20 0.82 3.05

SEGAN 5.48 5.50 0.64 2.32

AVSPEECH 16.0 / / /

Conv-TasNet 12.23 12.58 0.76 2.48

2𝑠 + 𝑎

UltraSE 10.55 10.65 0.76 2.80

PHASEN 5.20 5.22 0.65 2.23

SEGAN 2.01 1.96 0.54 1.69

AVSPEECH 10.1 / / /

Conv-TasNet 10.23 10.38 0.74 2.40

3𝑠 + 𝑎

UltraSE 10.88 10.94 0.76 2.81

PHASEN 5.14 5.15 0.66 2.15

SEGAN 1.74 1.78 0.55 1.68

Conv-TasNet 6.31 6.50 0.71 2.11

> 3𝑠 + 𝑎

UltraSE 12.10 12.17 0.78 2.66

PHASEN 5.13 5.13 0.67 2.14

SEGAN 0.71 0.72 0.53 1.67

Conv-TasNet 6.23 6.41 0.71 2.15

>= 2𝑠𝑠 + 𝑎

UltraSE 8.90 8.97 0.72 2.52

PHASEN 5.03 5.05 0.62 2.10

SEGAN 1.27 1.29 0.56 1.69

Conv-TasNet 5.69 5.93 0.73 2.21

2𝑠

UltraSE 14.85 14.86 0.86 3.35

AVSPEECH 10.3 / / /

Conv-TasNet 14.98 15.02 0.85 2.97

Table 4: UltraSE Micro Benchmark

the testing results under all input SNR levels uniformly distributed

in [−9, 6] dB. UltraSE outperforms PHASEN and SEGAN across

all the 4 metrics. In the 1𝑠 + 𝑎 environment, UltraSE achieves an

average 17.25 SiSNR (18.75 ΔSiSNR) and 3.50 PESQ. In other en-

vironments with multi-speaker interference, the ultrasound sensing

modality plays a more prominent role, improving SiSNR by 6.04 dB

and 9.77 dB on average over the 2 baselines respectively. Even for

the hardest case >= 2𝑠𝑠 + 𝑎, UltraSE still achieves 8.97 dB SiSNR

and 2.52 PESQ. In addition, UltraSE achieves slightly higher perfor-

mance than AVSPEECH, likely because the ultrasonic features are

sampled at finer time granularity than video frames, and can better

align with the speech signals.

Most of the existing speech separation methods can only work

with limited number of interfering speakers (2 ∼ 3) and without

ambient noise [29, 30, 73, 76]. As shown in Table 4, when train-

ing the Conv-TasNet by using the “2𝑠 + 𝑎” dataset, Conv-TasNet

achieves good performance in the “2𝑠 + 𝑎” and “2𝑠” setup, but is not

general in other sophisticated environments. In comparison, UltraSE

outperforms Conv-TasNet by around 6 dB of SDR or SiSNR, 10%

in STOI and 24% in PESQ, under the > 3𝑠 + 𝑎 setup.

The scatter plot in Figure 11 shows the input and output SiSNR

for each sentence in the testing dataset which includes all 6 envi-

ronments. UltraSE consistently achieves high performance across

different environments and sentences, with an average 14.75 dB

SiSNR gain. Even in the worst case with −9 dB input, the enhanced

speech achieves 8.86 dB SiSNR on average.

10.2 Ablation Study
We conduct an ablation study to better understand the performance

of different design components in UltraSE. The testing dataset here
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Figure 11: Noisy SiSNR v.s. Enhanced SiSNR

includes all the environments except the “>= 2𝑠𝑠 + 𝑎” which is not

very common in practice. Table 5 summarizes the results.

“No T domain” represents the DNN model without the “T do-

main waveform speech enhancement”. The results indicate that this

module barely influences the STOI, a metric for speech intelligibility.

But it helps gaining 0.46 dB SDR, 0.58 dB SiSNR, 0.12 PESQ re-

spectively, which proves it can further improve the perceptual quality

of the speech generated from the T-F domain multi-modal network.

“No cGAN” represents the model without the “cGAN-based

cross-modal model training”. All the metrics significantly improves

when applying the cGAN, since our cGAN design forces the network

to learn the correlation between the ultrasound and speech, which is

the key principle behind the UltraSE design.

“No Fusion Network” means that the feature maps of ultrasound

and speech signals are directly concatenated in the T-F domain

without the fusion block. The performance slightly decreases, since

the fusion block helps the multi-modal features to “cross-talk” with

each other.

“No Ultrasound” represents the network without the ultrasound

stream at the beginning of the network. The result becomes close

to the traditional speech enhancement method without ultrasound

sensing, e.g., PHASEN.

10.3 System Efficiency
Time Consumption: We evaluate the run-time processing latency

of UltraSE on 3 platforms, including a NVIDIA GTX 2020 (GPU),

an Intel i9-9980 3.00GHz (CPU) and Samsung Galaxy S8 with Qual-

comm Snapdragon 835 CPU (Smartphone). The first two correspond

to the case where UltraSE is offloaded to a trusted cloud or edge

server. Table 6 summarizes the results. The GPU server only expe-

riences 14.85 ms latency which is acceptable for VoIP applications

(150 ms maximum [77]). The smartphone case is measured by using

Pytorch Mobile [78] on Samsung Galaxy S8. Note that the latest

version of Pytorch Mobile [78] only supports single-CPU processing

without any GPU/NPU support. Thus, the latency is relatively high

(25.08 s to process 5 s speech), which is acceptable only for offline

processing applications, e.g., audio message and audio recording.

There exists a rich literature [79] on improving DNN efficiency on

smartphones, which demonstrated more than 50× latency reduction

by using mobile GPU/NPU. We will explore such solutions for our

future work. Also note that UltraSE needs to process the input in

segments of 5 s due to the use of Bi-LSTM blocks. This means its

SSE starts taking effect after a 5 s initial bootstraping period.

Energy Consumption: Our experiments show that a typical

smartphone (Samsung S8) can continuously use UltraSE to record

speech while emitting ultrasound signals for 60.57 hours with dis-

play off. Our measurement using Android Profiler [80] reveals that

UltraSE’s CPU load is 48.7% on average, and power consumption is

SDR SiSNR STOI PESQ

UltraSE (Testing data 96 kHz) 13.10 13.21 0.80 3.01

UltraSE (Testing data 48 kHz) 13.08 13.18 0.79 2.99

- No T domain 12.64 12.63 0.80 2.89

- No cGAN 10.80 10.85 0.77 2.60

- No Fusion Network 9.96 10.00 0.76 2.54

- No Ultrasound 7.78 7.68 0.70 2.39

Table 5: UltraSE ablation study.

Preprocess Stage 1 Stage 2

GPU 0.55 ms 12.02 ms 2.28 ms

CPU 0.05 s 1.38 s 0.26 s

Smartphone 0.25 s 23.02 s 1.81 s

Table 6: Inference time for processing 5 s speech.

at the level of “1” in between the scale of 0 to 3. When offloading to

servers, the computational energy consumption becomes negligible.

The only overhead is that UltraSE needs to upload the original 48/96

kHz sampling rate audio stream with both audible sounds and ultra-

sounds to the server, and then download the enhanced speech from

the server. Our experiments show that Samsung S8 can continuously

run UltraSE and upload/download the audio streaming via WiFi in

the offloading mode for 10.82 hours. Server offloading may incur

additional issues such as security, but this is beyond the scope of our

current work.

10.4 Generalization

Sampling Frequency: UltraSE model trained by 96 kHz sam-

pling rate dataset can be directly used to enhance the testing speech

recorded at 48 kHz sampling rate. The feature resolution at 48 kHz

sampling rate is identical to the case at 96 kHz sampling rate as long

as the FFT window length and hop length of ultrasound sensing fea-

tures keep 85 ms and 10 ms respectively. Table 5 shows a negligible

performance degradation when testing the 48/ 96 kHz sampling rate

dataset on the 96 kHz sampling rate trained model.

Holding Styles: In the “Phone call” mode (Figure 12(a)), the

user’s face partially occludes the ultrasonic signals, so we train a

model which is different from the “Towards mic” mode (Figure

12(c)). UltraSE can automatically select the model using the IMU-

based holding style detection algorithm built into smartphones [81].

Our experiments show that, under −1.5 dB average input SNR, the

performance of “Phone call” (12.47 dB SiSNR) is slightly lower than

the “Towards mic” (13.12 dB SiSNR) due to the occlusion.

We further evaluate the sensitivity of each model under differ-

ent mouth-to-mic distances. Figure 12(b) and Figure 12(d) show

the average SNR of ultrasound (SNR𝑔 ) vs. the SiSNR of enhanced

speech. For both holding styles, 𝑆𝑁𝑅𝑔 well exceeds 10 dB, and

speech SiSNR stays around 12 dB within 20 cm distance. The exper-

iment implies that the UltraSE model performs consistently as long

as the mouth-to-mic distance remains within 20 cm.

Motion interference: We measure the impacts of interference

from 3 major motion artifacts, i.e., respiration, hand gestures and

walking. The experiments were conducted when the mouth is 15

cm and 2 cm away from the microphone in the “Towards mic” and

“Phone call” mode, respectively. (i) The respiration frequency (∼30

bpm) is far less than the articulatory motions (> 10 Hz), so it creates

negligible impacts on UltraSE. (ii) Hand gestures introduce similar

Doppler effect as the articulatory motion [36, 40, 51], which may

170



ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Ke Sun, Xinyu Zhang

(a) Phone call

2 4 6

 D (cm)

0

5

10

15

20

25

S
e
n

s
in

g
 S

N
R

g
 (

d
B

)

0

3

6

9

12

15

S
p

e
e
c
h

 S
iS

N
R

 (
d

B
)

(b) Sensing SNR vs. Speech SiSNR for (a)

(c) Towards mic

5 10 15 20 25 30

 D (cm)

0

5

10

15

20

25

30

S
e

n
s

in
g

 S
N

R
g
 (

d
B

)

0

3

6

9

12

15

S
p

e
e

c
h

 S
iS

N
R

 (
d

B
)

(d) Sensing SNR vs. Speech SiSNR for (c)

Figure 12: SNR of articulatory gestures.

Figure 13: SNR𝑔 under hand gesture interference

cause non-negligible interference. We measure the articulatory ges-

tures’ SNR𝑔 under the pushing hand gesture interference. The SNR𝑔

is sampled for each 2 cm in 7 different angles from 0◦ to 90◦, at a

step of 15◦, close to the user’s mouth. Figure 13 shows the spatial

distribution [82] of SNR𝑔 for the “Towards mic” mode. As long as

the hand gesture is > 25 cm away from the mouth (which is typical

in daily usage scenarios), the SNR𝑔 remains above 10 dB which

suffices for UltraSE (Figure 12). A microphone array can be used

to focus on the user’s mouth region to further mitigate interference

[40], but this is beyond the scope of UltraSE. We omit the “Phone

call” mode since the microphone is much closer to the mouth and the

sensing SNR𝑔 stays high. (iii) When other people walk nearby (0.8 m

away), we found that SNR𝑔 is barely impacted since the ultrasound

volume is relatively low, and the user’s mouth is much closer.

Overall, the articulatory gestures’ SNR𝑔 is sufficiently high (> 10

dB), and the UltraSE model is unaffected by the motion artifacts in

daily usage scenarios.

Generalizations across smartphones: Different smartphones

may have different speaker-mic layout. For example, the distances

between the bottom microphone and speaker are 5 mm, 25 mm and

25 mm for Samsung S8, LG G8S ThinQ and VIVO X20 respec-

tively. The high-frequency response of the speaker and microphone

may also vary across phone models [83]. When applying the DNN

model trained by the Samsung S8 dataset directly to LG G8S ThinQ

and VIVO X20, the SiSNR of enhanced speech becomes 9.21 dB

and 9.53 dB, respectively. which is lower than the same-phone case
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Figure 14: Real-world Usage WER.

(13.21 dB), but still higher than the SiSNR without ultrasound sens-

ing (7.68 dB). To maintain the optimal performance, a straightfor-

ward way is to perform a one-time training data collection for each

phone model. Alternatively, we can enrich the UltraSpeech dataset

with a diverse set of smartphones that cover the typical hardware

configurations. This is left for our future work.

Real-world Usage Experiments: We asked the users to use Ul-

traSE across 4 different real-world environments, i.e. 1) a bathroom

environment with exhaust fan and running water noise (75 dBA on

average); 2) a living room environment with television noise (55 dBA

on average); 3) an indoor conference environment with conversation

noise (60 dBA on average); 4) an outdoor roadside environment with

vehicle noise (60 dBA on average). Unlike synthetic noisy speech,

we can not capture the ground truth clean speech and evaluate the

metrics like SDR, SiSNR, STOI and PESQ in these scenarios. Thus,

to evaluate the performance of UltraSE for real-world usage, we use

the ASR Word Error Rate𝑊𝐸𝑅 =
𝑆+𝐷+ 

𝑁 as the metric, where 𝑆 , 𝐷 ,

� , and 𝑁 are the number of substitutions, deletions, insertions, totals

of targeted user’s spoken words respectively. Specifically, we asked

the users to speak at least 50 sentences in the TIMIT speech corpus

[9] across different environments. Figure 14 shows the WER with

and without UltraSE across different environments. In non-speech

noisy environments, i.e., bathroom and roadside, UltraSE slightly

improve the ASR speech recognition rate since ASR itself has the

ability to mitigate background ambient noise interference. In speech

noisy environments, i.e., living room and conference, WER is higher

than 100% since there exists many word insertions and substitutions

introduced by non-targeted user’s speech. UltraSE achieves signif-

icantly improvement in such cases since it is able to separate the

desired speaker voice from noises by using ultrasound sensing.

11 CONCLUSION
We have demonstrated that ultrasonic sensing can serve as a com-

plementary modality to solve the cocktail party problem. Our Ul-

traSE system introduces general DNN mechanisms to enable such

capabilities, e.g., multi-modal multi-domain fusion network and

cGAN-based training model based on a novel cross-modal Siamese

network. UltraSE points to a novel direction that fuses wireless

sensing capabilities to bring machine perception to a new level.

ACKNOWLEDGMENT
We would like to thank the anonymous shepherd and reviewers

for their valuable comments. This work is partially supported by

NSF CNS-1901048, CNS-1925767, Google Faculty Award, and a

Samsung collaboration grant.

171



UltraSE: Single-Channel Speech Enhancement Using Ultrasound ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

REFERENCES
[1] Quan Wang, Hannah Muckenhirn, Kevin Wilson, Prashant Sridhar, Zelin Wu, John

Hershey, Rif A Saurous, Ron J Weiss, Ye Jia, and Ignacio Lopez Moreno. Voice-

filter: Targeted voice separation by speaker-conditioned spectrogram masking. In

Proceedings of Interspeech, 2019.

[2] Hakan Erdogan, John R Hershey, Shinji Watanabe, Michael I Mandel, and

Jonathan Le Roux. Improved mvdr beamforming using single-channel mask

prediction networks. In Proceedings of Interspeech, 2016.

[3] DeLiang Wang and Jitong Chen. Supervised speech separation based on deep

learning: An overview. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 2018.

[4] Yi Luo and Nima Mesgarani. Conv-tasnet: Surpassing ideal time–frequency

magnitude masking for speech separation. IEEE/ACM transactions on audio,

speech, and language processing, 2019.

[5] Gordon Wichern, Joe Antognini, Michael Flynn, Licheng Richard Zhu, Emmett

McQuinn, Dwight Crow, Ethan Manilow, and Jonathan Le Roux. WHAM!:

Extending Speech Separation to Noisy Environments. CoRR, abs/1907.01160,

2019.

[6] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan

Hassidim, William T Freeman, and Michael Rubinstein. Looking to listen at the

cocktail party: A speaker-independent audio-visual model for speech separation.

In Proceedings of ACM SIGGRAPH, 2018.

[7] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. My lips are con-

cealed: Audio-visual speech enhancement through obstructions. In Proceedings

of Interspeech, 2019.

[8] Donald S Williamson, Yuxuan Wang, and DeLiang Wang. Complex ratio masking

for monaural speech separation. IEEE/ACM transactions on audio, speech, and

language processing, 2015.

[9] John S Garofolo et al. Darpa timit acoustic-phonetic speech database. National

Institute of Standards and Technology (NIST), 1988.

[10] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,

R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and

human-labeled dataset for audio events. In Proceedings of IEEE ICASSP, 2017.

[11] Philipos C Loizou. Speech enhancement: theory and practice. CRC press, 2013.

[12] Dacheng Yin, Chong Luo, Zhiwei Xiong, and Wenjun Zeng. Phasen: A phase-

and-harmonics-aware speech enhancement network. In Proceedings of AAAI,

2020.

[13] Chuanxin Tang, Chong Luo, Zhiyuan Zhao, Wenxuan Xie, and Wenjun Zeng. Joint

time-frequency and time domain learning for speech enhancement. In Proceedings

of IJCAI, 2020.

[14] Yariv Ephraim and David Malah. Speech enhancement using a minimum-mean

square error short-time spectral amplitude estimator. IEEE Transactions on

acoustics, speech, and signal processing, 1984.

[15] Steven Boll. Suppression of acoustic noise in speech using spectral subtraction.

IEEE Transactions on acoustics, speech, and signal processing, 1979.

[16] Yariv Ephraim and Harry L Van Trees. A signal subspace approach for speech

enhancement. IEEE Transactions on speech and audio processing, 1995.

[17] Guoning Hu and DeLiang Wang. Monaural speech segregation based on pitch

tracking and amplitude modulation. IEEE Transactions on Neural Networks,

2004.

[18] Arun Narayanan and DeLiang Wang. Ideal ratio mask estimation using deep

neural networks for robust speech recognition. In Proceedings of IEEE ICASSP,

2013.

[19] Yuxuan Wang, Arun Narayanan, and DeLiang Wang. On training targets for

supervised speech separation. IEEE/ACM transactions on audio, speech, and

language processing, 2014.

[20] Donald S Williamson, Yuxuan Wang, and DeLiang Wang. Complex ratio masking

for monaural speech separation. IEEE/ACM transactions on audio, speech, and

language processing, 2015.

[21] Hakan Erdogan, John R Hershey, Shinji Watanabe, and Jonathan Le Roux. Phase-

sensitive and recognition-boosted speech separation using deep recurrent neural

networks. In Proceedings of IEEE ICASSP, 2015.

[22] Zhaoheng Ni and Michael I Mandel. Mask-dependent phase estimation for

monaural speaker separation. In Proceedings of IEEE ICASSP, 2020.

[23] Se Rim Park and Jinwon Lee. A fully convolutional neural network for speech

enhancement. In Proceedings of Interspeech, 2017.

[24] Zhiheng Ouyang, Hongjiang Yu, Wei-Ping Zhu, and Benoit Champagne. A

fully convolutional neural network for complex spectrogram processing in speech

enhancement. In Proceedings of IEEE ICASSP, 2019.

[25] Meet H Soni, Neil Shah, and Hemant A Patil. Time-frequency masking-based

speech enhancement using generative adversarial network. In Proceedings of

IEEE ICASSP, 2018.

[26] Dario Rethage, Jordi Pons, and Xavier Serra. A wavenet for speech denoising. In

Proceedings of IEEE ICASSP, 2018.

[27] Ashutosh Pandey and DeLiang Wang. Tcnn: Temporal convolutional neural

network for real-time speech enhancement in the time domain. In Proceedings of

IEEE ICASSP, 2019.

[28] Santiago Pascual, Antonio Bonafonte, and Joan Serra. Segan: Speech enhancement

generative adversarial network. In Proceedings of IEEE ICASSP, 2018.

[29] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep

clustering: Discriminative embeddings for segmentation and separation. In Pro-

ceedings of IEEE ICASSP, 2016.

[30] Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen. Permutation

invariant training of deep models for speaker-independent multi-talker speech

separation. In Proceedings of IEEE ICASSP, 2017.

[31] Naoya Takahashi, Sudarsanam Parthasaarathy, Nabarun Goswami, and Yuki Mitsu-

fuji. Recursive speech separation for unknown number of speakers. In Proceedings

of Interspeech, 2019.

[32] John R Hershey and Michael Casey. Audio-visual sound separation via hidden

markov models. In Proceedings of NeurIPS, 2002.

[33] Bertrand Rivet, Wenwu Wang, Syed Mohsen Naqvi, and Jonathon A Chambers.

Audiovisual speech source separation: An overview of key methodologies. IEEE

Signal Processing Magazine, 2014.

[34] Ki-Seung Lee. Speech enhancement using ultrasonic doppler sonar. Speech

Communication, 2019.

[35] Tom Barker, Tuomas Virtanen, and Olivier Delhomme. Ultrasound-coupled

semi-supervised nonnegative matrix factorisation for speech enhancement. In

Proceedings of IEEE ICASSP, 2014.

[36] Wei Wang, Alex X. Liu, and Ke Sun. Device-free gesture tracking using acoustic

signals. In Proceedings of ACM MobiCom, 2016.

[37] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang Mao.

Strata: Fine-grained acoustic-based device-free tracking. In Proceedings of ACM

MobiSys, 2017.

[38] Ke Sun, Wei Wang, Alex X. Liu, and Haipeng Dai. Depth aware finger tapping on

virutal displays. In Proceedings of ACM MobiSys, 2018.

[39] Ke Sun, Ting Zhao, Wei Wang, and Lei Xie. Vskin: Sensing touch gestures

on surfaces of mobile devices using acoustic signals. In Proceedings of ACM

MobiCom, 2018.

[40] Wenguang Mao, Mei Wang, Wei Sun, Lili Qiu, Swadhin Pradhan, and Yi-Chao

Chen. Rnn-based room scale hand motion tracking. In Proceedings of ACM

MobiCom, 2019.

[41] Jiayao Tan, Cam-Tu Nguyen, and Xiaoliang Wang. Silenttalk: Lip reading through

ultrasonic sensing on mobile phones. In Proceedings of IEEE INFOCOM, 2017.

[42] Linghan Zhang, Sheng Tan, and Jie Yang. Hearing your voice is not enough:

An articulatory gesture based liveness detection for voice authentication. In

Proceedings of ACM CCS, 2017.

[43] Yeonjoon Lee, Yue Zhao, Jiutian Zeng, Kwangwuk Lee, Nan Zhang, Faysal Hos-

sain Shezan, Yuan Tian, Kai Chen, and XiaoFeng Wang. Using sonar for liveness

detection to protect smart speakers against remote attackers. Proceedings of ACM

IMWUT (UbiComp), 2020.

[44] Jiayao Tan, Xiaoliang Wang, Cam-Tu Nguyen, and Yu Shi. Silentkey: A new

authentication framework through ultrasonic-based lip reading. Proceedings of

ACM IMWUT (UbiComp), 2018.

[45] Bing Zhou, Jay Lohokare, Ruipeng Gao, and Fan Ye. Echoprint: Two-factor

authentication using acoustics and vision on smartphones. In Proceedings of ACM

MobiCom, 2018.

[46] Li Lu, Jiadi Yu, Yingying Chen, Hongbo Liu, Yanmin Zhu, Yunfei Liu, and Minglu

Li. Lippass: Lip reading-based user authentication on smartphones leveraging

acoustic signals. In Proceedings of IEEE INFOCOM, 2018.

[47] Li Lu, Jiadi Yu, Yingying Chen, and Yan Wang. Vocallock: Sensing vocal tract

for passphrase-independent user authentication leveraging acoustic signals on

smartphones. Proceedings of ACM IMWUT (UbiComp), 2020.

[48] Catherine P Browman and Louis Goldstein. Articulatory gestures as phonological

units. Phonology, 1989.

[49] Kristin J Teplansky, Brian Y Tsang, and Jun Wang. Tongue and lip motion

patterns in voiced, whispered, and silent vowel production. In Proceedings of

ASSTA ICPhS.

[50] Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. Lip

reading sentences in the wild. In Proceedings of IEEE CVPR, 2017.

[51] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath Gollakota.

Fingerio: Using active sonar for fine-grained finger tracking. In Proceedings of

ACM CHI, 2016.

[52] Xun Wang, Ke Sun, Ting Zhao, Wei Wang, and Qing Gu. Dynamic speed warping:

Similarity-based one-shot learning for device-free gesture signals. In Proceedings

of IEEE INFOCOM, 2020.

[53] Wenguang Mao, Jian He, and Lili Qiu. Cat: high-precision acoustic motion

tracking. In Proceedings of ACM MobiCom, 2016.

[54] Nirupam Roy, Haitham Hassanieh, and Romit Roy Choudhury. Backdoor: Making

microphones hear inaudible sounds. In Proceedings of ACM MobiSys, 2017.

[55] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury.

Inaudible voice commands: The long-range attack and defense. In Proceedings of

Usenix NSDI, 2018.

[56] Ke Sun, Chen Chen, and Xinyu Zhang. "Alexa, Stop Spying on Me!": Speech

Privacy Protection against Voice Assistants. In Proceedings of ACM SenSys, 2020.

172



ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Ke Sun, Xinyu Zhang

[57] Daniel Griffin and Jae Lim. Signal estimation from modified short-time fourier

transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984.

[58] Ingo R Titze and Daniel W Martin. Principles of voice production, 1998.

[59] Brian B Monson, Eric J Hunter, Andrew J Lotto, and Brad H Story. The perceptual

significance of high-frequency energy in the human voice. Frontiers in psychology,

2014.

[60] Chenhan Xu, Zhengxiong Li, Hanbin Zhang, Aditya Singh Rathore, Huining Li,

Chen Song, Kun Wang, and Wenyao Xu. Waveear: Exploring a mmwave-based

noise-resistant speech sensing for voice-user interface. In Proceedings of ACM

MobiSys, 2019.

[61] Fuming Chen, Sheng Li, Yang Zhang, and Jianqi Wang. Detection of the vibration

signal from human vocal folds using a 94-ghz millimeter-wave radar. Sensors,

2017.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of IEEE CVPR, 2016.

[63] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings

of IEEE CVPR, 2018.

[64] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural net-

works for one-shot image recognition. In ICML deep learning workshop, volume 2,

2015.

[65] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by

learning an invariant mapping. In Proceedings of IEEE CVPR, 2006.

[66] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In Proceedings of IEEE CVPR,

2017.

[67] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R Hershey. Sdr–half-

baked or well done? In Proceedings of IEEE ICASSP, 2019.

[68] Amazon Transcribe, 2019. https://aws.amazon.com/transcribe/.

[69] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of IEEE ICCV, 2015.

[70] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-

rispeech: an asr corpus based on public domain audio books. In Proceedings of

IEEE ICASSP, 2015.

[71] Aviv Gabbay, Asaph Shamir, and Shmuel Peleg. Visual speech enhancement. In

Proceedings of Interspeech, 2018.

[72] Emmanuel Vincent, Rémi Gribonval, and Cédric Févotte. Performance measure-

ment in blind audio source separation. IEEE transactions on audio, speech, and

language processing, 2006.

[73] Yi Luo and Nima Mesgarani. Tasnet: time-domain audio separation network for

real-time, single-channel speech separation. In Proceedings of IEEE ICASSP,

2018.

[74] Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen. A short-

time objective intelligibility measure for time-frequency weighted noisy speech.

In Proceedings of IEEE ICASSP, 2010.

[75] ITU-T Recommendation. Perceptual evaluation of speech quality (pesq): An ob-

jective method for end-to-end speech quality assessment of narrow-band telephone

networks and speech codecs. Rec. ITU-T P. 862, 2001.

[76] Yuan-Kuei Wu, Chao-I Tuan, Hung-yi Lee, and Yu Tsao. Saddel: Joint speech

separation and denoising model based on multitask learning. arXiv preprint

arXiv:2005.09966, 2020.

[77] Chris Lewis and Steve Pickavance. Implementing quality of service over cisco

mpls vpns. Selecting MPLS VPN Services, 2006.

[78] Pytorch Mobile, 2020. https://pytorch.org/mobile/home/.

[79] Siqi Wang, Anuj Pathania, and Tulika Mitra. Neural network inference on mobile

socs. IEEE Design & Test, 2020.

[80] Android Profiler, 2020. https://developer.android.com/studio/profile.

[81] Mayank Goel, Jacob Wobbrock, and Shwetak Patel. Gripsense: using built-in

sensors to detect hand posture and pressure on commodity mobile phones. In

Proceedings of ACM UIST, 2012.

[82] John D’Errico. Surface fitting using gridfit. MathWorks file exchange, 643,

2005. https://www.mathworks.com/matlabcentral/fileexchange/8998-surface-

fitting-using-gridfit.

[83] Best smartphones for audio, 2020. https://www.soundguys.com/best-smartphones-

for-audio-16373.

173


