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Abstract

Since the advent of atomic force microscopy [1], mechanical resonators have been

used to study a wide variety of phenomena, such as the dynamics of individual electron

spins [2], persistent currents in normal metal rings [3], and the Casimir force [4, 5].

Key to these experiments is the ability to measure weak forces. Here, we report on

force sensing experiments with a sensitivity of 12 zN/
√
Hz at a temperature of 1.2 K

using a resonator made of a carbon nanotube. An ultra-sensitive method based on

cross-correlated electrical noise measurements, in combination with parametric down-

conversion, is used to detect the low-amplitude vibrations of the nanotube induced by

weak forces. The force sensitivity is quantified by applying a known capacitive force.

This detection method also allows us to measure the Brownian vibrations of the

nanotube down to cryogenic temperatures. Force sensing with nanotube resonators

offers new opportunities for detecting and manipulating individual nuclear spins as

well as for magnetometry measurements.
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Force sensing with a mechanical resonator consists in converting a weak force F into a

displacement z that is measurable by electrical or optical means. Advances in microfabri-

cation in the late 1990’s made it feasible to reach a force sensitivity of 820 zN/
√
Hz with

ultra-soft cantilevers (1 zN= 10−21 N) [6, 7]. In spite of intensive efforts over the last decade,

progress in force sensitivity has been modest. These efforts include using new materials for

the resonator, such as diamond [8]; improving the displacement detection [9, 10], which

can reach an imprecision below that at the standard quantum limit; and developing novel

resonators, such as optically levitated nanospheres [11–13]. Optimizing both the resonator

and its readout have led to a record sensitivity of 510 zN/
√
Hz [9].

A promising strategy for measuring lower forces is to employ resonators made of a molec-

ular system, such as a carbon nanotube [14–18]. Nanotube resonators are characterized by

an ultra-low mass M , which can be up to seven orders of magnitude lower than that of the

ultra-soft cantilevers mentioned above [7], whereas their quality factor Q can be high [19]

and their spring constant k0 low. This has a great potential for generating an outstanding

force sensitivity, whose classical limit is given by

SF = 4kBTγ = 4kBT
√

Mk0/Q. (1)

Here kBT is the thermal energy and γ the mechanical resistance [7]. This limit is set

by the fluctuation-dissipation theorem, which associates Langevin fluctuating forces with

the irreversible losses existing in a resonator, quantified by Q. Such losses may originate,

for instance, from the phononic or the electronic thermal bath coupled to the resonator.

Measuring the thermal vibrations, i.e. the Brownian motion, of the resonator demonstrates

that its actual force sensitivity is limited by the Langevin fluctuating forces.

A challenge with resonators based on nanotubes is to detect their low-amplitude vibra-

tions, since these vibrations are transduced into electrical and optical signals that are small

and have to be extracted from an overwhelmingly large noise background. In particular, the

thermal vibrations of a nanotube have not been detected below room temperature [20]. The

best force sensitivity achieved thus far with nanotube resonators [15, 18] has been limited

by noise in the electrical measurement setup, and has not surpassed the record sensitivity

obtained with other resonators.

To efficiently convert weak forces into sizable displacements, we design nanotube res-

onators endowed with spring constants as low as ∼ 10 µN/m. This is achieved by fabri-
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cating the longest possible single-wall nanotube resonators. The fabrication process starts

with the growth of nanotubes by chemical vapor deposition onto a doped silicon substrate

coated with silicon oxide. Using atomic force microscopy (AFM), we select nanotubes that

are straight over a distance of several micrometers, so that they do not touch the underlying

substrate once they are released [21]. We use electron-beam lithography to pattern a source

and a drain electrode that electrically contact and mechanically clamp the nanotube. We

suspend the nanotube using hydrofluoric acid and a critical point dryer. Figure 1a shows a

nanotube resonator that is 4 µm long. We characterize its resonant frequencies by driving

it electrostatically and using a mixing detection method [18, 22]. The lowest resonant fre-

quency is 4.2 MHz (Fig. 1c). This gives a spring constant of 7 µN/m using an effective mass

of 10−20 kg, estimated from the size of the nanotube measured by AFM (supplementary

information). This spring constant is comparable to that of the softest cantilevers fabri-

cated so far [6]. When changing the gate voltage V DC
g applied to the silicon substrate, the

resonant frequency splits into two branches (Fig. 1c). These two branches correspond to the

two fundamental modes; they vibrate in perpendicular directions (inset to Fig. 1c).

We have developed an ultrasensitive detection method based on parametric down-

conversion, which (i) employs a cross-correlation measurement scheme to reduce the electri-

cal noise in the setup and (ii) takes advantage of the high tansconductance of the nanotube

in the Coulomb blockade regime to convert motion into a sizable electron current. Our

detection scheme, which is summarized in Fig. 2a, proceeds as follows. The oscillating

displacement of the nanotube, induced by the Langevin fluctuating forces, modulates the

capacitance Cg between the nanotube and the gate, which in turn yields a modulation δG of

the conductance of the nanotube. We apply a weak oscillating voltage of amplitude V AC
sd on

the source electrode at a frequency fsd a few tens of kHz away from the resonant frequency

f0. (We verify that the amplitude of the thermal vibrations does not change upon vary-

ing V AC
sd ; see supplementary information.) The resulting current fluctuations at the drain

electrode at frequency ∼ |fsd − f0| are described by

δI = V AC
sd δG = V AC

sd

dG

dVg

V DC
g

C ′

g

Cg

δz(t) cos(2πfsdt), (2)

where dG/dVg is the static transconductance of the nanotube, and δz the fluctuational

displacement along the z axis (Fig. 1c). In order to enhance δI, we select a nanotube that

features sharp Coulomb blockade peaks (Fig. 1b), so that dG/dVg is high for certain values
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of V DC
g . We then convert current fluctuations into voltage fluctuations across a resistor

R = 2 kΩ. This voltage signal is amplified by two independent low-noise, high-impedance

amplifiers. We perform the cross-correlation of the output of the two amplifiers using a fast

Fourier transform signal analyzer [23–25]. As a result, the voltage noise of the amplifiers

cancels out, while the weak signal of the thermal vibrations can be extracted from the noise

background (see the supplementary information for details). This procedure allows us to

measure the power spectral density of current fluctuations through the nanotube, which

reads SI = 〈δI2〉 /rbw. Here, rbw is the resolution bandwidth of the measurement and

〈δI2〉 is the mean square Fourier component of the time-averaged current cross-correlation

at frequency ∼ |fsd−f0|. Figures 2b,c show the resonance of the thermal vibrations at 1.2 K

for the two modes characterized above, which are hereafter labeled mode 1 and mode 2. The

lineshapes are well described by a Lorentzian function.

We observe the coupling between thermal vibrations and electrons in the Coulomb block-

ade regime by collecting SI spectra as a function of V DC
g for these two modes (Figs. 3a,b).

The resonant frequency of mode 2 oscillates as a function of V DC
g with the same period as

the conductance oscillations (Fig. 3c) while this dependence is monotonous for mode 1. As

for damping, the resonance lineshape of mode 2 is much wider than the resonance lineshape

of mode 1. This is readily seen in Figs. 2b,c, where we measure Q = 13, 000 for mode 2 and

Q = 48, 000 for mode 1. To understand why mode 1 and mode 2 exhibit distinct features,

we recall that Coulomb blockade enhances the coupling between vibrations and electrons in

the nanotube [16, 17, 26], causing oscillations in resonant frequency as well as additional

dissipation. The magnitude of both effects scales with the modulation of Cg induced by the

nanotube vibrations, that is, with the nanotube displacement projected onto the z direction

perpendicular to the gate. The distinct behaviors measured for modes 1 and 2 indicate

that mode 1 essentially vibrates parallel to the direction of the gate while mode 2 vibrates

perpendicularly to it (inset to Fig. 1c). The angle θ between the vibrations of mode 1 and

the direction parallel to the gate can be estimated by comparing the integrated areas of the

measured spectra of modes 1 and 2, which also depend on Cg. This results in θ = 19.5◦± 2◦

in the studied range of V DC
g (see the supplementary information).

We then measure the force sensitivity of the resonator using a calibrating force. For this,

we apply a capacitive force on mode 1 of amplitude Fd = C ′

gV
DC
g V AC

g sin θ, with V AC
g (t)

a small oscillating gate voltage at the resonant frequency of mode 1. We perform the
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calibration with this mode, since its high Q leads to higher force sensitivity. As a result,

the driven vibrations appear as a sharp peak superimposed on the thermal resonance in the

〈δI2〉 spectrum of mode 1 (Fig. 4a). The square root of the height of this peak, Ipeak, scales

linearly with V AC
g , as expected (Fig. 4b). By comparing the height of the driven peak with

that of the thermal resonance using

SF =
thermal resonance height

driven peak height
× F 2

d /rbw, (3)

we obtain
√
SF = 12± 8 zN/

√
Hz at T = 1.2 K. Here, we use C ′

g = 1.2(±0.4)× 10−12 F/m,

estimated from the spacing in gate voltage between the Coulomb blockade peaks and the

effective distance between the nanotube and the gate. The uncertainties in
√
SF reflect

imprecisions in C ′

g, θ, and the heights of the driven peak and the thermal resonance. See the

supplementary information for details on the measurement of the force sensitivity. Within

the experimental uncertainties, the measured force sensitivity is in agreement with the value

expected from the fluctuation-dissipation theorem (Eq. 1), which is 23 ± 5 zN/
√
Hz. The

latter uncertainties reflect imprecisions in the effective mass of the nanotube (supplementary

information) and the temperature.

By raising the temperature to 3 K, the Langevin fluctuating forces increase. Using

the measurement method employed at 1.2 K, we obtain a force sensitivity of 38 zN/
√
Hz

(Figs. 4c,d). This is in agreement with the value expected at 3 K from SF (3K) =

SF (1.2K)Q(1.2K)
Q(3K)

3K
1.2K

according to Eq. 1, where we use the force sensitivity measured at

1.2 K and the quality factors extracted from the resonances at 1.2 and 3 K.

Measuring the thermal vibrations of nanotube resonators sheds new light on their dy-

namics. Different sources of noise in nanomechanical resonators were discussed in Ref. [27].

Our finding that the resonance lineshape is well described by a Lorentzian function at low

temperature implies that nonlinear damping is negligible [18], the Duffing nonlinearity is

weak, and the frequency noise is Gaussian and white [28].

Carbon nanotube resonators enable an unprecedented force sensitivity on the scale of

10 zN/
√
Hz at 1.2 K. We anticipate that the sensitivity will improve by at least a factor

of 10 by operating the resonator at milliKelvin temperatures. Indeed, the quality factor

of nanotube resonators is enhanced at these temperatures [19], so that both low T and

high Q reduce SF . Nanotube resonators hold promise for resonant magnetic imaging with

single nuclear spin resolution [2, 29–31]. If our nanotube resonator can be implemented
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in the experimental setups described in Ref. [2, 30] without degrading the force sensitivity

achieved in the present work, it should be feasible to detect a single nuclear spin [8]. A first

step in this direction will be to manipulate the nuclear spins of 13C atoms naturally present

in nanotubes using the protocol reported in Ref. [31]. These resonators may also be used

for ultra-sensitive magnetometery measurements of individual magnetic nanoparticles and

molecular magnets attached to the nanotube.
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FIG. 1: Nanotube resonator with low spring constant. (a) Atomic force microscope image

of a 4 µm long nanotube prior to removing the silicon oxide (top), and schematic of the device

(bottom). (b) Conductance G of the nanotube as a function of gate bias V DC
g at 1.2 K. (c) Resonant

frequency f0 as a function of V DC
g in the presence of a driving force (data obtained by measuring

the mixing current with the frequency-modulation technique [18, 22]). The two lowest frequency

modes are shown. We indicate the resonant frequency of mode 1 with dashes for V DC
g ranging from

-2 to -1 V, because the mixing current is weak and is difficult to see in the figure. The resonant

frequency is highly tunable, as it can be changed by 100% when varying V DC
g by only 1.5 V. Inset:

modes 1 and 2 vibrate along perpendicular directions; mode 1 vibrates at an angle θ with respect

to the y direction, which runs parallel to the gate.
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FIG. 2: Measuring thermal vibrations. (a) Schematic of the cross-correlation measurement

setup. (b,c) Power spectral density SI of current fluctuations for modes 1 and 2 at 1.2 K, centered

at the mode’s resonant frequency. We apply V DC
g = −0.854 V and V AC

sd = 89 µV. Mechanical

quality factors are Q = 48, 000 for mode 1 and Q = 13, 000 for mode 2. We find that the quality

factor of mode 2 oscillates as a function of V DC
g between 8,000 and 20,000 with the same period as

the conductance oscillations. Since the signal is weaker for mode 1, the resonance can be clearly

resolved only over a limited range of V DC
g .
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FIG. 3: Electron-vibration coupling in the Coulomb blockade regime. (a,b) SI spectra

showing the resonant frequency f0 as a function of V DC
g at 1.2 K for modes 1 and 2. (c) Conduc-

tance G as a function of V DC
g at 1.2 K. SI in (a,b) strongly depends on dG/dVg , as expected from

Eq. 2. We estimate the variance of the displacement of the thermal vibrations to be ≃ (1.1 nm)2

from the equipartition theorem. We obtain a similar variance by converting the SI spectra into dis-

placement fluctuations. This conversion, which depends on various parameters obtained separately,

is discussed in the supplementary information.
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FIG. 4: Force sensing experiment. (a) The square amplitude
〈

δI2
〉

of the Fourier transform of

the current cross-correlation at 1.2 K in the presence of a driving force at the resonant frequency

of mode 1 (
〈

δI2
〉

= SI × rbw). The driven vibration signal is indicated in red while the thermal

vibration signal is indicated in blue. We apply V AC
sd = 89 µV, V DC

g = −0.854 V, and V AC
g =

70 nVrms, and set rbw = 4.69 Hz. (b) The square root of the driven resonance height in (a),

measured as a function of oscillating voltage V AC
g applied to the gate. Also shown is the driving

force estimated from V AC
g . (c) and (d) are analogous to (a) and (b) at 3 K. The voltage V AC

g

induces a current of purely electrical origin (supplementary information), whose contribution is

negligible. This electrical contribution, which can be measured with a drive off resonance, can be

detected only for exceedingly large V AC
g .
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