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Abstract. This paper reviews recent progress on ultrashort
pulse generation with erbium-doped fiber ring lasers. The
passive mode-locking technique of polarization additive pulse
mode-locking (P-APM) is used to generate stable, self-
starting, sub-500 fs pulses at the fundamental repetition rate
from a unidirectional fiber ring laser operating in the soliton
regime. Saturation of the APM, spectral sideband genera-
tion, and intracavity filtering are discussed. Harmonic mode-
locking of fiber ring lasers with soliton pulse compression is
addressed, and stability regions for the solitons are mapped
and compared with theoretical predictions. The stretched-
pulse laser, which incorporates segments of positive- and
negative-dispersion fiber into the P-APM fiber ring, gen-
erates shorter (sub-100 fs) pulses with broader bandwidths
(> 65 nm) and higher pulse energies (up to 2.7 nJ). We dis-
cuss optimization of the net dispersion of the stretched-pulse
laser, use of the APM rejection port as the laser output port,
and frequency doubling for amplifier seed applications. We
also review the analytical theory of the stretched-pulse laser
as well as discuss the excellent noise characteristics of both
the soliton and stretched-pulse lasers.

PACS: 42.60F; 42.65; 42.80

Fiber lasers were made possible in the 1960s by the incorpo-
ration of trivalent rare-earth ions such as neodymium, erbium,
and thulium into glass hosts [1]. Soon thereafter neodymi-
um was incorporated into the cores of fiber waveguides [2, 3].
Due to the high efficiency of the Nd+3 ion as a laser, early
work focused on Nd+3-doped silica fiber lasers operating at
1.06 µm [4]. Doping of silica fibers with Er+3 ions was not
achieved until the 1980s [5, 6]. Since that time Er+3-doped
fiber lasers have received much attention, because the lasing
wavelength at 1.55 µm falls within the low-loss window of
optical fibers and thus is suitable for optical fiber communica-
tions. Rare-earth ions such as Ho+3 [7, 8], Tm+3 [9–11], and
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Yb+3 [12, 13] have also been used as dopants or co-dopants
in silica or fluoride fibers, allowing new lasing or pumping
wavelengths, and Pr+3 has been incorporated into fluoride
fiber, providing emission at 1.3 µm [14, 15].

Among the numerous advantages of fiber lasers are simple
doping procedures, low loss, and the possibility of pumping
with compact, efficient diodes. The fiber itself provides the
waveguide, and the availability of various fiber components
minimizes the need for bulk optics and mechanical align-
ment. Many different cavity configurations can be easily built
with fibers and fused-fiber couplers, including linear Fabry–
Perot, ring, and combinations of the two. Enhancement of
the fiber nonlinearity due to large signal intensities and long
interaction lengths is an additional advantage of fiber lasers
that is particularly important for mode-locking. Potential ap-
plications for compact, diode-pumped, fiber-compatible opti-
cal sources at various wavelengths have motivated significant
fiber laser research over the last 10 years.

In addition to offering continuous-wave operation, fiber
lasers can be mode-locked to generate one or more pulses
per round-trip. Mode-locked lasers have a number of po-
tential applications, depending on the wavelength and pulse
width. They could be used as sources in communications
systems for time-division multiplexing (TDM) [16, 17] or
wavelength-division multiplexing (WDM) [18–20], as spec-
troscopic tools in the laboratory for time-resolved studies of
fast nonlinear phenomena in semiconductors, or as seeds for
solid-state amplifiers such as Nd:glass [21], color center [22],
alexandrite [23], or Ti:sapphire. Short pulses also have po-
tential use in electro-optic sampling systems, as a source for
pulsed sensors, or as tunable seed pulses for lasers in med-
ical applications. Applications such as optical coherence to-
mography could take advantage of the broad bandwidth of
a mode-locked fiber laser rather than the temporal ultrashort
pulse width.

1 Review of passive mode-locking techniques and results

Fiber lasers can be mode-locked actively, where a modula-
tor produces amplitude or phase modulation, or passively,
where an intensity fluctuation acts in conjunction with the
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fiber nonlinearity to modulate the cavity loss without external
control. The upper-state lifetimes of rare-earth-doped fibers
are slow (∼ ms) implying that the gain does not react signif-
icantly within the cavity round-trip time (< 0.5 µs). A fast
saturable absorber is therefore required to clean up both the
leading and trailing edges of the pulse. Rare-earth-doped fiber
lasers are also susceptible to Q-switching due to their long
upper-state lifetimes. Passive mode-locking of fiber lasers to
generate subpicosecond pulses has been achieved using three
main methods: nonlinear amplifying loop mirror [24–26],
nonlinear polarization rotation (also called polarization addi-
tive pulse mode-locking or Kerr mode-locking) [27–29], and
semiconductor saturable absorbers [30–32].

Both the nonlinear amplifying loop mirror (NALM) and
nonlinear polarization rotation rely on the Kerr effect in
a length of optical fiber in conjunction with polarizers to
cause artificial saturable absorber action and achieve pulse
shortening. The NALM consists of a fiber Sagnac interfer-
ometer with gain placed asymmetrically in the loop. A dif-
ferential phase shift occurs between the two directions in
the NALM, and with proper phase bias the NALM transmits
higher intensities while reflecting low intensities. The NALM
is attached to a unidirectional fiber ring, forming a figure-8
shaped cavity where the reflected low intensities are then ex-
tinguished by the isolator in the unidirectional ring. Pulses as
short as 98 fs have been generated at 1.57 µm by an Er+3-
doped fiber laser with an NALM and an Er+3-doped fiber
amplifier in the unidirectional, linear loop [33]. A disadvan-
tage of figure-8 lasers has been the tendency for operation
with bursts of multiple pulses because of long cavity lengths.

Various semiconductor saturable absorber structures have
been incorporated into fiber lasers to obtain mode-locking
with simple cavity designs. A strained superlattice was used
in transmission in an Er+3-doped fiber ring laser [30], while
a linear cavity with Er+3/Yb+3-doped fiber was mode-
locked with a nonlinear mirror consisting of an InGaAs/InP
multiple-quantum-well (MQW) integrated on a Bragg reflec-
tor stack [31]. Desouza et al. [32] demonstrated self-starting
mode-locking with polarization-maintaining (PM) fiber and
a bulk InGaAsP sample on InP to obtain nearly transform-
limited 320-fs pulses. Pulses of 2.3 nJ and 5.5 ps were gen-
erated by an Er+3/Yb+3-doped fiber laser that suppressed
multiple-pulse behavior at high pump powers with bulk
and multiple-quantum well absorbers and a linear loss ele-
ment [34]. Designs of saturable absorber structures that op-
timize the saturation characteristics include the anti-resonant
Fabry–Perot mirror (A-FPSA), which was used to obtain self-
starting 260-fs pulses in a Nd+3-doped fiber laser [35], and
the saturable Bragg reflector, which generated 235-fs puls-
es at fundamental repetition rates up to 200 MHz in a short
Er+3/Yb+3-doped fiber laser [36]. Improved understanding
of the nonlinear dynamics of these structures permits opti-
mization of different laser geometries and is the subject of
current research.

Nonlinear polarization rotation relies on the intensity-
dependent rotation of an elliptical polarization state in
a length of optical fiber. With proper settings of the ini-
tial polarization ellipse and phase bias, pulse shortening
occurs. Mode-locking has been achieved using this tech-
nique in linear cavities with Nd+3-doped fiber [27] and
Er+3-doped fiber [37], although these lasers required ac-
tive modulators for pulse initiation. Simulations of a soliton

fiber ring laser showed that a saturable absorber (nonlinear
polarization rotation) and frequency limiter were required
for the ring laser to self-start [38]. A self-starting ring cav-
ity with low-birefringence fiber was then demonstrated at
1.55 µm, although the 1.2-ps soliton pulses were randomly
spaced in bunches at the round-trip frequency [28]. Stable,
self-starting, sub-500 fs soliton pulses at the fundamental
repetition rate were first demonstrated in a short unidirec-
tional ring [29]. Modifications of these initial experiments
have resulted in significant improvements in mode-locked
performance. A scheme for environmental stability was intro-
duced in [39], and self-starting of a linear cavity was aided
by a semiconductor saturable absorber mirror [40]. Diode
pumping and addition of a birefringent tuning plate to the
ring laser of [29] allowed tuning ranges as wide as 50 nm
centered at 1.55 µm [41]. Shorter and higher power pulses
have been achieved using the stretched-pulse technique with
nonlinear polarization rotation [42] and employing the rejec-
tion port as the output port [43], as discussed in Sect. 4. The
stretched-pulse technique has yielded the shortest, broadest-
bandwidth pulses from an Er+3-doped fiber laser (63 fs) [44],
while 2.7-nJ, 100-fs pulses have also been achieved [45].
With no practical limitations on pulse width or wavelength of
operation, nonlinear polarization rotation in a fiber ring laser
geometry offers the potential for short pulses and (or) wide
tunability.

Although much work has focused on mode-locking of
Er+3-doped fiber lasers due to the 1.55 µm wavelength, em-
ployment of these mode-locking techniques with other rare-
earth doped fibers has resulted in the demonstration of sub-
picosecond pulses at additional infrared wavelengths. Nd+3-
doped fiber lasers at 1.06 µm have been mode-locked with
nonlinear polarization rotation and with saturable absorber
mirrors. Pulses as short as 42 fs were generated from nonlin-
ear polarization rotation started by a moving mirror, where
the positive group velocity dispersion of the fiber was com-
pensated by a dispersive delay line [46]. Higher-power, soli-
ton pulses were obtained with a chirped-fiber grating and
MQW saturable absorber mirror at 1.06 µm [47]; and a tun-
ing range of 75 nm with femtosecond pulses was obtained
with an optimized MQW in a Nd+3-doped fiber laser [48].
Additional references to work on mode-locked Nd+3-doped
fiber lasers may be found in the paper by Fermann et al.
in this issue. Work with Pr+3-doped fluoride fiber lasers at
1.3 µm has employed the NALM in figure-8 cavities to gener-
ate 1.6-ps pulses [49] and 620-fs pulses [50]. A Tm+3-doped
silica fiber laser was mode-locked with nonlinear polariza-
tion rotation and produced sub-500 fs pulses tunable from 1.8
to 1.9 µm [51]. Mode-locking of a Tm+3-doped fiber laser
with an MQW mirror has also been achieved with 190-fs
pulses at 1.9 µm [52]. The demonstration of fiber lasers as
compact, practical sources of ultrashort pulses at a variety
of wavelengths in the infrared is important for their possible
application in communications, medicine, or as tools in the
laboratory.

This paper reviews results obtained from mode-locked
Er+3-doped fiber lasers employing nonlinear polarization ro-
tation and soliton shaping in unidirectional rings. Polarization
additive pulse mode-locking (P-APM) is described imme-
diately below, followed by a discussion of self-starting in
linear and ring cavities. Passively mode-locked fiber soli-
ton lasers are the subject of Sect. 2. Although these soliton
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lasers have limited pulse widths and pulse energies, tunable
operation across the entire Er+3 bandwidth can be achieved
as discussed in Sect. 2.3. Harmonic mode-locking of fiber
lasers is addressed in Sect. 3 with emphasis on pulse en-
ergy stabilization, frequency stabilization, and soliton pulse
compression. Stretched-pulse lasers are the subject of Sect. 4,
which includes a comparison of the soliton and nonsoliton
(stretched-pulse) regimes of operation and pulse dynamics in
the stretched-pulse laser. A formalism that describes this case
where the pulse undergoes large changes per pass due to vary-
ing dispersion is reviewed. The optimization of the stretched-
pulse laser for frequency doubling is discussed in Sect. 4.5
with use of frequency-resolved optical gating (FROG) to
characterize the fundamental and frequency-doubled pulses.
Finally, measurements and theory of the noise in fiber lasers
mode-locked by P-APM are addressed in Sect. 5.

1.1 Polarization APM

Additive pulse mode-locking (APM) is a passive mode-
locking technique that employs a nonlinear interferometer to
achieve pulse shortening. The pulse is split into the two arms
of the interferometer with a nonlinear element placed in one
arm. The pulses recombine at the beam splitter, and pulse
shortening occurs through the coherent addition of the self–
phase modulated pulses. One advantage of APM is that it is
extremely fast because it is based on self–phase modulation
(SPM) from the Kerr effect in glass. Thus APM should not
impose a practical limit on the shortest pulses. The technique
has been extensively studied both experimentally and theoret-
ically in several solid-state lasers [53–55], and the reader is
encouraged to see these references for further details. APM
has been extended to fiber lasers, where pulse shortening is
achieved through SPM and polarization control.

Nonlinear polarization rotation can occur in an optical
fiber when the initial polarization state is elliptical. The el-
lipse can be resolved into right- and left-hand circular po-
larization components of different intensities. These two cir-
cular components then accumulate different nonlinear phase
shifts related to the intensity dependence of the refractive in-
dex (n = n0 +n2 I) [56, 57]. The polarization ellipse rotates
while maintaining its ellipticity and handedness. An opti-
cal fiber is particularly well suited for nonlinear polarization
rotation because the small mode diameter leads to high inten-
sities, and thus to a large nonlinear index change, and because

Fig. 1. Diagram of how pulse shortening occurs in a laser through P-APM.
An initial pulse is linearly polarized and then made elliptically polarizat-
ed with a quarter-wave plate. The light then passes through an optical fiber
where ellipse rotation occurs and the peak of the pulse rotates more than the
pulse wings. At the output of the fiber, the half-wave plate orients the pulse
so that the peak of the pulse passes through the polarizer while the wings
of the pulse are extinguished, thus achieving pulse shortening

long fiber lengths can be used. Figure 1 shows how nonlin-
ear polarization rotation can be used in conjunction with bulk
polarization optics to obtain an artificial saturable absorber
(an element that absorbs low intensities but is bleached by
and transmits high intensities) and to mode-lock the laser. The
mode-locking technique is called polarization additive pulse
mode-locking (P-APM) since the right- and left-hand circu-
lar polarization components acquire a differential nonlinear
phase shift and are added together at the final polarizer.

1.2 Ring configuration for self-starting

Ideally, a passively mode-locked laser will evolve into
a pulsed state on its own, without an external perturbation
or trigger. This is called self-starting, meaning that the puls-
es start up from an initial noise fluctuation formed by mode
beating of the multiple axial modes in the laser. In general,
systems mode-locked by fast saturable absorbers have diffi-
culty with self-starting due to the weak pulse shaping for long
pulses [58, 59]. Random mode-beating fluctuations decay
within a characteristic time (the lifetime of the fluctuation)
due to competing scattering processes [60]. A mode-locked
state can only be established if the excess round-trip gain
experienced by the initial fluctuation is large enough to com-
plete the mode-locking process within the lifetime of the
fluctuation. The lifetime is related to the linewidth of the first
beat note of the power spectrum of the free-running laser [60].

Lasers in a unidirectional ring configuration have been
shown to self-start more easily, as explained theoretically in
references [61] and [62]. Both papers point out that mode
pulling will decrease the mode coherence time (decreasing
the lifetime of a fluctuation). References [61, 63] explain that
spurious reflections (off bulk elements or polished fiber ends)
and etalons in the cavity create a multiple Fabry–Perot struc-
ture with unevenly spaced axial modes. Larger injection sig-
nals (higher powers) are then needed to start the pulses. In
a linear cavity, a single reflection surface can cause mode
pulling. In a unidirectional ring cavity, though, the effect of
reflections is reduced, since two reflections must occur in
order to form an etalon. (A first-order backward reflection
is attenuated in the isolator.) As reported in [61], low self-
starting thresholds appear to be possible for a ring cavity,
whereas significantly more power (a factor of ∼ 10 to 100)
may be required for self-starting in a linear cavity.

Spatial hole burning in the gain medium, which occurs in
a linear cavity even in the absence of spurious reflections, is
also a strong inhibitor of self-starting [62]. The forward and
backward propagating waves form a standing-wave pattern of
the electric field and induce a spatial modulation of the com-
plex refractive index in the gain medium. This grating, inter-
nal to the cavity, then causes mode pulling. Consequently, the
self-starting threshold is inherently higher for linear cavities
than for unidirectional ring cavities. The deleterious effects
of spurious reflections in ring cavities are, of course, exac-
erbated by spatial hole burning. Reference [62] also points
out that since there is a finite buildup time for the population
grating in the gain medium, sudden perturbations or periodic
variations of the cavity length can partially erase the grating
and/or align the phases of three or more modes and enable
self-starting. This explains why moving mirrors or “tapping
the optical table” are helpful starting mechanisms. The en-
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hanced self-starting of the unidirectional ring is an important
advantage of this laser configuration.

2 Fiber soliton lasers

The first all-fiber ring cavity to produce stable subpicosec-
ond pulses at the fundamental repetition rate is shown in
Fig. 2 [29]. The polarizer at the output of the fiber-pigtailed
isolator and the polarization controller set the elliptical polar-
ization state, which then rotates in the fiber due to the Kerr
nonlinearity. The polarizer at the isolator input then trans-
forms the rotation of the ellipse into amplitude modulation.
A second polarization controller at the isolator input is used
to compensate for any residual birefringence in the non-PM
fiber and would not be necessary if the fiber were perfectly
isotropic.

The pulse in such a laser can be described using a steady-
state analysis that treats mode-locking in the time domain,
as in [55]. The method analyzes the action of each com-
ponent of the laser system on the pulse and imposes self-
consistency after one round-trip. Self-amplitude modulation
(SAM) models the saturable absorber action due to P-APM.
SAM is the important component in producing mode-locking,
but the changes it produces in one round-trip are assumed
small (∼ 10%) in this analysis. We also assume that the
mode-locked pulse experiences only small changes per pass
(linear and nonlinear). The electric field for the radiation in-
side the laser cavity has the form:

E(t)= u(t) exp( jω0t) , (1)

where u(t) is the complex amplitude of the slowly varying
temporal envelope of frequencyω0. The Master equation [55]
takes into account the possible effects in a mode-locked laser:

{

−ψ+ g − ℓ+

(

g

Ωg
2

+ D

)

∂2

∂t2
+ (−δ+γ)|u|2

}

u = 0 ,

(2)

where ψ is the net linear phase shift, ℓ is the linear loss per
pass, and g is the laser gain. The gain is assumed to be slow,
saturable gain, meaning that as the pulse energy increases, the
gain saturates but on a timescale much longer than the pulse
width. The second term proportional to g is due to the finite
bandwidth of the gain. D = 1

2
k′′LD represents the contribu-

tion of the group velocity dispersion (GVD) k′′ in a material

Fig. 2. Schematic of all-fiber ring laser mode-locked by P-APM, from [29].
WDM: wavelength-division-multiplexed coupler

of length LD, while δ is the SPM contribution of the Kerr
medium [δ= 2πn2 LK/(λAeff) where LK is the length of the
Kerr medium, n2 is the nonlinear index, λ is the wavelength,
and Aeff is the effective mode area]. The last term on the
right-hand side represents the SAM, where γ is inversely pro-
portional to the loss saturation intensity and must be positive
so that higher intensities see lower loss.

The Master equation has an exact solution, as previously
recognized by Martinez et al. [64, 65]:

u(t)= A0

[

sech

(

t

τ

)](1+β)

, (3)

where τ is the normalized pulse width (τ = 0.567τFWHM)
and β is the chirp parameter. In the negative GVD regime,
it is possible to obtain chirp-free pulses (β = 0), such that
the contributions from SPM and GVD balance, while the
filtering and SAM also balance. The mode-locked pulse is
then transform-limited and has the same secant-hyperbolic
pulse shape as a soliton. Although the pulses are sech-like,
they do not behave as solitons within the components of the
system [66]. We can view the pulses as solitons only by av-
eraging over the system operation such that the pulses are
“average solitons”, similar to those occurring in periodically
amplified transmission systems [67, 68]. Although the attenu-
ation and amplification within one round-trip can be consider-
able, an important requirement on these “solitons” is that the
nonlinear phase shift per round-trip must be small (≪ 2π), as
will be explained in Sect. 2.2.2.

The Master equation as expressed in (2) considers the ef-
fects in the mode-locked laser as perturbations and does not
guarantee stability of the pulse solutions in all limits. In fact,
as pointed out in [69], energy fluctuations will grow expo-
nentially without gain saturation to counterbalance the APM
action. In solid-state lasers with slow, saturable gain and in-
stantaneous SAM, we would expect some perturbations to
grow too quickly for the pulse to be stabilized by gain sat-
uration. Because stable pulses are observed experimentally,
another effect in the laser must be providing stability. This ef-
fect can be represented in the Master equation by a fifth-order
saturable absorber term (γ5|u|4u, where γ5 < 0) [70]. In the
fiber laser γ5 is the result of saturation of the APM and the
generation of spectral sidebands, as explained in more detail
in Sect. 2.2. This fifth-order saturable absorber term causes
the solutions of the Master equation to be more complicated
than the hyperbolic-secant solution of (3). The γ5 term was
not included in the analysis of [55] because it is responsible
for pulse stabilization and does not contribute significantly to
the formation of pulses from a continuous-wave (cw) state.

Reference [66] presents an analysis that treats the fiber
ring laser as a nonlinear Mach–Zehnder interferometer, where
the right- and left-hand circular polarizations are the two
arms of the interferometer. The polarizer provides one out-
put port of the interferometer, while the other output port
represents the absorbed polarization. The intensity-dependent
interference at the Mach–Zehnder output then represents the
intensity-dependent loss that occurs in the mode-locked laser.
A matrix formulation is used to evaluate the loss parameter
ℓ, SAM parameter γ |u|2, and SPM parameter δ|u|2 in terms
of the the nonlinear phase shifts for the circular polarizations
and the initial polarization ellipse. By adjusting the initial po-
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larization, the ratio γ/δ can be maximized, thus optimizing
pulse width, chirp, and stability, as discussed in [55].

2.1 Experimental results

The laser shown in Fig. 2 had a total length of 4.8 meters
of fiber in the ring and was pumped with a cw Ti:sapphire
laser at 980 nm [29]. The Er+3-doped fiber had a concentra-
tion of 1000 ppm, NA of 0.13, and mode-field diameter of
8.1 µm. Mode-locked operation was obtained with 50 mW
of pump and 240 µW average output power from the 10%
output coupler. The pulses were self-starting and operated
with a stable single pulse per round-trip. By increasing the
pump power, the output power could be increased to 384 µW
before multiple pulse operation ensued at 85 mW of pump
power. Figure 3a shows an autocorrelation of a 450-fs pulse
(assuming a sech profile) for single-pulse operation with an
output power of 192 µW [29]. With an average dispersion of
−19 ps2/km for the fiber in the ring, the theoretical peak soli-
ton power for the laser was ∼ 110 W with a 450-fs pulse,
which was close to the measured value. The corresponding
spectrum is shown in Fig. 3b and had an approximate spectral
width of 9 nm (assuming sech) with time-bandwidth product
(TBP) of 0.54.

Fig. 3. a Autocorrelation of a 450-fs pulse from the all-fiber soliton ring
laser. b Corresponding spectrum centered at 1535 nm with approximate
spectral width of 9 nm, from [29]

2.2 Limitations of soliton lasers

2.2.1 Saturation of APM. The operation of the all-fiber soli-
ton laser points to several inherent limitations of the soliton
regime. A tendency for multiple-pulse operation with in-
creased pump power is due to quantization of soliton pulses
in a system with excessive gain [66]. The soliton area theo-
rem states that the product of the peak amplitude A0 and pulse
width τ is fixed by the average dispersion and nonlinearity:

soliton area = A0τ =

√

2|D|

δ
. (4)

The energy of a soliton, W = 2|A0|
2τ , is thus limited when

either the peak power or pulse width is limited. Although
the SAM (APM action) is generally represented by γ |u|2 as
in (2), it may be more accurate to represent it by sin(γ |u|2)
since the APM action is interferometric. A pulse passing
through this APM structure has an energy gain of

∞
∫

−∞

dt|u|2sin(γ |u|2) , (5)

with u(t)= A0 sech(t/τ) as defined by (3). The maximum of
(5) is found to be at

γ |A0|
2 ≃ 0.6π . (6)

Now the peak power of the soliton is limited, implying a lim-
ited pulse energy from the area theorem. If the pump power is
increased to obtain high powers, the peak power of the soliton
will eventually reach the limit imposed by this APM satura-
tion. Then the single pulse per cavity round-trip will break up
into multiple, uncontrolled (untimed) pulses. Such pulse en-
ergy quantization has been observed and reported in figure-8
lasers [71, 72] and in a long ring laser [28]. The all-fiber soli-
ton laser of [29], however, could operate with a stable, single
pulse per round-trip. This was accomplished by making the
fiber loop as short as possible [to decrease γ in (6)] and by
adjusting the gain to be low enough so that the energy of one
single quantized soliton would fully deplete the gain.

2.2.2 Spectral Sidebands. The mode-locked pulse spectrum
of the all-fiber laser in Fig. 3b shows significant spectral
structure related to the soliton-like nature of the pulses. Work
in long-distance soliton transmission [67, 73] and in fiber
soliton lasers [74–77] has shown that a resonant instabili-
ty exists when the period (the amplifier spacing or the laser
length) Zp approaches 8Z0, where Z0 is the soliton peri-

od and 8Z0 = 4πτ2/|k′′|. This can be explained by a sim-
ple phase-matching argument. When a soliton propagates in
a fiber laser, it encounters various periodic perturbations such
as gain, filtering, and loss due to splices or output couplers.
The perturbed soliton sheds dispersive radiation as it is re-
shaped back into a soliton. These linear dispersive waves are
generated over the broad spectrum of the soliton and have
a dispersion relation:

klin = −
|k′′|

2
∆ω2 , (7)
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where∆ω is the frequency offset from the peak of the soliton
spectrum.

Each frequency component then propagates at its own
phase velocity. The dispersive waves generated each period
Zp will interfere destructively except at frequencies that are
phase-matched. This phase-matching condition is expressed
by

Zp(ks − klin)= 2πm , (8)

where

ks =
|k′′|

2τ2
(9)

is the propagation constant of the soliton, m is an integer,
and Zp is the perturbation length (length of the laser). The
phase-matching condition is shown in Fig. 4. By using (7) in
the above relation, we can solve for the frequency offset ∆ω
where phase-matching occurs [75, 77]:

∆ω= ±
1

τ

√

m
8Z0

Zp
−1 . (10)

At these phase-matched frequencies, the dispersive radiation
builds up and causes sidebands of order m on the pulse spec-
trum (Fig. 4). For long pulses, 8Z0 = 4πτ2/|k′′| is large, so
the sidebands are located far from the peak of the soliton. If
the average dispersion and laser length are kept constant as
the pulse width decreases, then Z0 will decrease, and the side-
bands will be located closer to the peak of the soliton. The
resonant instability occurs when the pulse width is such that
Zp = 8Z0 and the frequency offset of the sideband ∆ω= 0.
Note that the amount of continuum that is generated at a cer-
tain frequency is proportional to the spectral amplitude of
the soliton at that frequency [75]. The sidebands appear as
a pedestal under the pulse and can contain an energy compa-
rable to the pulse energy.

Although it might appear that the resonant instability
could be avoided by decreasing the average dispersion |k′′| as

Fig. 4. Plot of the propagation constant k versus angular frequency ∆ω

that shows the phase-matching condition for sidebands occurring when the
pulse is periodically perturbed. The soliton-like pulse has a constant ks,
while the dispersive waves have klin with a quadratic dependence on ∆ω.
Phase matching occurs at the particular frequencies where the periodic
perturbation (with kp) makes up the difference between ks and klin

the pulse width τ decreases, the soliton energy is proportion-
al to |k′′|, so this is not an optimal solution. Experimentally
it has been found that the shortest pulses satisfy the condi-
tion Zp ≤ 3Z0 in mode-locked Er+3-doped fiber lasers [78].
This implies that for the Er+3-doped fiber soliton laser, the
total nonlinear phase shift per pass is limited to 3π/2. The
limited nonlinear phase shift leads to small peak powers and
long pulse widths, and thus low pulse energies. For the 450-fs
pulse and spectrum shown in Fig. 3, the net cavity dispersion
was −0.091 ps2. The distance 8Z0 was then ≈ 50 m, which
was much longer than the loop length of 4.8 m, indicating that
the laser was operating far from the instability point [29].

The continuum due to periodic perturbations and the re-
sulting sideband creation are important limitations on all soli-
ton lasers. For a fixed cavity dispersion, the continuum gener-
ation limits the shortest obtainable pulse width, which in turn
limits the pulse peak power due to the soliton area theorem.
A small peak power then implies low average output power
for operation with a single pulse per round-trip. Even with-
out the pulse-width limitation imposed by periodic perturba-
tions, a soliton laser would eventually have a limited pulse
peak power due to the finite bandwidth of the gain material.
Once the shortest pulse width is reached (τmin ∝ 1/∆νgain),
the peak power is fixed by the area theorem, implying limited
pulse energies. But, generally the limit due to periodic pertur-
bations occurs before the gain bandwidth becomes important.

2.3 Filtering for sideband reduction and tuning

Although it is not possible to avoid the nonlinear phase
shift limit in soliton lasers, intracavity filtering can reduce
the spectral sidebands without increasing the pulse width as
shown by Tamura et al. [78] in a diode-pumped Er+3-doped
fiber laser. The laser had a configuration similar to Fig. 2 ex-
cept the fiber-pigtailed isolator and polarization controllers
were replaced by bulk elements, and a polarizing beam split-
ter (PBS) and quartz plate of 5.12 mm thickness were added
before the isolator. The PBS, quartz plate, and input polariz-
er of the isolator then comprised a Lyot filter with ∼ 23 nm
bandwidth and ∼ 46 nm free spectral range. The authors re-
ported reduced continuum by an order of magnitude with
almost complete elimination of the spectral sidebands and no
increase in pulse duration. With no filtering, the pulse width
was 349 fs, while with filtering the shortest pulse was 311 fs.
The birefringent filter also allowed broad tunability across the
Er+3 gain with 43 nm of continuous tuning by adjustment of
the tuning plate and pump power.

Filter optimization was reported in [41], where filters with
varying bandwidths were used. Sidebands were reduced such
that the ratio of the peak sideband to peak of the soliton spec-
trum was reduced to < −17 dB for a 19.2-nm filter. TBP
were reduced from a range of 0.38 to 0.47 when spectral
sidebands were large to a range of 0.34 to 0.38 when the
sidebands were reduced, indicating that the pulse was slight-
ly chirped when sidebands were present. The authors also
reported that when the pulse width was limited by filtering,
the spectral width was approximately one-half the filter band-
width. Thus, to obtain maximum sideband reduction with
minimal pulse broadening, a filter of approximately twice the
bandwidth of the unfiltered spectrum should be used. A larger
continuous tuning range of 50 nm was made possible by using
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a dual-plate filter that consisted of quartz plates of thicknesses
6.14 mm and 3.07 mm and provided a bandwidth of 19.2 nm
and free-spectral range of> 80 nm [41].

3 Harmonic mode-locking of fiber lasers

Actively mode-locked fiber lasers are leading candidates for
sources in optical communications systems because high-
quality pulses centered at 1.55 µm can be locked to a master
clock at high repetition rates (> 1 GHz) with low timing jit-
ter. Mode-locking is generally achieved using a high-speed
intracavity electro-optic modulator, and typical cavity lengths
are usually ≥ 1 m due to the limited doping concentrations of
Er+3 in silica fiber. Accordingly, to obtain a high pulse repe-
tition rate, the modulator must be driven at a harmonic of the
round-trip cavity frequency to produce multiple pulses in the
cavity. If the fundamental cavity frequency is νc and the mod-
ulation frequency is νm = Nνc, the laser is mode-locked at the
Nth harmonic with N pulses in the cavity. This means that
an axial mode is locked to every Nth mode falling within the
gain bandwidth, forming a so-called supermode [79].

3.1 Pulse energy stabilization

Actively mode-locked fiber lasers were first demonstrated
using Nd+3-doped fiber [80, 81] and Er−Yb-doped fiber [82]
with pulse widths ≥ 70 ps at the fundamental cavity repetition
rate. Harmonic mode-locking was achieved by [83, 84], but
the lasers suffered from pulse-to-pulse energy fluctuations.
This unfortunate result is caused by the slow (≈ 10 ms) relax-
ation time of the Er+3 gain, which does not respond rapidly
enough on the timescale of the pulse spacing (≈ 1 ns) to sta-
bilize pulse energy variations. Pulse energy fluctuations are
equivalent to a simultaneous oscillation of more than one su-
permode and can be diagnosed by examining the RF spectrum
of the pulse train. A supermode suppression of greater than
45–50 dB is generally considered acceptable for optical com-
munications sources. Bit-error-rate testers can also be used to
examine the uniformity of the pulse trains.

Stabilization of pulse energies is clearly required before
harmonically mode-locked fiber lasers can be used in optical
communication applications. One solution is the introduc-
tion of a subcavity with a free spectral range that match-
es the modulation frequency [85, 86]. Energy stabilization is
achieved because a portion of each pulse in injected into suc-
cessive pulses, injection locking the pulse train optically. The
major disadvantage with this method is that it requires inter-
ferometric stabilization of the subcavity with respect to the
modulation frequency.

A second, more appealing approach uses a passive, fast
intensity-dependent loss mechanism. In this technique, an in-
tracavity nonlinear element causes more intense pulses to
experience higher loss. As long as the nonlinearity can recov-
er to its initial state before the next pulse arrives (i.e. it is fast),
the pulse intensities become clamped to a common value.

The first application of this technique used nonlinear po-
larization rotation [87]. As described above in Sect. 1.1, APM
in fiber lasers uses nonlinear polarization rotation to create
an artificial fast saturable absorber. By suitable adjustment of

the APM (interference) bias, it is possible to impose inten-
sity limiting on the pulses or additive pulse limiting (APL).
APL was demonstrated using a laser similar to that shown
in Fig. 2 but with a fiber-pigtailed Ti:LiNbO3 Mach–Zehnder
waveguide modulator placed between the isolator and output
coupler. After appropriate adjustment of the polarization con-
trollers, a 1-GHz pulse train was generated with a supermode
suppression of ≈ 50 dB. APL is dependent on the nearly in-
stantaneous Kerr effect, so it can be safely scaled to much
higher repetition rates.

Recently, a second technique using SPM and spectral
filtering to obtain a fast intensity-dependent loss was re-
ported [88, 89]. In this case a more intense pulse generates
a broader spectrum through SPM. An intracavity spectral fil-
ter then causes a higher-intensity pulse (with wider spectrum)
to experience greater loss than a lower-intensity pulse. In this
manner an optimum pulse bandwidth, and thus a standard
pulse intensity, is imposed on the pulse train. As this method
does not rely on polarization effects, it can be used in PM
fiber lasers.

3.2 Frequency and cavity stabilization

A remaining difficulty with harmonically mode-locked fiber
lasers is thermal drift of the cavity length. With

∂n

∂T
= 1.1 ×10−5 /◦C (11)

for silica fiber and a typical fiber length of 50 m, the ring cav-
ity length fluctuates by 0.55 mm/◦C. If the modulation is at
the N = 2000 harmonic, this translates to a frequency fluctu-
ation of ≈ 60 kHz/◦C about an 8-GHz modulation frequency.
Accordingly, slight thermal variations are able to cause the
pulses to lose synchronism with the modulator. A number
of techniques have been reported to compensate for thermal
drift.

The most obvious stabilization scheme is a dynamic ad-
justment of the cavity length [90]. A portion of the fiber in the
cavity is wound around a piezoelectric drum. By driving the
drum with a proper error signal, the cavity length is adjust-
ed to keep the cavity frequency synchronous with the fixed
modulator drive frequency. A second solution uses regener-
ative feedback where the modulation frequency is derived
directly from the pulse train [91]. Any change in the cavi-
ty length automatically adjusts the modulation frequency to
maintain pulse–modulator synchronism. In a third solution,
the modulation frequency is fixed and the cavity dispersion is
sufficiently high that the pulses can remain synchronous with
the modulator by shifting in wavelength [92].

An alternate approach abandons the requirement of pulse–
modulator synchronism [93]. Anomalous-dispersion fiber is
used throughout the cavity in this fiber laser to provide
strong soliton shaping, and the active mode-locking element
is a phase modulator that is purposely detuned from a cavi-
ty harmonic. When mode-locked, the resulting pulse train has
a repetition rate that deviates 15–30 kHz from the modulation
frequency. Asynchronous phase modulation produces a sinu-
soidal frequency shift [94], which normally would destroy
any pulses. Solitons, however, are able to fight the frequency
shift [95] and remain intact.
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3.3 Soliton pulse compression

Sources of subpicosecond pulses are being evaluated for two
primary ultrahigh bit rate communications systems appli-
cations: time-division multiplexing (TDM) and wavelength-
division multiplexing (WDM). Pulse widths of ≤ 1 ps are
inherently required in 100 Gbit/s TDM systems [17]. For
a WDM architecture, the broad spectrum of a subpicosecond
pulse can be used as a high-repetition-rate, spectrally-sliced
source [20].

As determined by Kuizenga and Siegman [97], the pulse
width produced by active mode-locking is inversely propor-
tional to the geometric mean of the mode-locking frequency
and the bandwidth of the medium (or filters) in the resonator.
Using typical parameters of fiber lasers, this expression pre-
dicts pulses widths to be 10–50 ps. Pulses generated from
stabilized harmonically mode-locked fiber lasers confirmed
this prediction [86].

In order to shorten the pulses from actively mode-locked
fiber lasers, the fiber medium naturally invites the use of
SPM [98] or a combination of SPM and negative GVD [64].
Pulse shortening with SPM was first demonstrated in an
actively mode-locked Nd+3-doped fiber laser [99]. Soliton
shaping was then demonstrated in an Er+3-doped fiber ring
laser [83] and in a Nd+3-doped fiber laser [100]. Soliton
shaping was also achieved in Er+3-doped fiber lasers with
an InGaAsP semiconductor amplifier [101] and with phase
modulators [102, 103]. The results of [98] were extended by
Kärtner et al. [104] (and indirectly in [105]) who showed the-
oretically that a sufficiently large amount of negative GVD
should suppress the normal mode-locked state enough to al-
low formation of a solitary pulse that is considerably shorter
than the width predicted by [97]. The central idea is that the
soliton parameters of the cavity, rather than the modulator
characteristics, determine the pulse width.

Successful shortening of actively mode-locked pulses by
soliton compression must satisfy the following two condi-
tions: (i) The solitons must be successfully re-timed on each
round-trip; (ii) there must be discrimination between the soli-
ton state and the normal actively mode-locked state. The for-
mer condition of pulse re-timing is a practical matter of main-
taining synchronism between the modulator and the pulse
train and is addressed in the previous section on cavity drift.
Following the analysis in reference [105], the latter condi-
tion can be quantified by calculating the loss of the soliton
and the loss of a fundamental Gaussian pulse, which is the
eigensolution of the active mode-locking equation (with no
nonlinearity) [97]. If the soliton state is to remain stable,
the Gaussian pulse of the active mode-locker must possess
a higher loss than that of the soliton. The resulting condition
is

π2
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f τ
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where M is the modulation index per unit length, Ωm is the
modulation frequency, τ is the soliton pulse width, Ωf is the
filter bandwidth, and k′′ is the average GVD over the total
cavity length L so that LD = L. On the left side is the loss ex-
perienced by the soliton, and on the right side is the loss of the
Gaussian mode-locked pulse.

In addition, the modulation must not drive the soliton
unstable. From soliton perturbation theory [69], energy fluc-
tuations of the soliton are damped if

π2
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2 <

1

LΩ2
f τ

2
. (13)

After fulfilling these two conditions, the pulse width is now
specified by the soliton condition,

τ =
4|D|

Wδ
, (14)

where W is pulse energy, D is the dispersion, and δ is the
nonlinearity.

The fiber laser used to investigate soliton compression
of actively mode-locked pulses is shown in Fig. 5 [96]. The
laser is constructed entirely of PM fiber, including the WDM
coupler and output coupler, to eliminate any nonlinear polar-
ization rotation, thereby excluding any artificial saturable ab-
sorber action (APM/APL) that could contribute to the pulse
shortening and soliton stability. The average dispersion k′′

of the cavity is −10 ps2/km. Approximately 500 mW of the
978-nm MOPA pump is coupled into the WDM. An open air
section is included in the ring to facilitate the placement of
different optical filters in the cavity. A fiber-pigtailed LiNbO3

waveguide amplitude modulator is the active mode-locking
element.

With a 7.80-nm filter and the modulation strength ad-
justed to satisfy both (12) and (13), the pulse autocorrela-
tion shown in Fig. 6a is obtained. The corresponding optical
spectrum in Fig. 6b shows evidence of Kelly sidebands [77].
Replacing the 7.80-nm filter with a 16.7-nm filter clearly
reveals the sidebands, thereby confirming the pulses to be
solitons. The experimentally measured pulse width of 634 fs
at 5 Gbit/s represents a pulse width shortening by a factor
of 4.4 over the standard activly mode-locked pulse width.
This shortening factor is in good agreement with the predic-
tion of [104] for the dispersion and filter bandwidth in the
laser. These 634-fs pulses are the shortest actively harmoni-
cally mode-locked pulses employing soliton compression to
be generated directly from a fiber laser.

The stability region for the solitons, which lies between
the two curves of (12) and (13), is shown in Fig. 7a. For

Fig. 5. Fiber laser using all-polarization-maintaining fiber from [96]
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Fig. 6. a Autocorrelation trace of pulse from the actively mode-locked, all-
PM-fiber laser with a 7.8-nm intracavity filter. A sech fit (dashed curve)
to the trace gives a FWHM pulse width of 634 fs. b Optical spectrum of
corresponding pulse. Also shown is the optical spectrum with a 16.7-nm
filter showing pronounced Kelly sidebands, confirming the pulse is indeed
a soliton, from [96]

experimental observation of this regime, a series of dif-
ferent interference filters with varying bandwidths (5.47,
6.18, 7.80, 10.1, 11.0, 12.2, and 16.7 nm) were placed
inside the cavity. The horizontal lines represent the ex-
plored regions at particular filter bandwidths. Autocorrelation
traces for specific operating points, indicated by circles and
squares, are shown in Fig. 7b. The circles represent operat-
ing points where clean solitons circulated in the cavity. No
pedestal is observed on the autocorrelation trace at these
points. The abscissa contains the soliton pulse width to the
fourth power. Hence for each filter bandwidth we located
each point on the plot by using the value of the modu-
lation strength and experimentally observed soliton pulse
width under constant cavity dispersion. The squares repre-
sent operating points that showed a mixture of Gaussian
pulse shapes and solitons. These points are unstable accord-
ing to the stability criterion predicted by (12) because there
is no discrimination between the Gaussian pulse and the
soliton.

The RF spectrum of the pulse train shows that, although
the cavity modes are locked, supermode suppression is only
20–30 dB. As discussed in Sect. 3.1, this level of supermode
suppression indicates variation of the pulse energies in the
pulse train and is not acceptable for optical communica-
tions sources. In the present laser, soliton parameters serve to
quantize the pulses, so poor supermode suppression actually
means that the available gain is not sufficient to place a soliton
in every available time slot. A calculation with the estimated
intracavity power and the soliton energy indicates that ap-
proximately one-half of the time slots are filled with pulses.
In fact, a bit pattern formed by occupied time slots (ones)
and empty slots (zeros) can be observed on an oscilloscope
and maintained indefinitely. This behavior can be exploited

Fig. 7. a Stability region of solitons with the boundary curves (1) and (2)
predicted by (12) and (13), respectively. The explored operating regions at
different filter bandwidths are given by horizontal lines. The circles sig-
nify clean soliton operation. The squares indicate a mixture of solitons
and Gaussian (mode-locked) pulses. b A series of autocorrelation traces
referenced in Fig. 7a showing the transition between solitons and normal
mode-locked pulses. Note the pedestals due to the competing Gaussian
pulses in traces a and c, from [96]

to build an optical memory loop [106] that can store 3.8 kbit
packets at rates up to 50 Gbit per second [107, 108].

4 Stretched-pulse laser

As discussed in Sect. 2.2 soliton lasers have inherent prac-
tical limits on their pulse width and pulse energy due to
spectral sideband generation and saturation of the APM.
An approach to avoiding the soliton regime is to employ
positive-dispersion fiber. Early reported systems minimized
pulse shaping per pass by using short lengths of positive dis-
persion Er+3-doped fiber and prisms for negative dispersion.
Pulses of 84 fs with 10 pJ of energy [109] and 190 fs with
100 pJ of energy [37] were obtained, but the linear cavities
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Fig. 8. Experimental setup for the all-fiber stretched-pulse laser from [42]

had bulk elements and were not self-starting. Then, Tamura
et al. [42] introduced the stretched-pulse technique, where an
all-fiber P-APM ring cavity is comprised of segments of alter-
nately large positive- and negative-dispersion fiber with a net
dispersion that is slightly positive, as shown in Fig. 8. In this
laser the Er+3-doped fiber was 1.13 m and had an unpumped
loss of 55 dB/m at 1.535 µm, core diameter of 2.5 µm, δn
of 0.035, and GVD of +0.075± 0.005 ps2/m. The Corn-
ing SMF-28 (standard) fiber had GVD of −0.022 ps2/m.
Self-starting pulses of 90 pJ energy and 56 nm spectral width
with durations as short as 77 fs were obtained after chirp
compensation in an external dispersive delay line of negative-
dispersion fiber.

In a stretched-pulse laser, the lengths of large positive-
and negative-dispersion fiber cause the pulses to be alternate-
ly stretched and compressed as they circulate in the cavity, as
shown in Fig. 8. The pulse width can change by an order of
magnitude within the cavity, and thus the average peak power
in the laser is lowered significantly. As a result, the net non-
linear phase shift per pass is lower, and APM saturation is
avoided. Spectral broadening occurs in the doped fiber due to
the action of the positive dispersion with SPM. At the output,
the pulses can then have high energy and a broad bandwidth.
Because the pulses are at a minimum for only a very small
portion of the cavity round-trip, the nonlinear phase shift is
limited, and the alternating dispersion is the dominant ef-
fect. Since the output is usually taken where the peak power
is low, the output pulses have a large chirp, but one that is

Fig. 9. Comparison of autocorrelation traces (plotted on a log scale) from
the soliton fiber ring laser from [29] and stretched-pulse fiber ring laser with
net dispersion of +0.004 ps2. Pulse widths were 450 fs (assuming sech) for
the soliton laser and 90 fs (assuming Gaussian) for the stretched-pulse laser,
from [110]

highly linear [112]. The chirp can then be compressed with
an external dispersive delay line composed of fiber, prisms,
or gratings. Another important aspect of the stretched-pulse
technique is that the alternating dispersion causes a period-
ically varying k(ω), which reduces phase-matched coupling
to resonant sidebands [111]. Thus the spectra are cleaner and
there is less dispersive radiation between pulses, as shown in
Fig. 9 by the comparison of the soliton pulse autocorrelation
from [29] with the stretched-pulse autocorrelation. The soli-
ton autocorrelation shows an exponentially decaying pedestal
due to dispersive wave radiation and beating of the first- and
second-order sidebands.

4.1 Soliton versus nonsoliton operation

A systematic study of the effect of the stretched-pulse laser’s
net GVD on the output pulse characteristics was reported
in [111]. Using a laser configuration similar to Fig. 8, the
net dispersion DT of the fiber ring was varied from DT ≈
−0.09 ps2 to DT ≈ +0.04 ps2 by changing the positive-
and negative-dispersion fiber lengths. (Compression of the
positively chirped output pulses was done in the negative-
dispersion fiber of the output coupler, as in [42].) At large
negative DT the laser clearly operated in the soliton regime
with spectral sidebands and with secant-hyperbolic spectra
and autocorrelations. The stretching factors (ratio of maxi-
mum to minimum pulse width within the loop) were small
(∼ 3–5) and the pulse energies from the 10% output coupler
were < 40 pJ. As the net dispersion was increased, the pulse
widths decreased while the pulse energy increased, as shown
in Fig. 10. The stretching factors also increased, and spectral
sideband generation was reduced, indicating that improved
operation can be obtained by stretching even when the net
cavity dispersion is negative.

When 0 ≤ DT ≤ +0.04 ps2, the pulses had spectral widths
> 50 nm and large chirp. The stretching factors were between
10 and 20 for this range of DT, and the pulse autocorrelations
and spectra were best fit to Gaussian profiles. The compressed
pulses were in the range of 76 fs to 105 fs, while the TBPs
were in the range of ∼ 0.55 to 0.65. The shortest and cleanest
pulses were observed for DT ≈ +0.011 ps2 where the au-
tocorrelation of the 76-fs pulse and corresponding spectrum
are shown in Fig. 11. The spectral width was 64 nm, corre-
sponding to a time-bandwidth product of 0.60, and the output

Fig. 10. Plots of pulse energy ranges (connected circles) and shortest
FWHM pulse width (triangles with corresponding TBP next to each point)
versus net dispersion DT for the all-fiber stretched-pulse laser. Dark trian-

gles assume sech, and open triangles assume Gaussian, from [111]
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Fig. 11. Autocorrelation of 76-fs pulse (assuming Gaussian) and corre-
sponding spectrum (inset) from the all-fiber stretched-pulse laser with net
cavity dispersion DT = +0.011 ps2, from [111]

pulse energy (from the 10% output coupler) was > 100 pJ.
For DT > +0.02 ps2 the pulse widths and TBPs increased,
in part due to nonlinear chirp caused by higher intracavi-
ty powers, and possibly due to third-order dispersion. The
experiments showed that the stretched-pulse laser has opti-
mal output characteristics when the net cavity dispersion is
slightly positive.

4.2 Theory of stretched-pulse APM

An analytical theory for stretched-pulse APM using a chirped
Gaussian model and assuming small nonlinear changes per
pass was described in [110]. The goal of the analysis was to
formulate a Master equation, similar to (2), for the stretched-
pulse laser. The theory asserts that, although the pulse
changes greatly in one round-trip due to the GVD, the stretch-
ing and compressing is a linear, reversible process and is
helpful in that it reduces the SPM per pass. Generally, puls-
es with clean spectra and good stability have small nonlinear
changes per pass. The assumption of a chirped Gaussian pulse
arises from the experimentally observed pulse shapes [111]
and is justified on theoretical grounds as explained below.

The theory considers balanced linear dispersion as the
dominant effect in the laser and treats the dispersion imbal-
ance and nonlinearity as perturbations. An important aspect
of the theory is the assumption of a transform-limited pulse
in the symmetry plane of the ring with balanced dispersion,
as indicated in Fig. 8. This assumption is based on the fact
that having pulse-width minima at these locations minimizes
the average width of the pulse and thus maximizes the non-
linear effects on the pulse. The nonlinear effects lead to APM
action, and the maximization of the nonlinear effects max-
imizes the APM action. The loss of the laser is therefore
minimized because APM action acts as an artificial saturable
absorber that experiences maximum saturation when the two
pulse-width minima occur at the symmetry plane.

The change of the pulse per pass due to the GVD imbal-
ance is represented by the operator

D
d

dt
= 

(

k′′
p Lp

2
−

∣

∣

∣

∣

k′′
n Ln

2

∣

∣

∣

∣

)

d

dt
, (15)

where k′′
i is the GVD, L i is the fiber length, and the subscripts

p and n denote positive and negative GVD, respectively. The
accumulated nonlinear phase shift responsible for the SAM
and SPM actions is evaluated using the zeroth-order approx-
imation of Fig. 8 for the expanding and contracting pulse,
which is transform-limited in the symmetry plane of the ring.
It is clear that the temporal window of the SAM and SPM
actions is now much wider than the pulse duration at the po-
sition of minimum pulse width. A Taylor series expansion of
the pulse in time is terminated with the quadratic term leading
to the Master equation:
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u(t)= −ψu(t) ,

where µ < 1 is the curvature of the parabolic time depen-
dence found either by expansion of the Gaussian solution or
via a variational method, which gives better agreement with
numerical solutions [113].

The Master equation has the Gaussian solution

u(t)= A0 exp
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2

)

, (17)

where the complex parameter Q is obtained by balancing
terms in (16). The Gaussian pulse shape is an approxima-
tion to the actual pulse shape. The Taylor expansion of the
SAM and SPM coefficients around the peak of the pulse is
accurate near the center of the pulse, but fails in the wings.
Hence, one expects the actual pulse shape to be Gaussian in
the high-intensity portion of the pulse and to be exponen-
tial in the wings where the nonlinearity ceases to act on the
pulse. This is confirmed by the autocorrelation trace of the
stretched-pulse laser shown in Fig. 9.

The Gaussian solution of (16) has another important im-
plication. A perturbation of the six pulse parameters, ampli-
tude, phase, width, chirp, timing, and carrier frequency, is
expressed in terms of the three lowest-order Hermite Gaus-
sians with complex coefficients. These are all bound solutions
of the Master equation in sharp contrast to soliton pertur-
bation theory and the perturbation of solutions of (2). For
example, an amplitude change of a soliton cannot be accom-
modated by a bound solution but requires contributions of the
unbound “continuum”. The pulses in the all-fiber soliton laser
clearly show this radiation traveling away from the soliton, as
shown in Fig. 9. The Kelly sidebands [77] are a manifestation
of a phase-matched excitation of these unbound solutions. In
contrast, the stretched-pulse Master equation does not predict
continuum generation. Experimentally, no clear evidence of
Kelly sidebands has emerged in stretched-pulse lasers.

Since the Master equation is an approximate equation, one
may ask whether the prediction of the absence of sidebands
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Fig. 12. Comparison of the spectra from the soliton and stretched-pulse
lasers. Both spectra are plotted on log scales and fit with the spectra of
a sech pulse (dashed) and a Gaussian pulse (dotted)

is an artifact of the approximation. There is another entirely
independent argument that shows that sideband generation in
a stretched-pulse laser must be much weaker than in a soli-
ton laser. We have argued above that the Gaussian character
of the pulses is well realized near the center of the pulse. The
structure at the center of the pulse is Fourier transformed into
the wings of the spectrum. Thus, the wings of the spectrum
should have a decay that is exponential with the square of fre-
quency. This is confirmed experimentally as shown in Fig. 12.
In contrast, the spectrum of the pulse solutions of (2) have an
exponential decay that is linear with frequency. If the phase-
matching argument for the generation of Kelly sidebands is
applied to the Gaussian spectrum, it is found that the spectral
wings that feed the sideband generation are much weaker in
the stretched-pulse case than in the soliton case.

The theory of the stretched-pulse laser described in this
section considers the nonlinearity and dispersion imbalance
to be perturbations. As described in the following sections,
the stretched-pulse laser can be scaled to higher powers
through increased gain and pump power and larger net pos-
itive dispersion. When the nonlinearity is no longer small
compared with the linear dispersion, a shift of the minimum
pulse-width position in the laser can occur and may decrease
the nonlinearity [114, 115]. The assumption of Gaussian puls-
es also may lose validity as the power is scaled up. In the
following sections, the high-power pulses are generally com-
pared with the hyperbolic-secant profile, which is commonly
used in the literature.

4.3 Pulse dynamics in the stretched-pulse laser

The pulse in a stretched-pulse laser undergoes large changes
in width as well as spectral changes as it circulates the ring.
These intracavity pulse dynamics were experimentally inves-
tigated in [44] to determine the optimum location for the
output coupler and P-APM polarizer. A setup similar to that
of Fig. 13 was used, except for the addition of three 3.3%
output couplers constructed of dispersion-shifted fiber and

Fig. 13. Experimental setup for stretched-pulse fiber laser with bulk com-
ponents. For the pulse dynamics study, three 3.3% dispersion-shifted fiber
output couplers were added to the ring immediately before the air gap, im-
mediately after the air gap, and between the WDM coupler and SMF-28
fiber. The rejected s polarization of the PBS acted as the rejection port for
the P-APM, giving a linearly polarized output pulse. Reference [43] did not
include the birefringent tuning plate

placed immediately before the air gap, after the air gap, and
between the WDM coupler and SMF-28 fiber. The laser could
be operated in the forward direction indicated by Fig. 13, as
well as in the reverse direction by reversing the order of the
components in the air gap. The pulses at the three output ports
were then investigated for the forward and reverse directions
of operation and for varying cavity dispersions (by changing
the SMF-28 fiber length with a fixed Er+3-doped fiber length
of 1.08 m).

In both directions of operation the optimum point for out-
put coupling was immediately after the amplifier, since the
pulses had the broadest bandwidth and highest energy. With
a net cavity dispersion DT ∼ +0.009 ps2, in reverse opera-
tion the power at the 3.3% output port after the amplifier was
1.55 mW, and the pulses were compressed to 103.3 fs (as-
suming a Gaussian profile) with TBP of 0.63. Detrimental
pulse shaping and structure on the spectrum were attributed
to soliton effects, which occurred due to high powers in the
negative-dispersion fiber because it was located immediately
after the gain fiber. A large loss in bandwidth occurred across
the air gap due to the selective rejection of the pulse wings,
which contained the spectral extrema.

In forward operation (with DT ∼ +0.009 ps2) the pulse
spectra were smooth at all three output ports and were not
highly sensitive to pump power or waveplate positions. After
the amplifier the power at the 3.3% output port was 0.93 mW,
and the de-chirped pulse was 85 fs (assuming Gaussian) with
TBP of 0.50. The spectra before and after the SMF-28 fiber
were nearly identical for forward operation, indicating that
the propagation was essentially linear through the negative-
dispersion fiber. The high quality and small wing structure
of the de-chirped pulses is due to the highly linear chirp as
a result of the normal GVD and SPM in the Er+3-doped fiber
as in fiber-grating pair pulse compression [112]. These re-
sults clearly indicate that when the pulse stretching per pass
is large, optimum pulse characteristics are obtained by mini-
mizing soliton effects. Thus the stretched-pulse laser should
be operated in the forward direction with the output port and
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APM polarizer placed immediately after the gain fiber to keep
the regions of highest intensities within the positive GVD
fiber.

The scalability of the stretched-pulse laser to longer cav-
ity lengths was also addressed in [44]. Although long cavity
lengths cause multiple-pulse operation in soliton lasers, that
tendency is reduced in the stretched-pulse laser due to op-
eration with high powers in the positive GVD fiber and low
powers in the negative GVD fiber. By increasing the Er+3-
doped fiber length to 1.55 m it was found that the output pulse
quality was relatively insensitive to cavity length. Pulses as
short as 63 fs were achieved with a TBP of 0.60. (In this case,
a sech profile was assumed due to soliton compression ef-
fects in the fiber dispersive delay line resulting in spectral
broadening.) Further scalability is discussed in Sect. 4.5.

4.4 High energy port

An important technique for obtaining higher output powers
from the stretched-pulse laser was first reported in [43]. In
the stretched-pulse laser of Fig. 8 the 10/90 fiber coupler
provides a (nonoptimized) 10% output port, and the laser effi-
ciency is limited by internal losses. A fiber laser mode-locked
by P-APM is a nonlinear interferometer with two output ports
formed by the final polarizer. The right- and left-hand circular
polarizations are added at this polarizer such that the peak of
the pulse passes through the polarizer, while the wings of the
pulse are in the orthogonal polarization and are extinguished
by the polarizer. In the laser of Fig. 8 the polarizer at the
isolator input performs this function, and so the rejected po-
larization is absorbed. Through the use of bulk components,
as shown in Fig. 13, the APM rejection port can be accessed
as the output port of the stretched-pulse laser. This improves
the laser performance by reducing intracavity loss (by elimi-
nating the normal output coupler). Although one might expect
the power exiting this port to have poor pulse quality, the
rejected pulse can still be of relatively high quality if the dif-
ferential nonlinear phase shift required for mode-locking is
small (< π/2), as demonstrated in [43]. The rejected pulse is
usually longer than the intracavity pulse, but the rejected out-
put power can be as much as 50% of the intracavity power
when the laser is biased to a point where there is large loss for
low intensities.

The laser consisted of 1.0 m of Er+3-doped fiber, 2.5 m of
SMF-28 fiber, and 0.45 m of Corning Flexcor 1060 fiber (with
GVD of −0.007 ps2/m) such that the net cavity dispersion
was estimated to be +0.016±0.005 ps2. Self-starting mode-
locked operation was obtained with 270 mW of coupled
980-nm pump power and 23.5 mW of output power. A max-
imum output power of 38 mW (0.78 nJ pulse energy) was
obtained for 340 mW of coupled pump power. The loss at the
PBS (APM rejection port) was estimated to be approximately
50% of the power circulating in the cavity during pulsed oper-
ation, regardless of the wave-plate settings. The high positive
chirp on the output pulses was compensated with an SMF-
28 fiber dispersive delay line, although to demonstrate the
chirp compensation only 1 mW of the laser power was used
in order to avoid nonlinear effects in the fiber. The shortest
compressed pulse width was 83 fs, assuming a sech profile,
and the spectral width was 60 nm, corresponding to a time-
bandwidth product (TBP) of 0.62.

In reverse operation, self-starting mode-locked operation
was observed with 270 mW of coupled pump power and
23 mW of output power (0.4 nJ pulse energy). These pulses
had high negative chirp, which was compensated by a pair
of silicon slabs. Compressed pulses as short as 91 fs were
achieved, assuming a sech profile, with 53 nm of spectral
width and a corresponding TBP of 0.59. When the pump
power was increased to obtain higher output powers, the pulse
autocorrelations and spectra exhibited multiple peaks and
complex structure due to soliton effects. The output pulses
from both the forward and reverse directions of operation ex-
hibited larger wings than those observed with standard output
coupling as in [42]. Pulse quality was evaluated by compar-
ing the compressed autocorrelations with the ideal sech fit.
For the reverse-operation pulse, ∼ 10% of the total energy
was contained in the non-sech component of the pulse, while
∼ 20% of the total energy of the forward-operation pulse was
contained in the non-sech component. Although the reverse-
operation pulse exhibited less energy in the non-sech com-
ponent of the pulse, the limit on output power set by soliton
effects indicated that to achieve the highest output powers,
forward operation should be used.

4.4.1 Stretched-pulse laser with prisms. Output power lev-
els from the stretched-pulse laser were further increased
by replacing the Ti:sapphire pump laser with a commercial
980-nm MOPA [116]. Using the same setup as in Fig. 13
with 1.3 m of Er+3-doped fiber, average output powers as
high as 90 mW (2.25 nJ pulse energy) were obtained from
the APM rejection port with 600 mW of coupled pump pow-
er. The chirp on these pulses was then compensated with
a double-pass silicon Brewster prism pair to obtain a 90-fs
pulse width, assuming a sech profile, with spectral filtering
of ∼ 10% of the pulse energy in the prism compensator to
achieve small pulse wings. (Transmission losses through the
prism compensator were ∼ 30% due to clipping of the beam.)

The optimum net dispersion for a stretched-pulse laser
using the APM rejection port as the output port was inves-
tigated experimentally. As shown in Fig. 14, the negative-
dispersion fiber was replaced with a pair of Si prisms, allow-
ing the net cavity dispersion DT to be varied for a fixed length
of gain fiber and fixed pulse repetition rate. To obtain high-
er gain, the Er+3-doped fiber was 1.7 m and was backward
pumped with a 980-nm MOPA. Self-starting, mode-locked

Fig. 14. Experimental setup for a stretched-pulse fiber laser with silicon
prisms to provide the negative dispersion
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Fig. 15. Plots of average output power (2), spectral width (•), and com-
pressed pulse width (⊙), versus net cavity dispersion DT for the stretched-
pulse prism laser. The laser output is taken from the APM rejection port.
This plot can be compared with Fig. 10, which considered the pulse charac-
teristics from a 10% output port as a function of DT by changing the fiber
lengths

operation was achieved over a broad range of DT with out-
put powers as high as 115 mW directly from the cavity with
520 mW pump power and 56.3 MHz repetition rate.

While the laser was mode-locked, the prisms could
be adjusted to continuously tune DT from −0.004 ps2 to
+0.045 ps2. The average output power, spectral width, and
compressed pulse width versus DT are shown in Fig. 15,
where the chirped output pulses were compressed with
a 150 lines/mm grating pair instead of a prism pair due to
ease of alignment. Slight adjustments to the wave plates
and pump power were made at each point to ensure smooth
spectra and single-pulse operation. The shortest pulse widths
(75 fs) and broadest spectral widths (80 nm) occurred for
0< DT < +0.02 ps2, while the highest average output power
(115 mW) was achieved for DT ≈ 0.027 ps2. Figure 15 shows
similar trends to Fig. 10, which plots the pulse characteristics
from a standard 10% output coupler when the net dispersion
was varied by changing the fiber lengths. The results from the
stretched-pulse prism laser confirm that optimal output puls-
es are obtained from either a standard output coupler or the
APM rejection port when the net cavity dispersion is slightly
positive.

4.5 Frequency Doubling of the Stretched-Pulse Laser

In addition to high output power, the stretched-pulse laser has
several key features that have led to a number of applica-
tions. Synchronized multichannel wavelength-division multi-
plexing [19] takes advantage of the broad bandwidth of over
50 nm as would optical characterization applications between
1.5 and 1.6 µm. The sub-100 fs pulses at 1.55 µm have been
used to seed a color-center amplifier [22] and may also be
used in time-resolved spectroscopy. An additional applica-
tion, frequency doubling to 775 nm, takes advantage of the
high peak power of the stretched-pulse laser. Results indicate
that the frequency-doubled stretched-pulse laser is a possible
inexpensive and compact replacement for the argon-pumped
mode-locked Ti:sapphire oscillator as a seeding source for
regenerative amplifiers.

A stretched-pulse laser was optimized for this frequency-
doubling application and several nonlinear crystals were eval-

Fig. 16. Autocorrelation of the 1.55-µm pulse (dashed) and the frequency-
doubled pulse (solid). A sech fit of the frequency-doubled pulse is also
shown (dotted), from [45]

uated [45]. The experimental setup was similar to Fig. 13
except that to obtain higher efficiencies and peak power,
the Er+3-doped fiber was 1.7 m (resulting in a larger single-
pulse energy) and was backward-pumped with a 980-nm
MOPA. The net dispersion DT of the laser was adjusted to
≈ +0.013 ps2 in order to maximize the fundamental pulse
energy while maintaining the pulse width near 100 fs [111].
Average output powers of > 95 mW at 31.8 MHz were ob-
tained with 400 mW of coupled pump power. The highly
chirped ∼ 1 ps pulses were compensated in a sequence of
four Si Brewster prisms with prism separation of ∼ 12 cm
and total transmission of as much as 90%, resulting in funda-
mental pulse energies of 2.7 nJ. The compressed pulse shown
in Fig. 16 was 106 fs (assuming sech) with spectral width of
∼ 67 nm centered at 1552 nm and corresponding TBP ∼ 0.89.
Strong pumping and nonlinear output coupling at the APM
rejection port caused the fundamental pulses to have ex-
cess energy in the pulse wings and larger TBPs than when
the stretched-pulse laser was optimized for minimum pulse
width [111]. The frequency-doubling results, though, showed
that the SHG conversion efficiency was still significantly en-
hanced by this higher-power operation without comparable
conversion of the pulse wing energy. As shown in Fig. 16, the
frequency-doubled pulses were clean with less than 1% of the
pulse energy in the non-sech wings.

Several nonlinear crystals including β-BaB2O4 (BBO),
KNbO3 (potassium niobate), and LiB3O5 (LBO) were eval-
uated for frequency-doubling. Calculations indicate that
BBO should be an excellent nonlinear crystal for doub-
ling 1.55 µm, because the group velocity mismatch between
the fundamental and second harmonic generation (SHG)
approaches zero near 1.5 µm, according to the Sellmeier
equations from [117]. With 85 mW of compressed fun-
damental power focused onto a 1-cm antireflection (AR)-
coated BBO crystal with an AR-coated 75-mm focal-length
lens, frequency-doubled powers as high as 8.7 mW were
achieved, corresponding to 10% conversion efficiency and
pulse energies of 270 pJ. Figure 16 shows the autocor-
relation of the 86 fs frequency-doubled pulse (assuming
sech). The frequency-doubled spectrum is 7.3 nm wide
and centered at 771 nm, resulting in a TBP of 0.32. Ef-
ficient frequency doubling thus results in a large reduc-
tion of excess bandwidth to generate near-transform-limited
red pulses. Due to the high index of silicon, the com-
pressed pulse beam quality and SHG conversion efficiency
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depended critically on matched prisms and prism align-
ment.

Although frequency doubling with a 1.5-mm potassium
niobate crystal and a 7-mm LBO crystal resulted in conver-
sion efficiencies of 3% and 6%, respectively, spectral nar-
rowing occurred in both crystals due to group velocity mis-
match. The 270-pJ pulses achieved with the 1-cm BBO crys-
tal are sufficient for seeding a Ti:sapphire amplifier, where
dominance over amplified spontaneous emission has been
demonstrated with 100-pJ seed pulses [118]. Additionally, the
> 30 MHz repetition rate of the frequency-doubled stretched-
pulse laser results in an easily visible red beam, which simpli-
fies alignment of the amplifier system.

4.5.1 Frequency-resolved optical gating measurements. The
offset of the frequency-doubled pulse spectrum from the cen-
ter of the fundamental spectrum was explored by performing
(FROG) measurements [119, 120] on both the fundamental
and frequency-doubled pulses. Experimental data was tak-
en by spectrally resolving the autocorrelation of the pulse
(SHG FROG [121]). Figure 17 shows an experimental SHG
FROG trace of a 72-fs fundamental pulse (compressed with
a 150 lines/mm grating pair) along with the best calculated
fit, obtained with the generalized projections algorithm [122].
The FROG trace indicates that the pulse wings contained
the lower-frequency components, and thus efficient frequen-
cy doubling occurred at shorter wavelengths. This explains
why the frequency-doubled spectrum was centered at 771 nm
rather than at the expected wavelength of 776 nm based on the
first moment of the fundamental spectrum.

The pulse intensity and phase profiles were then calcu-
lated from the calculated FROG fit of Fig. 17. The nearly
flat phase across the central region of the pulse indicated that

Fig. 17. SHG FROG traces of the fundamental pulse from the stretched-
pulse laser: (top left) experimental trace and (top right) calculated fit,
from [45]. Bottom plot: comparison of the experimentally measured
1.55-µm spectrum (dashed) with the derived spectrum from the SHG
FROG measurement (solid)

Fig. 18. SHG FROG traces of the frequency-doubled pulse. The con-
tour plot on the left shows the experimentally measured trace, while the
right-hand plot shows the calculated fit

the linear chirp was almost completely compensated [45].
In order to confirm that the FROG data accurately repre-
sented the pulse, the experimental 1.55-µm spectrum was
compared with the Fourier transform of the calculated pulse
intensity and phase. As shown in Fig. 17, the agreement be-
tween the two spectra was excellent, verifying that no filter-
ing occurred in the grating compressor or in the nonlinear
crystal. SHG FROG measurements were also performed on
the frequency-doubled pulses and are shown in Fig. 18. The
round and smooth FROG trace along with the flat calcu-
lated phase profile corroborate the high pulse quality of the
frequency-doubled output.

5 Noise in P-APM Fiber Lasers

Understanding of the noise characteristics of fiber lasers
mode-locked by P-APM is important for their potential ap-
plications. The long upper-state lifetime of erbium (≈ 10 ms)
causes the Er+3-doped fiber ring laser to be largely insensitive
to pump noise and gain fluctuation except at very low fre-
quencies. Thus the laser is well-suited for noise study. Ampli-
tude noise and timing jitter were measured for both the soliton
laser and stretched-pulse laser using the method of von der
Linde [123], which determines the noise characteristics from
the power spectrum of the current of a photodetector when
illuminated with the output pulse train. As shown by [123],
timing jitter grows quadratically with the harmonic k, while
amplitude noise is independent of harmonic number.

The noise characteristics of the all-fiber P-APM laser
shown in Fig. 2 were examined in [124, 125]. In some modes
of operation, and particularly at high pump powers, a cw
background would co-propagate with the pulse and appear as
a cw spike on the spectrum. The laser would then exhibit re-
laxation oscillations that were negligible when the cw spikes
were suppressed [124]. The pulse mode and the cw relaxation
oscillations were decoupled to the extent that the relaxation
frequency was unaffected by the presence of the pulses. Oper-
ation with cw background caused increased timing jitter, with
jitter of 14.4 ps observed in a 25-ms measurement time when
the laser had multiple cw spikes compared to jitter as low as
240 fs when the cw spikes were suppressed. The authors also
reported that spectral sidebands due to continuum generation
did not seem to increase the jitter.

Reference [125] reviewed the Haus–Mecozzi theory [69]
of timing jitter and amplitude fluctuations in a mode-locked
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laser with negative GVD. The equations of motion for the
different noise components – energy, timing, and frequency
– were derived, and the spontaneous emission noise (quan-
tum noise) was modeled by a white noise source. The timing
jitter spectrum was found to correspond to a random walk, ex-
plaining why free-running passively mode-locked lasers have
large timing jitter at low frequencies. Experimental results
from the all-fiber soliton ring laser confirmed the theoretical
predictions when the cw spike was suppressed. Two sources
of timing jitter were identified: noise due to the pump and
noise due to spontaneous emission. The measured timing jit-
ter of 640 fs, corresponding to ∼ 27 ppm of the pulse round-
trip time, was very close to the quantum limit of 20 ppm (in
a measurement time of 0.1 s), indicating that the jitter was
mainly due to amplified spontaneous emission.

For the stretched-pulse laser Namiki and Haus [126] have
proposed a theoretical model of the noise that uses pertur-
bation theory and is analogous to the noise theory for the
mode-locked fiber soliton laser [125]. The steady-state pulse
within the laser is assumed to be a chirped Gaussian, and
the perturbation of the pulse parameters (amplitude, width,
phase, chirp, timing, and carrier frequency) is expanded in
terms of a complete set of Hermite–Gaussian functions. Fluc-
tuations of the pulse parameters are then determined under
the assumption that the noise is due to spontaneous emission
of the amplifier. Measurements of an all-fiber stretched-pulse
laser (with similar configuration to that of Fig. 8) have been
reported in [127]. Amplitude fluctuations as low as 0.05%
of the pulse energy and timing jitter < 80 fs (4 ppm of the
pulse round-trip time) in a measurement time of 0.09 s were
observed with no external stabilization. Comparison of the
measurements with the theory indicates good agreement and
also shows that the timing jitter at frequencies > 60 Hz is
due to amplified spontaneous emission (quantum) fluctua-
tions. The decreased timing jitter of the stretched-pulse laser
compared to the soliton laser (4 ppm versus 27 ppm) is caused
by the higher power of the stretched-pulse laser and by the
smaller net GVD of the stretched-pulse laser, which prevents
frequency deviations from being transformed into timing jit-
ter.

These noise levels are the lowest reported to date for
passively mode-locked lasers [128–135]. (Valid comparison
of the timing jitter of different lasers relies on use of the
same measurement time.) Measurements of noise in passively
mode-locked fiber lasers have also been reported in [136–
138], where timing jitter as low as 110 fs rms in the frequency
band 30 Hz to 100 kHz was reported in [136] for a fiber laser
with a repetition rate stabilized by a phase-locked loop. These
fiber lasers cannot be directly compared with [125, 127] due
to use of the Nd+3-doped gain fiber in [136] and semiconduc-
tor saturable absorber mode-locking in [137, 138].

6 Conclusion

Erbium-doped fiber ring lasers mode-locked by P-APM are
compact, diode-pumped, stable sources of ultrashort puls-
es at 1.55 µm. The lasers can operate in the soliton regime,
where the group velocity dispersion is negative, or in the
stretched-pulse regime, where sections of both positive- and
negative-dispersion fiber are used. In both types of lasers,
the ring geometry reduces the self-starting threshold by de-

creasing mode pulling due to spurious reflections and spatial
hole burning. Although there are inherent limits to the soli-
ton regime due to spectral sideband generation, mode-locked
fiber soliton lasers with intracavity filters have produced puls-
es that are tunable over 50 nm with durations less than 400 fs.
The stability region of pulses in a harmonically mode-locked
fiber ring laser with soliton pulse compression was mapped,
and pulse widths a factor of 4.4 shorter than those pre-
dicted by active mode-locking theory were achieved. In the
stretched-pulse laser the pulses are alternatively stretched and
compressed as they circulate the ring, thus lowering the net
nonlinear phase shift per pass. Sub-100-fs pulses with ener-
gies as high as 2.7 nJ and bandwidths > 65 nm have been
generated. The short pulse width, broad bandwidth, and high
power of the stretched-pulse laser have led to its application
in wavelength-division multiplexing and spectroscopy and as
an amplifier seed source. Excellent noise characteristics of
both the soliton laser and stretched-pulse laser make them
particularly attractive sources.
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