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Abstract 

We report here on the results of a study into the response of a tungsten oxide based low 

power MEMS gas sensor to ppb of nitrogen dioxide at low levels of ambient oxygen. It was 

found that the resistive gas sensors not only had a high sensitivity to NO2 (3.4%/ppb vs. 

0.2%/ppb obtained for commercial MOX) but can still operate reliably at lower oxygen levels 

(down to 0.5 %) albeit with slightly longer response and recovery times. The optimal 

operating temperature was determined to be ca. 350°C and so easily within the range of a 

MEMS based SOI CMOS substrate. The response was sensitive to significant changes in 

ambient humidity, but was found to have low cross-sensitivity to CO, hydrogen, methane, 

and acetone even at much higher ppm levels.  We believe that these tungsten oxide gas 

sensors could be exploited in harsh applications, i.e. with a low oxygen (lean) environment 

often associated in the exhaust gases from combustion systems.    
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1. Introduction 

The gas nitrogen dioxide (NO2) is an increasing problem for air quality in our cities. The 

gas can cause various problems such as damage to our lungs, smog or acid rain and, is 

principally formed from the combustion of fossil fuels in internal combustion engines, along 

with other forms of NOx such as NO and N2O [1]. For example as little as 50 ppb can inflame 

the airways in lungs [2]. Several types of NOx gas sensors have been developed and 

commercialised including metal oxide semiconductors and solid electrolytes [3-6]. Among 

metal oxide semiconductors, specifically those based on WO3 are of particular interest due to 

their structural simplicity, high sensitivity, low cost and potential durability for operation 

under extreme conditions [7-9].  

Nanostructured metal oxide semiconductors are widely used for the fabrication of sensors 

for the detection of both oxidising (such as NO2) and reducing gases (such as CO) [10]. The 

sensitivity to gases arises from the formation of a depletion region on the boundary between 

the n-type semiconducting metal oxide grains according to the reaction with atmospheric 

oxygen that takes place above 100 °C [11, 12]: 

 

½ O2 + e
-
  [O

-
]           (1) 

 

The concentration of chemisorbed oxygen [O
-
] is believed to control directly the level of 

lattice defects and to relate to the concentration of free electrons that in turn controls the 

width of the depletion layer [7]. When an oxidising gas is introduced to an n-type 

semiconductor surface, the concentration of electrons on the surface decreases and the 

resistance of the n-type semiconductor increases. Since WO3 is an n-type semiconductor like 

tin dioxide it means that NO2 forms anionic adsorbates on the surface of WO3 grains 

according to a schematic reaction: 

 

R(gas)  + e
-

(from surface)  " R
-
 
   

       (2) 

 

where R means the oxidising gas (e.g. NO2) and R
-
 means the anionic adsorbate on the 

surface (e.g. NO2
-
).  

Our work focuses on the detection of NO2 when the partial pressure of oxygen is 

much less than ambient, in other words when there is a lean environment. This is often the 

case following a combustion process where most of the air is converted into CO2. This 
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condition of low oxygen levels is one that has not been widely investigated for metal oxide 

gas sensors. 

We have studied experimentally the response of WO3 based CMOS gas sensors to 

ppb levels of NO2 at different oxygen levels. We have also investigated the cross-sensitivity 

to other gases at much higher levels as well as ambient humidity. In addition, we 

reportcompare the resultsperformance againsts for the commercial sensors (MiCS-2714 

supplied by SGX Sensortech).  

 Recently SAW based NO/NO2 sensor has been shown to detect down to 1 ppb but 

suffer from a high temperature sensitivity and higher cost to manufacture [13]. Furthermore 

room temperature sensing is generating much research interest, in particular combining 

MOX, CNT and graphene [14], but it generally suffers from slower response times, poor 

baseline stability, and high humidity dependence. 

  

2. Material and Methods 

2.1. DC measurements 

The typical sensing method for semiconducting metal oxide gas sensors is the 

measurement of DC resistance or conductance. In this study, a low power MEMS based 

micro-hotplate gas sensor was used, and the operating temperature was controlled by an 

adjustable constant current circuit. The micro-hotplate is shown in Fig. 1(a) (CCS09C, 

Cambridge CMOS Sensors Ltd). The MEMS structure was fabricated in a commercial 

foundry and is based on silicon on insulator (SOI) technology [15]. In the membrane 

structure, a tungsten resistive micro-heater is embedded within a 5 mm thick metal/oxide 

stack ensuring a low DC power consumption (e.g. 65 mW at 600 °C). The membrane is 

fabricated via a post CMOS deep reactive ion etch (DRIE) and both mechanically supports 

and thermally isolates the heater from the sidewalls. The MEMS micro-hotplate can reach 

temperatures well in excess of 500 °C and has a sub-5V controlled temperature ramp 

capability of 30 ms heating time and 60 ms cooling time from ambient to 500 °C.   

 

2.2.Sample preparation 

WO3 powder (New Metals and Chemicals Ltd.) was mixed with an organic dispersant 

ESL 400 to obtain a paste. The weight ratio of the powder and the organic dispersant was 1:2. 

The paste was drop caste onto the 1 mm by 1 mm silicon die, which consisted of gold 

interdigitated electrodes on top of the membrane as a single-chip solution (Figs. 1(a) and 
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1(b)). After deposition of the WO3 paste the substrate was left to dry in air at room 

temperature for ~12 h followed by annealing at 450 °C for 1 h, and then at 350 °C for about 

23 h under ambient air to obtain the sensor element consisting of n-type WO3. Fig. 1 (c) 

shows a scanning electron micrograph of the annealed paste with a porous microstructure. 

Finally, the silicon die was wire-bonded onto a standard TO-46 header (Fig. 1 (d)).  

 

Figure 1 near here 

 

2.3. Gas tests 

The gas sensing measurements were performed at the Microsensors and Bioelectronics 

Laboratory at the University of Warwick using fully-automated custom rig (Fig. 2). The 

CMOS micro-hotplate substrates mounted on TO46 packages were connected to a custom 

made printed circuit board. Both the micro-heater and chemiresistor were driven/measured 

using National Instruments DAQ hardware and software. The gas sensing properties of the 

sensor element were characterised using a flow type sensing measurements apparatus. The 

gas sensor was placed inside an aluminium sample chamber equipped with standard 

Swagelock
TM

 gas inlet and outlet connectors.  Synthetic air or nitrogen was introduced into 

the sample chamber for 5 min and then a gas mixture of NO2 in air was injected for 5 min in 

steps of varying concentrations of 250, 100, 50, 25 and 10 ppb. The total gas flow rate was 

1.2 slpm and the measurements were performed at room temperature in dry conditions and 

then at 50% and 25% relative humidity (RH). A LabView (National Instruments) interface 

allowed fully automated control of the digital mass flow controllers of the gas testing system.  

 

Figure 2 near here 

 

3. Results and Discussion 

3.1. Response for Detecting NO2 in Air 

In this work, the sensor response (S) is defined as the ratio RNO2/Rair or RNO2 /RN2 where 

Rair, RNO2 and RN2 are the electrical resistance of the tungsten oxide in air, nitrogen dioxide 

and nitrogen, respectively. Initially the WO3 based sensors were exposed to NO2 at 

concentrations ranging from 10 to 250 ppb in 50% RH air; to obtain the optimum working 

temperature of the sensor, as shown in Fig. 3(a). The sensor response initially increased with 

increasing heater temperature and then gradually decreased with further increases in 



5 

 

temperature. The maximum sensor response S was found to be about +525% for 100 PPB at 

300 °C. In addition, the response (t90) and recovery (t10) times were determined for 100 ppb 

of NO2 at 300 °C (Fig. 3(b)) and found to be 40 s and 205 s, respectively and, significantly 

decreased with the increasing operating temperature. The response time ranged from 35 to 15 

s and the recovery time from 84 to -29 s across the temperature range of 350 to 450 °C. It was 

decided to operate the sensor at the working temperature of 350°C rather than 300°C to 

enhance significantly the recovery time.   

 

Figure 3 near here 

 

The time-dependent resistance change of WO3 laboratory sensors to NO2 pulses in dry and 

25% RH air is shown in Fig. 4(a). When NO2 gas was introduced, the resistance of the WO3 

sensor element increased with increase in the concentration of NO2. This is a typical response 

of an n-type oxide towards an oxidising gas, leading to RNO2 > Rair (or RN2). For comparison,  

commercial NO2 sensors models of (SGX Sensortech senso, r (MiCS-2714) that consist of a 

metal oxide sensing layer were tested using the same gas concentrations and heating power 43 

mW (Fig. 4(a)). The response of semiconductor metal oxide gas sensor is empirically 

represented by the following power law [11]: 

 

S = 1 + Ag Cg 
b
                      (3) 

 

where Ag is a prefactor that depends on the type of the sensing material, the operating 

temperature, and the type of gas interacting with the sensor. 
 
Cg is the gas concentration and b  

is the exponent factor, and its ideal value of 0.5 or 1 depends on the charge state of surface 

oxygen species and the stoichiometry of the elementary reactions on the surface [16]. 

According to the above power law equation, the value of b from the experimentally measured 

response versus concentration plot (Fig. 4(b)) was 0.988. This value of b exponent is close to 

theoretical value of 1 suggesting that the chemisorbed surface oxygen species are nearly all in 

the O
-
 state. The responses at 10 ppb and 250 ppb are calculated to be 1.2 and 4.5, 

respectively (Fig. 4(b)). The sensitivity S’ of a gas sensor is defined as the derivative of the 

response S to the gas concentration and in this study is presented in percentage and varies 

between 1.9 and 1.4 % ppb
-1

 for the concentration range 10-250 ppb.  
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Figure 4 near here 

 

This sensor performance is muchsignificantly better compared to the results from the 

commercial sensors and also better than generally reported in the literature. For example, 

Akiyama et al. [1] fabricated a sintered WO3 film which was found to be sensitive to 80 ppm 

NO2 in air at 300 °C. Tamaki et al. [17] studied the effect of the grain size of WO3 on the 

response of a sensor to NOx. The crystallite size varied between 20 and 57 nm and the grains 

were most sensitive to target gases in 5-10 ppm range at 25 nm size. Cantalini et al. [18] also 

demonstrated sensitivity of the sensor based on thin WO3 film to NO2 gas between 0.7 and 5 

ppm at 250 °C whereas thick-film sensors made by Chung et al. [19] using a screen printing 

method showed sensitivity to 100 pm NO2  in air at 100°C. The commercial NO2 sensors, 

tested alongside the WO3 laboratory sensors, performed poorly by comparison. The devices 

did not produce a stable response over the duration of our experiments, regardless of RH 

condition. The significant baseline drift and slow response to NO2 presence prevented the 

identification of concentrations less than 100 ppb.  

In the past decade, WO3 nanostructures with large surface-to-volume ratios have also 

been considered for gas sensing applications. Although they show high response to NO2 in 

sub ppm range, they require the use of expensive and complicated synthetic methods such as 

thermal evaporation [20], vapour transport [21] and templating [22]. To the best of our 

knowledge, WO3 sensors capable of measuring NO2 in ppb range can be currently obtained 

using either screen-printed films of few tens of microns thick with very fine microstructure 

and large porosity [23] or nanowires structure of WO3 directly grown onto MEMS hotplates 

by using chemical vapour deposition method [24]. 

In our sensors, the enhanced sensing properties are likely achieved due to the small grain 

size. The obtained surface of WO3 grains becomes more reactive and likely to adsorb the 

oxygen and form ionised oxygen species. On the other hand, our several mm thick WO3 

active layer has a form of porous structure on the interdigitated electrodes and this enhances 

the diffusion of NO2 in the sensing body and enables the process to reach the inner part of the 

film. The heat transfer should also be better in such kind of porous structures, so the 

temperature of the film should be uniform. Our initial experiments showed that the annealing 

temperatures did not show the effect on the sensor response, while the increase in the 

annealing time had positive effects on the sensitivity, cross sensitivity and long term stability 

properties. 
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3.2 Response for Detecting NO2 in Low Oxygen Environment 

Further NO2 sensing experiments were carried out in low oxygen environment. The time-

dependent resistance change to NO2 pulses (100-10 ppb) in 25% RH N2 with 0.5, 1 and 2 % 

of O2 measured at 350 °C is shown in Fig. 5(a). Sensitivity at 100 ppb varied between 3.4 and 

3.1 % ppb
-1

 for the O2 concentration range 0.5 - 2%. The sensor response remained almost 

unchanged when exposed to NO2 in 25% RH N2 when 0.5 and 1% of O2 was introduced, and 

did not significantly change at 2 % of O2 (Figs. 5(a) and 5(b)). It was also observed that 

response and recovery times decreased with increasing O2 levels in the gas concentration. 

The average response and recovery times were 37 s and 40 s respectively for 100 ppb of NO2 

and concentration of O2 1 % and 2%. These values increased to 57 s (t90) and 44 s (t10) when 

the concentration of O2 was lowered to 0.5 %. Fig. 5(c) presents the experimentally measured 

response vs. NO2 concentration in N2 with 0.5-2 % of O2. A power law has been fitted 

through the experimental points and the value of b is close to unity in all cases suggesting 

that the chemisorbed oxygen species are in O
-
 state. 

 

Figure 5 near here 

 

Table 1 summarises the typical response S of the sensing element to NO2 in 25% RH N2 with 

0.5, 1 and 2 % O2 content. Laboratory Ssensors showed the highest response in N2 with 1 % 

O2 content and these responses were comparable to that obtained in air. Table 2 lists the 

corresponding sensor sensitivity S’ values that are almost independent of gas concentration, 

because the power factor b has a value close to unity. 

 

Table 1 near here 

Table 2 near here 

 

 

Further NO2 sensing experiments were carried out in N2 with 1 % O2 content under the 

operating temperature range 250-450 °C. The effect of varying NO2 concentration on the 

signal of WO3 material under various temperatures is presented in Fig. 6(a). Films 

performing under the operating temperatures 350-450 °C showed fast response and recovery 

times (Figs. 6 (a) and (b)). The baseline of the sensor increased over time at 250 and 300 °C, 
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and the resistance of the film significantly increased suggesting a strong interaction between 

the sensing material and the target gas. The highest response was obtained at 300 °C (see Fig. 

6(c) and Tables 3 and 4).   

 

Figure 6 near here 

 

Table 3 near here 

Table 4 near here 

 

 

 

Fig. 7 illustrates the comparison of the results of sensor responses measured in air and low 

oxygen environment where the operating temperature is varied.  It is seen in both cases that 

the response goes through a maximum on changing temperature taking a volcano shape. This 

increase of response (between 250 and 300 °C) results from an increase on the rate of the 

surface reaction of the NO2 target gas, while the decrease of response (from 300 to 450 °C) 

results from a decrease in the utility of the gas sensing body. At the temperature of the 

maximum response 300 °C, the target gas molecules have optimum reactivity for the 

diffusion in the whole sensing area and exert large interaction with the WO3 surface. 

 

Figure 7 near here 

   

 

 

 

3.3 Sensing mechanism  

In WO3 like in the most semiconducting oxide based sensors, the change in resistance is 

primarily caused by the chemical adsorption and reaction of the gas molecules on the surface 

of the sensing material. The surface of oxide semiconductor can adsorb oxygen from the 

ambient atmosphere:  

 

O2(gas)  O2(MOX surface)         

   (4)  
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These chemisorbed oxygen species act as surface acceptors by trapping electrons and 

increasing the resistance of the metal oxides as follows: 

 

O2(MOX surface)   + e
-!

 O2
-

(MOX surface)  T < 100 °C      (5) 

O2
-

(MOX surface) + e
-!

 2O
-

(MOX surface)  100 °C ≤ T ≤ 300 °C     (6) 

O
-

(MOX surface)!+ e
-!

 O
2-

(MOX surface)  T > 300 °C      (7) 

 

At low temperatures, a reversible oxidising interaction takes place and the predominant 

oxygen species on the surface of the sensors prevails as O2
-
.!Based on previous studies [6, 7, 

9], it is well known that the direct interaction of NO2 molecules with O2
-
 ions is unlikely and 

the molecules directly interact with surface W ions: 

 

NO2 + e
-

(from WO3) "  NO2
-

(WO3 surface)          (8) 

 

Reversal of the above reaction is unlikely but disintegration of the ionosorbed NO2 species 

into NO and a surface ion is also possible  to occur [9, 25]: 

 

NO2
-

(WO3 surface) " NO(gas) + O
-

( WO3 surface)         (9) 

 

Although the above reaction was not observed in our experiments, the evidence of possible 

reaction was previously demonstrated by Arai et al. in the FTIR spectrum of adsorbed NO2 

on the Rh/Al2O3 catalyst [25].   

In the temperature range 250-300°C the response time for the detection of NO2 is 

significantly high: 100 s and 200 s for the experiments in air and low oxygen environment 

respectively (Figs. 3(b) and 6(b)). It has been shown [4, 9] that in this temperature range, the 

ionosorbed molecular oxygen O2
-!

tend to dissociate into two independent atomic O
-
 ions: 

 

O2
-

(WO3 surface) + e
-

(from WO3) "  O
-

( WO3 surface) + O
-

( WO3 surface)                     (10) 

 

These ionosorbed molecular oxygen O2
-
 ions compete with adsorbing NO2 gas molecules for 

the available surface sites and electrons from the conduction band of WO3. This process 

involves trapping of electrons into physisorbed O2 or NO2 surface species but not their re-
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emission. This is the reason for the saturation observed in Fig. 7 as well as the asymmetry 

with respect to response and recovery times which is more prominent for the experiments in 

air (Figs. 3(b) and 6(b)).  

 As the surface temperature was further raised, the concentration of O
-
 ions! on WO3 

surface increased. With significant amount of O
-
 ions being available on the surface, the 

following oxidation reaction is possible: 

 

NO2(gas) + O
-

(WO3 surface) " NO(gas) + O2(gas) + e
-
! ! ! ! ! !!!!!!!!!!!(11) 

 

This kind of relation contributes to a reducing interaction as observed in the high 

temperature-low concentration regime (Figs. 6(a) and 7). Increasing temperature also induces 

desorption of the target gas. This explains why the response decreased drastically above the 

optimum operating temperature. Similar observations have also been demonstrated for other 

metal oxides towards NO2 sensing [4].    

 

Considering the above surface reactions and sensor responses we can state that the 

changes in the oxygen concentration in contrast with temperature, did not significantly affect 

the sensor performance. It is also worth to mention that NO2 seems to be able to interconvert 

into different nitrogen containing species on the sensing layer. Limiting the oxygen 

concentration restricts the availability of surface oxygen ions and prevents the formation of 

other forms of NOx. 

 

3.4 Cross-sensitivity measurements  

WO3 sensors are known to be sensitive towards various oxidising and reducing gases. 

Hence some selectivity measurements have been performed and they are presented in Fig. 8. 

The sensors were also tested for cross-sensitivity in the presence of carbon monoxide, 

hydrogen sulphide, acetone, methane and hydrogen at various concentration ranges. As 

expected, the resistance of the sensing element decreased on exposure to reducing gases 

leading to response values defined as the inverse of before so Rair / RNO2. Table 5 summarises 

the response of the sensing element to these other gases. The values show that the WO3 

material is not so sensitive to CO, acetone, CH4 and H2 but rather sensitive to H2S. However, 

even the exposure to 5ppm H2S is far less than that to 250 ppb NO2. 
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Table 5 near here 

 

Although the oxidising gases directly adsorb onto the oxide surface, the reducing gases react 

with oxygen to produce water molecules. It is well known that at typical sensor operating 

temperatures above 300 °C, the dominant species on oxide surface is O
-!

[26]. Upon 

interaction of adsorbing CO gas molecules with surface oxygen ions the following reaction is 

likely to take place: 

 

CO(gas) + O
-

(WO3 surface) " CO2(gas) + e
-
! ! ! ! ! !!!!!!!! !!!!!!!!!!!(12)!

 

This reaction donates an electron to the WO3 conduction band thereby increasing the 

conductivity of the tungsten oxide. The closely similar behaviour of C3H6O, H2S, H2 and CH4 

suggest that these gas molecules also might undergo an oxidation reaction closely analogue to 

CO: 

 

C3H6O(gas) + 8O
-

(WO3 surface) " 3CO2(gas) + 3H2O(gas) + 8e
-
! ! ! ! !!!!!!!!!!!(13)!

H2S(gas) + 3O
-

(WO3 surface) " SO2(gas) + H2O(gas) + 3e
-
! ! ! ! ! !!!!!!!!!!!(14)!

H2(gas) + O
-

(WO3 surface) " H2O(gas) + e
-
!! ! ! ! ! ! !!!!!!!!!!!(15)!

CH4(gas) + 4O
-

(WO3 surface) " CO2(gas) + 2H2O(gas) + 4e
-
! ! ! ! !!!!!!!!!!!(16)!

 

The above reactions rely on the availability of atomic surface O
-!

ions and it is clear that they 

can only occur at those temperatures where the ions abound on the sensing material surface, 

above 300 °C. 

In our experiments a reversible decrease of surface resistance in the presence of water 

was observed (Fig. 8).  As semiconducting dry WO3 is brought in contact with humid air, 

water molecules chemisorb on the available sites of the oxide surface. At the operating 

temperature range 250-450 °C, the adsorption of water molecules on the surface takes place 

via dissociative chemisorption processes which may be described as follow [27, 28]: 

(i) Water molecules adsorbed on grain surface react with the lattice W as: 

 

H2O(WO3 surface) + Oo  + W  2OH - W(WO3 surface) + Vo + 2e
-
!! ! !!!!!!!!!!!!!!!!!!!!!!!(17) 

 

where Oo is the lattice oxygen and Vo the vacancy created at the oxygen site according to: 
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Oo O
2-

 + Vo                                        

(18) 

 

(ii) Ionised oxygen displaced from the lattice reacts with H
+
 from the dissociation of water 

molecules and forms hydroxyl group: 

 

H
+
!+ O

2-
!  OH

-
! ! ! ! ! ! ! !!!!!!!!! ! !!!!!!!!!!!(19) 

 

Tungsten oxide has electron vacancies were electrons are accumulated and consequently the 

resistance of the sensing element decreases with increase in relative humidity.  

 

Figure 8 near here 

4. Conclusions 

In this study we report upon the response of a tungsten oxide based MEMS gas sensor to ppb 

levels of nitrogen dioxide under various operating conditions. The response was found to be 

excellent of ca. 500% to a 100 ppb pulse of NO2 in air at 350°C.  and tThis value is so much 

higher than that when compared to the obtained for the reference commercial sensors tested 

in our laboratory and also higher than reported elsewhere in the literature.  Here, we believe 

for the first time, we report the response of the gas sensor at low oxygen levels (down below 

1%) under different operating temperatures, ranging between 250 and 450°C. It was found 

that these sensors with the active layer prepared by drop casting and annealing  work reliably 

at low oxygen levels with again a high gas sensitivity but with longer response and recovery 

times (20% or so). These low cost sensors unlike commercial MOX devices also showed 

superior stability throughout the gas concentration range studied in dry and humid air, low 

oxygen environment and operating temperatures between 350 and 450°C. Our comparative 

tests against commercially available devices demonstrate the significant improvement 

achieved with our MEMS sensors over the current generation. We also showed that there was 

a small sensitivity to changes in humidity (ca. 0.2%/%RH) but a negligible cross-sensitivity 

to CO, H2, CH4 and acetone at much higher ppm levels. In conclusion, we believe that this 

MEMS based semiconducting gas sensor can be used to detect ppb levels NO2 under the 

harsh conditions of low oxygen levels and high CO levels.  Consequently, this low cost 
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MEMS sensor could find application in the detection of NO2 in the exhaust gases from 

combustion systems such as car engines or gas boilers. 
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Tables 

 

Table 1 

Typical response (RNO2/RN2 or RNO2/Rair) of commercial MOX (MiCS-2714) sensor to NO2 in air 

and laboratory WO3 based sensor to NO2 in air and N2 pulses with O2 concentration ranging 

from 0.5 to 2%. Measurements of were performed in 25% RH air or nitrogen. 

NO2 concentration [ppb]      250     100      50       25      10 

Response at 0.5% O2 

Response at 1% O2  

Response at 2% O2 

Response in Air  

Response in Air–MiCS-2714 

- 

      - 

      - 

    4.5 

    1.5 

4.3 

     4.5 

     4.1 

     2.6 

     1.2      

2.7 

     2.7  

     2.5 

     1.8 

     1.1 

1.8 

1.8 

1.7 

1.4 

1.0 

1.3 

1.3 

1.4 

1.2 

1.0 

 

Table 2 

Sensitivity ((RNO2-Rair/Rair)/cgas or (RNO2-RN2/RN2)/cgas) of commercial MOX (MiCS-2714) sensor 

to NO2 in air and laboratory WO3 based sensor to NO2 in air and N2 pulses with O2 

concentration ranging from 0.5 to 2%, (25% RH, 350°C). 

NO2 concentration [ppb]      250     100      50       25      10 

Sensitivity at 0.5% O2 [% ppb
-1

] 

Sensitivity at 1% O2 [% ppb
-1

] 

Sensitivity at 2% O2[% ppb
-1

] 

Sensitivity in Air [% ppb
-1

] 

Sensitivity in Air–MiCS-2714 

- 

      - 

      - 

     1.4 

     0.2 

3.3 

     3.4 

     3.1 

     1.6 

     0.2 

3.4 

     3.4  

     3.0 

     1.6 

     0.2 

3.1 

3.1 

2.8  

1.6 

0.2 

2.9 

2.5 

2.6  

1.9 

0.2 

 

 

Table 3 

Typical response (RNO2/RN2) of WO3 based sensor to NO2 in dry N2 pulses with 1% O2 

concentration and operating temperature ranging from 250 to 450 °C.  

NO2 concentration [ppb]     100      50       25      10 

Response at 250°C 

Response at 300°C 

Response at 350°C 

Response at 400°C 

Response at 450°C 

4.8 

     13.5 

     6.5 

     3.8 

     2.5 

3.4 

     9.4  

     4.7 

     3.2 

     1.9 

2.2 

5.7 

3.2 

2.1 

1.5 

1.4 

3.7 

1.8 

1.5 

1.1 

 

Table 4 

Sensitivity ((RNO2-RN2/RN2)/cgas) of WO3 based sensor to NO2 in N2 pulses with 1% O2 

concentration and operating temperature ranging from 250 to 450 °C.  

NO2 concentration [ppb]     100      50       25      10 

Sensitivity at 250°C [% ppb
-1

] 

Sensitivity at 300°C [% ppb
-1

] 

Sensitivity at 350°C [% ppb
-1

] 

Sensitivity at 400°C [% ppb
-1

] 

Sensitivity at 450°C [% ppb
-1

] 

4.5 

     14.2 

     6.5 

     3.7 

     1.8 

4.8 

     16.9  

     7.4 

     4.4 

     1.8 

4.6 

19.0 

8.6 

4.3 

1.7 

4.6 

25.2 

8.4 

5.4 

1.1 
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Table 5 

Response (Rgas/Rair or Rair/Rgas) of WO3 based sensors to various gases at maximum concentration 

(operating temperature 350°C). 

Gas CO    C3H6O H2S H2 CH4 NO2 

Concentration [ppm]      50     300 5   20000  15000 0.25 

Response 1.6 2.3 3.3 1.0 1.0 4.5 
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Fig.1. (a) Optical micrograph of a bare micro-hotplate (CCS09C, Cambridge CMOS Sensors Ltd). (b) 

Optical micrograph of a typical device after deposition of the WO3 paste. (c) Scanning electron 

micrograph (250× magnification) of the surface of the deposited material. (d) Optical micrograph of a 

bonded micro-hotplate on a TO46 package. 

 

Figure(s)



 

Fig.2. Photograph of the fully-automated custom designed gas testing rig. Precise gas mixtures 

in the ppb to percent range were generated using two mass flow controllers. 

 

 

  

 

   

Fig.3. (a) Average sensor response as a function of temperature for 100 ppb of NO2 in 50% RH 

air. The error bars represent the standard deviation of two measurements performed on separate 

sensors. (b) Response and recovery time at 100 ppb of NO2 in 50% RH vs. temperature. 

 



       
Fig.4. (a) Typical dynamic responses of laboratory WO3 based sensor and commercial MOX 

(SGX Sensortech) sensor in presence of NO2 (250-10 ppb) in dry and 25% RH air. (b) Response 

of the laboratory sensor as a function of concentration plot. Solid line represents the power law 

fitted through the experimental points. 

  



 

 

     

 

Fig.5. (a) Typical dynamic response of WO3 based sensors exposed to NO2 (100-10 ppb) in N2 

pulses at 25 % RH and 350°C, with O2 concentration ranging from 0.5 to 2 %. (b) Response of 

the sensors at 100 ppb as a function of O2 concentration plot. The error bars represent the 

standard deviation of two measurements performed on separate sensors. (c) Response of the 

sensors as a function of concentration plot. Solid line represents the power law fitted through the 

experimental points. 

 



   

 
Fig.6. (a) Typical dynamic response of WO3 based sensor exposed to NO2 (100-10 ppb) in dry 

N2 pulses with 1 % O2 with temperature ranging from 300 to 400 °C. (b) Response and recovery 

time at 100 ppb of NO2 in dry N2 pulses with 1 % O2 vs. temperature. (c) Response of the 

sensors at 100 ppb as a function of working temperature plot. The error bars represent the 

standard deviation of two measurements performed on separate sensors. 

 

 
Fig. 7. Dependence of sensor response to 100ppb of NO2 in N2 with 1% O2 content and air on 

temperature. 

 



 

Fig. 8. Selectivity measurements of WO3 based sensor exposed to CO (1-50 ppm), acetone (100-

300 ppm), H2S (1-5 ppm), H2 (500 ppm-2 %) and CH4 (500 ppm-1.5 %) in air. 
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