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Abstract

The complex neuronal circuitry connected by sub-micron synapses in our brain calls for 

technologies that can map neural networks with ultrahigh spatiotemporal resolution to decipher the 

underlying mechanisms for multiple aspects of neuroscience. Here we show that through 

combining graphene transistor arrays with scanning photocurrent microscopy, we can detect the 

electrical activities of individual synapses of primary hippocampal neurons. Through measuring 

the local conductance change of graphene optoelectronic probes directly underneath neuronal 

processes, we are able to estimate millivolt extracellular potential variations of individual synapses 

during depolarization. The ultrafast nature of graphene photocurrent response allows for decoding 

of activity patterns of individual synapses with a sub-millisecond temporal resolution. This new 

neurotechnology provides promising potentials for recording of electrophysiological outcomes of 

individual synapses in neural networks.
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The central nervous system in human brains is composed of billions of neurons with trillions 

of dendritic spines and synapses. Interestingly, emerging data indicate that individual 

synaptic connections are unique and can display different activities;1–3 thus, it is important 

to correlate the functional connectivity map of neural networks with the physiological or 

pathological behaviors of individual spines and synapses. This requires recording of the 

electrical activities of individual synapses/spines with high spatiotemporal resolution and 
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electrical sensitivity, which poses significant challenges to neurotechnology. Existing 

methodologies for measuring the electrical activity of neurons fall into three main 

categories: optical imaging, patch-clamp recording, and microelectrode arrays (MEAs). 

Optical imaging based on voltage- and calcium-sensitive dyes offers high throughput in 

terms of simultaneous sampling of axons and dendrites of multiple neurons,4 but suffers 

from a trade-off between the electrical sensitivity and temporal resolution.5 Patch-clamp 

recording can provide an accurate readout of the entire dynamic range of voltages generated 

by cells with pico-ampere-current sensitivity and sub-millisecond temporal resolution.6 

However, classic approaches are invasive and require the use of bulky micromanipulators, 

limiting their use to snapshots of few neurons over limited amount of time. In contrast, cell-

non-invasive MEAs enable simultaneous stimulation and recording of large populations of 

neurons for days and months without mechanical damage.7 To improve the electrical 

coupling between neurons and electrodes, penetrating MEAs have been developed to 

improve the stimulation effectiveness and recording qualities.8–9 Another way is to use the 

gate electrode of a field-effect transistor (FET) as the sensing element.10–13 Still, it is 

challenging to reduce transistor/electrode size for recording of electrical activity of 

individual synapses and spines with high electrical sensitivity. Therefore, it is crucial to 

develop a sensing scheme to study electrical activities of individual synapses with high 

spatial accuracy and high electrical sensitivity.

Recently, graphene has gained tremendous attention due to its extraordinary electrical, 

mechanical, and optical properties. A unique advantage of graphene is that its entire volume 

is exposed to the environment, which maximizes its sensitivity to local electrochemical 

potential change. For example, graphene FETs are capable of detecting individual gas 

molecules, owing to its high surface-area-to-volume ratio and high electron mobility.14–17 

The high electron mobility also enables graphene FETs to operate up to 500 GHz,18–19 

leading to high temporal resolution (pico-second). Importantly, monolayer graphene 

transmits more than 97% of incident light,20 making it compatible with optical imaging. All 

these unique properties, together with the demonstrated excellent biocompatibility,21–29 

make graphene an ideal candidate to address the challenge of sensing the electrical activities 

of individual synapses in neural networks.

Through directly culturing primary hippocampal neurons on graphene FET arrays and 

probing the local electrical conductance change at the graphene-synapse junctions via 

scanning photocurrent microscopy, we demonstrate the capability of recording the electrical 

activities of individual synapses (~800 nm, determined by the diffraction-limit of a laser 

spot). The ultrafast nature of graphene photocurrent response allows decoding a single 

waveform that may coincide with action potentials from the bursts of individual synapses 

and spines with a sub-millisecond temporal resolution. Importantly, we show that the 2D 

nature of graphene enables recording of the millivolt extracellular potential changes of 

randomly-distributed individual synapses/spines.

In our studies, we integrated graphene transistor arrays with a microfluidic neuron-glia co-

culture platform (Fig. 1A) that could dynamically image spine and synapse formation 

through separately transfecting two populations of neurons with pre- and post-synaptic 

markers.30–31 High-quality graphene was synthesized via a standard chemical vapor 
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deposition method32–33 and transferred onto 170 µm thick transparent coverslips with pre-

patterned gold electrodes,34 forming graphene FETs that were then aligned and bonded with 

the top microfluidic polydimethylsiloxane (PDMS) structure. Direct transfer of graphene 

prevents contamination during device fabrication to achieve ultraclean carbon surfaces; and 

the glass coverslip substrate allows for scanning photocurrent measurements from the lower 

surface to detect the local photoconductance of graphene (Fig. 1B) via an oil immersion 

objective to achieve a diffraction limit of ~800 nm.35 We used Raman spectroscopy to 

inspect the quality and thickness of graphene on a coverslip with a 532 nm laser. As shown 

in Fig. S1A, the 2D peak has a symmetric shape and the 2D-to-G intensity ratio is about 2, 

indicating that the as-grown graphene has a monolayer structure.36–37 Next, we tested the 

electrical response of the graphene transistors in our microfluidic chambers by including a 

large gold pad that acted as an electrolyte gate to modulate the electrochemical environment 

of graphene. Gate-dependent conductance measurement of a typical graphene transistor 

displayed p-type semiconducting characteristics (Fig. S1D), consistent with previous reports 

of electrolyte-gated graphene transistors.38–39

To probe electrical activities of neuronal processes with these graphene FETs, we co-

cultured primary embryonic hippocampal neurons with glia to maintain healthy cultures that 

make direct contact with graphene transistors. In our microfluidic platforms, the graphene 

transistors were positioned underneath a middle channel that was between two inner 

chambers with neurons (Fig. 1A and 1C). The neurons in these two chambers were 

separately transfected with plasmid constructs expressing either mCherry-synaptophysin 

(red, Fig. 1D), a pre-synaptic marker, or mCerulean (blue, Fig. 1E), which marks dendritic 

spines containing post-synaptic densities. Glia were loaded into the two outer chambers to 

support the growth and differentiation of the hippocampal neurons. The mid-channel and 

cell chambers are separated by PDMS valve barriers with microgrooves underneath them, 

which can be controlled to be either closed or open by the hydraulic pressure in a control 

chamber constructed on top of the cell culture layer. In the closed position, the valve barriers 

completely isolated the chambers for separate culture or treatment of each cell population.40 

When the valve barriers were in the open position, the microgrooves connected the 

chambers, allowing for interactions and communication between cells in different chambers. 

After 8 to 12 days in culture, neuronal processes extended toward the adjacent chambers and 

contacted each other in the mid-channel. We then used fluorescence microscopy to visualize 

synaptic contacts between mCherry-synaptophysin (red) and mCerulean (blue) (Fig. 1F–

1H). In addition, GFP-GCaMP6s (a fluorescence Ca2+ indicator, green, Fig. 1I) was also 

used to characterize synaptic activities.

After locating individual spines and synapses using optical and fluorescence microscopy 

(Fig. 2A–2D), we measured the photocurrent response of the graphene transistor underneath 

these spines and synapses (Fig. 2E). Here the neuronal activity initiated action potentials 

along their axons that could change local electrochemical environments, influencing the 

local charge carrier concentration of graphene and thus modifying its local energy band 

diagram (Fig. 2F). When a diffraction-limited laser spot (λ = 785 nm) scanned over a 

graphene transistor through a piezo-controlled mirror with nanometer-scale spatial 

resolution, a photocurrent signal occurred wherever the graphene energy band bended; the 

built-in electric field separated photo-excited electron and hole pairs (EHPs), and thus 
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produced an electric current.41 We extracted band diagrams (EF−EDirac) through numerical 

integration of photocurrent profiles.39, 41 The electron energy of graphene follows a linear 

dispersion near the Dirac point, with a Fermi energy of E
F

− E
Dirac

≈ ℏv
F

πn, where 

vF≈106m/s is the Fermi velocity and n is the charge carrier concentration.42 We then 

calculated the local charge (Q = ne) of graphene from photocurrent data and derived a local 

potential (V = Q/C), where C is a combination of the electrostatic capacitance between the 

graphene and a synapse/spine and the quantum capacitance of the graphene. The minimum 

quantum capacitance CQ,min is about 6.5µF/cm2,43 and the double layer capacitance of the 

electrolyte Ci is approximately 20µF/cm2.44 Thus, the total capacitance C is ~4.9µF/cm2. If 

we simply use the graphene transistor without the scanning photocurrent scheme as our 

sensing approach, then we face a major challenge that the local ion concentration change has 

to provide enough charge to affect the conductance of the entire graphene membrane 

between the source and drain electrodes. In contrast, introducing scanning photocurrent 

microscopy allows for probing of the local conductance of a small area of graphene piece, 

which corresponds to a region of the diffraction-limited laser spot of about 0.8µm in 

diameter. For such a small piece of graphene as an optoelectronic probe, the maximum 

corresponding capacitance is ~25fF, leading to ultrahigh electrical sensitivity.

Our results show remarkable photocurrent signals generated at spots where spines and 

synapses were located (Fig. 2E), indicating that our approach can be used to detect electrical 

activities of individual synapses and spines with submicron spatial resolution. We then 

compared our photocurrent scheme with traditional fluorescence-based imaging approaches. 

The local potential of neuronal membranes increased upon high-K+ stimulation, which led to 

changes in both the fluorescence intensity of GFP-GCaMP6s (Fig. 2G–2H) and in the 

photocurrent response of graphene-synapse junctions (Fig. 2I–2K) as we switched between 

high-K+ and low-K+ media in the chamber (the total ionic concentration was kept as a 

constant), underscoring the validity of our approach. Interestingly, even though the 

photocurrent measurements follow the same general trend, the electrical responses of 

individual synapses vary from synapse-to-synapse during depolarization (Fig. 2H), which is 

interesting and will be further explored. Note that after two depolarization cycles the 

fluorescence signal was photobleached, but the electrical response of individual spines and 

synapses could still be detected by photocurrent measurements. Importantly, we could derive 

the local extracellular membrane potential changes (~2 mV) during the depolarization from 

our photocurrent measurements (for details, see SI).

To examine the temporal resolution of graphene optoelectronic probes, we studied 

chemically-evoked bursts by raising the extracellular K+ concentration from 4 mM to 60 

mM. In our experiments, DIC and fluorescence images were used to identify a synaptic 

contact (Fig. 3A–3F), and the laser beam was then focused on the corresponding graphene-

synapse junction to collect the photocurrent responses every 50 µs to record the local 

electrical activity at the junction. As shown in Fig 3H, bursts occurred when the extracellular 

K+ concentration increased to 60 mM; and these bursts disappeared when the extracellular K
+ concentration was reduced to 4 mM. We also found that no burst was observed in the 

second and third cycles, which could be due to the cytotoxic effect of high-K+ concentration.
45–48 The high electrical sensitivity and temporal resolution of graphene optoelectronic 
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probes also allowed us to decode the detailed spontaneous waveform of each burst. As 

shown in Fig. 3I, the burst has a waveform with a width about 2–3 ms, whose shape is 

similar to an action potential with a maximum extracellular potential change of ~14 mV (for 

details, see SI). Interestingly, synapses responded differently in the high-K+ concentration 

media. For example, chemically-evoked bursts of another graphene-synapse junction, which 

was identified by DIC and photocurrent images (Fig. 4A and 4B), were observed at regular 

intervals with a frequency of 0.2 Hz (Fig. 4C). After the extracellular K+ concentration was 

reduced to 4 mM, the bursts disappeared. We also found that the burst intensity and 

frequency decreased in the second 90 mM cycle, while no burst was observed in the third 

and fourth cycles. Close examination of the bursts reveals that each burst includes a series of 

peaks with widths of 2–10 ms, which is likely related to action potentials or postsynaptic 

responses.

In conclusion, by combining graphene transistor arrays with scanning photocurrent 

microscopy, we created a unique approach that can record electrical activities of individual 

synapses with a sub-millisecond temporal resolution and high electrical sensitivity. We 

demonstrated the power of this sensing scheme by probing the electrical responses of 

individual spines and synapses in primary embryonic hippocampal neuron cultures at rest 

and during depolarization. Importantly, we were able to decode detailed waveforms of the 

chemically-evoked bursts of individual synapses during depolarization. Furthermore, the 2D 

nature of graphene allows recording of randomly-distributed individual synapses/spines. As 

such, this new neurotechnology provides the potential capability of large-area mapping with 

a high spatiotemporal resolution to explore neural networks with detailed information of 

activities and signal events at a single-synapse level. This technology should also be able to 

probe many other cellular systems involving cell-cell interactions through electrical 

signaling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) Schematic of a four-chamber neuron-glia co-culture microfluidic device with integrated 

graphene transistors. (B) Schematic of scanning photocurrent measurements. A diffraction-

limited laser spot passes through a transparent coverslip to scan over the graphene 

underneath neurons. (C) Differential interference contrast (DIC) of a graphene transistor 

underneath neural networks. The two black rectangles are opaque Au electrodes that are 

underneath the graphene membrane. Neurons, at day 5 in culture, were differentially 

transfected with (D) mCherry-synaptophysin (red) and (E) mCerulean (blue), maintained in 

co-culture with glia. Zoom-in fluorescence images of a magenta square region in Fig. 1E: 

(F) mCerulean (blue); (G) mCherry-synaptophysin (red); (H) overlay of mCerulean and 

mCherry-synaptophysin; and (I) GFP-GCaMP6s (green).
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Fig. 2. 
(A) DIC and (B) fluorescence (GFP-GCaMP6s, green) images of neurons, at day 8 in 

culture, on top of a graphene transistor. Zoom-in (C) DIC, (D) fluorescence, and (E) 
photocurrent images of the white square regions in Fig. 2A and 2B. Three synapses/spines 

are marked by blue, red, and green circles, respectively. (F) Schematic of band structures of 

graphene. The black dotted line denotes the Fermi level and the solid line shows the 

graphene band diagram. A local electrochemical potential change induced by a synapse/

spine results in the local carrier concentration changes of graphene, leading to the graphene 

energy band bending and subsequent photocurrent generation. Fluorescence intensity 

changes when the neurons were exposed to 4 mM K+, 60 mM K+, 4 mM K+, and 60 mM K
+, respectively. Red triangles and green spheres represent the fluorescence intensities of 

synapses/spines at spots two (G) and three (H) in Fig. 2D. Photocurrent responses of three 

graphene-synapse junctions upon three high-K+ stimulation cycles (4–60–4–60–4–60–4). (I) 
Blue squares, (J) red triangles, and (K) green spheres represent the photocurrent responses 

of graphene-synapse junctions at spots with the corresponding color in Fig. 2E. ∆Ipc is the 

difference between the maximum (red) and minimum (blue) photocurrent response.
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Fig. 3. 
(A) DIC image of neurons, at day 9 in culture, atop a graphene transistor. Zoom-in 

fluorescence images of the black square region in Fig. 3A: (B) mCherry-synaptophysin 

(red); (C) mCerulean (blue); (D) overlay of mCerulean and mCherry-synaptophysin; and (E) 
GFP-GCaMP6s (green). Detailed fluorescence (F) and photocurrent (G) images of the 

magenta square region in Fig. 3D. (H) Photocurrent responses of a graphene-synapse 

junction (white triangles in Fig. 3F and 3G) upon three high-K+ stimulation cycles (4–60–4–

60–4–60). (I) Spontaneous waveform of a spike burst indicated by a magenta arrow in Fig. 

3H.
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Fig. 4. 
(A) DIC and (B) zoom-in photocurrent images of neurites, at day 8 in culture, on top of a 

graphene transistor. (C) Photocurrent responses of a graphene-synapse junction (a black 

triangle in Fig. 4B) upon three high-K+ stimulation cycles (90–4–90–4–90–4). (D) 
Spontaneous waveform of a spike burst indicated by a blue dotted rectangular in Fig. 4C.
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