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We study the low-intensity light pulse propagation through an asymmetric double quantum well
via Fano-type interference based on intersubband transitions. The propagation of the pulse across
the quantum well is studied analytically and numerically with the coupled Maxwell-Schrödinger
equations. We show the generation of ultraslow bright and dark optical solitons in this system.
Whether the solitons are dark and bright can be controlled by the ratio of dipole moments of
the intersbband transitions. Such investigation of ultraslow optical solitons in the present work
may lead to important applications such as high-fidelity optical delay lines and optical buffers in
semiconductor quantum wells structure.

PACS numbers: 42.50.Gy, 42.65.Tg, 78.67.De

Solitons describe a class of fascinating shaping-preserving wave propagation phenomena in nonlinear media. Over
the past few years, the subject of extensive theoretical and experimental investigations on solitons in optical fibers[1, 2],
cold-atom media[3–7], Bose-Einstein condensates (BEC)[8, 9], and other nonlinear media[10], has received a great
deal of attention mainly due to that these special types of wave packets are formed as the result of interplay between
nonlinearity and dispersion properties of medium under excitations, and can lead to undistorted propagation over
extended distance. Among various solitons studied so far, optical solitons of the interacting system of atoms and
electromagnetic field via electromagnetically induced transparency (EIT) have received much attention because of the
potential applications in quantum information processing and transmission[1, 2, 11]. In fact, ever since ultraslow light
propagation, large Kerr nonlinearities and refractive-index enhancement without absorption have been investigated
and already observed[12, 13], light storage with the technique of EIT has been an exciting research field now. Recently,
optical solitons including two-color solitons with very low group velocities, based on Raman excitation, have been
systematically proposed for the first time by Wu and Deng[3–7]. Consequently, the dynamics of ultraslow optical
solitons in cold atomic medium were studied[14].

It should be noted that similar phenomena involving EIT and ultraslow propagation of optical pulses in semicon-
ductor quantum wells (QW) systems have also attracted great attention due to the potentially important applications
in optoelectronics and solid-state quantum information science [15–36]. In fact, the analogies between coherent non-
linear phenomena in atomic two-level system and two-band semiconductor models have been successfully exploited
over the past few years, various effects including the resonant solitons have been considered in the literature. More
recently, several studies can be found in the literature focusing on exploiting the analogy between atomic three level
system and semiconductor heterostructures with a band structure. For example, coherently controlled photocurrent
generation[26], EIT[29], and gain without inversion[20–22] have been extensively investigated in semiconductor QW
systems. In particular, quantum tunneling to a continuum from two resonant subband levels in asymmetric double
QW may give rise to Fano-type interference[17, 18]. In contrast, devices based on the intersubband transitions in
the semiconductor QW have many inherent advantages in quantum information processing. One may naturally ask
if such techniques can also be used to facilitate the formation of an optical soliton in semiconductor QW media.

In the present paper, we wish to extend the above analogy by examining the low-intensity light pulse propagation
across an asymmetric double quantum well that exhibits Fano-type interference between adjacent intersubband tran-
sitions. We obtain the equation of space-time-dependent Rabi frequency for the pulsed laser field and demonstrate the
formation of ultraslow bright and dark solitons in semiconductor QW structure. Few works have discussed coherent
control of intersubband transitions in QW[27, 28], in which they focused on the absorption spectra and relaxation
dynamics in three-level (or four-level) models. Unlike those works, we will mainly discuss the propagation of coherent
light pulse. Besides, a few authors have also considered the pulse propagation dynamics[32, 37]. Our work is also
different from those investigations, we will consider the space-time-dependent propagation of a single pulsed laser
field.

Let us consider a semiconductor double QW structure consisting of two quantum wells that are separated by a
narrow barrier as shown in Fig. 1[16]. At a certain bias voltage, the first subband labeled |a〉 of the shallow well
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is resonant with the second subband labeled |b〉 of the deep well (see Fig.1a), and because of the strong coherent

coupling via the thin barrier, the levels split into a doublet, i.e. |2〉 = (|a〉 − |b〉)/
√

2, |3〉 = (|a〉 + |b〉)/
√

2 (see Fig.
1b). The splitting ωs between |2〉 and |3〉 is given by the coupling strength and can be controlled by adjusting the
height and width of the tunnelling barrier with applied bias voltage[18]. A low-intensity pulsed laser field with optical
frequency ωp and amplitude Ep is subjected to couple simultaneously the transitions |1〉 ↔ |2〉 and |1〉 ↔ |3〉 with the
respective Rabi frequencies µ31Ep/(2~) and µ21Ep/(2~) (here µ31 and µ21 is the intersubband dipole moments of the
respective transitions.). The low-intensity light pulse propagates in the z direction and likewise for the polarization.
As in the experiments in Ref. [16], we consider a transverse magnetic polarized probe incident at an angle of 45

degrees with respect to the growth axis so that all transition dipole moments include a factor 1/
√

2 as intersubband
transitions are polarized along the growth axis. What we are interested in is the propagation of the weak pulsed
field across the QWs. Working in the interaction picture, utilizing the rotating-wave approximation (RWA) and the
electric-dipole approximation (EDA), following the standard processes, which favors the physical insight into the
nature of the probe propagation mechanism, is based on coupled Schrödinger-Maxwell equations (There have been
theoretical discussions concerning the equivalence between the Schrödinger-formalism adding phenomenal decay rates
with the density matrix formalism in dealing with the dephasing processes in such circumstances in Ref. [38]),

∂A1

∂t
= iΩ∗

pA2 + i(
µ31

µ21
)∗Ω∗

pA3, (1)

∂A2

∂t
= i(

ωs

2
+ δ + iγ2)A2 + iΩpA1 + κA3, (2)

∂A3

∂t
= i(δ − ωs

2
+ iγ3)A3 + i

µ31

µ21
ΩpA1 + κA2, (3)

together with Aj(j = 1, 2, 3) being the amplitudes of subbands |j〉. Here Ωp = µ21Ep/(2~) (are assumed real) denotes
one half Rabi frequencies for the transition |1〉 ↔ |2〉, the coefficient µ31/µ21 describes the ratio of a pair of dipole
moments, and µij = µij · ẽL with ẽL (i, j = 1, 2, 3) being the polarization unit vector of the laser field describes the
intersubband dipole moments of the respective transitions. ωs = E3 − E2 is the energy splitting between the upper
levels, given by the coherent coupling strength of the tunnelling. δ = ωp − ω0 is the detuning between the frequency
of the pulsed laser field and the average transition frequency ω0 = (E3 + E2)/(2~).

The population decay rates and the dephasing rates are added phenomenologically in the above equations. The
population decay rates for subband |i〉, denoted by γil, are due primarily to longitudinal optical (LO) phonon emission

events at low temperature. The total decay rates γi are given by γ2 = γ2l + γdph
21 , γ3 = γ3l + γdeph

31 , where γdph
ij ,

determined by carrier-carrier scattering, interface roughness, and phonon scattering processes, is the dephasing decay
rates of quantum coherence of the |i〉 ↔ |j〉 transitions. The population decay rates can be calculated by solving the
effective mass Schrödinger equation. And as we know, the initially nonthermal carrier distribution is quickly broadened
due to inelastic carrier-carrier scattering, with the broadening rate increasing as carrier density is increased. For the

temperatures up to 10 K, the carrier density smaller than 1012 cm−2, the dephasing decay rates γdph
ij can be estimated

according to Ref.[18, 31]. For our QWs considered, they turn out to be γdph
21 = 1.5 meV, γdph

31 = 2.3 meV. κ =
√

γ2lγ3l

represents the cross-coupling of states |2〉 and |3〉 via the LO phonon decay; it describes the process in which a phonon
is emitted by subband |2〉 and is recaptured by subband |3〉. These cross-coupling terms can be obtained if tunneling
is present, e.g., through an additional barrier next to the deeper well. As mentioned above, |2〉 and |3〉 are both the
superpostions of the resonant states |a〉 and |b〉. Because |b〉 is strongly coupled to a continuum via a thin barrier, the
decay from state |b〉 to the continuum inevitably results in these two dependent decay pathways: from the excited
doublet to the common continuum. That is to say, the two decay pathways are related: the decay from one of the
excited doublets can strongly affect the neighboring transition, resulting in Fano-type interference characterized by
those cross-coupling terms. The probe absorption can be canceled due to the Fano destructive interference between
the two decay paths. Such destructive interference is similar to the decay-induced coherence in atomic systems with
two closely lying energy states. If ε = κ/

√
γ2γ3 is used to assess the strength of the cross-coupling, where the limit

values ε = 0 and ε = 1 correspond, respectively, to no interference and perfect interference.
In order to describe correctly the propagation of the generated optical solitons in the medium, equations of motion

must be simultaneously solved with Maxwell’s equation in a self-consistent manner. In the limit of plane waves
and slowly varying amplitude approximations, the amplitude of the pulsed laser field Ep = Ep(z, t) obeys Maxwell’s
equation. Making full use of the polarization amplitude P (ωp) of the pulsed laser field P (ωp) = N(µ21A2A

∗
1+µ31A3A

∗
1)

with N being the electron density in the conduction band of the QW and Rabi frequency Ωp = µ21Ep/(2~), we can
obtain the equation of motion for Ωp,
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FIG. 1: Conduction subband energy level diagram for an asymmetric double quantum wells separated by a thin tunnelling
barrier. (a) subband |a〉 of the shallow well is resonant with the second subband |b〉 of the deep well. (b) due to the strong
coherent coupling via the thin barrier, the subbands split into a doublelet |2〉 and |3〉, which are coupled to a continuum by
a thin tunnelling barrier adjacent to the deep well. ωs is the energy splitting between the upper levels |2〉 and |3〉, ωp is the
frequency of the low-intensity pulsed laser field.

∂Ωp

∂z
+

1

c

∂Ωp

∂t
= iB[A2 + (

µ31

µ21
)∗A3]A

∗
1, (4)

where B = 2πNωp |µ21|2 /~c is related to the frequently used oscillator strength of the intersubband transition
|1〉 ↔ |2〉. It should be noted that the polarization amplitude P (ωp) is the slow oscillating term of the induced

polarization in both the intersubband transitions |1〉 ↔ |2〉 and |1〉 ↔ |3〉. Let us assume that Aj =
∑

k A
(k)
j with

A
(k)
j is the kth-order part of Aj in terms Ωp. Within an adiabatic frame work it can be shown that A

(0)
j = δj0 and

A
(1)
1 = 0. Considering the first order of the field Ωp, we assume that the populations are initially in the ground state

|1〉. Performing the Fourier transformations for Eqs (2), (3) and (4)

Aj(t) =
1√
2π

∫ ∞

−∞

αj(ω) exp(−iωt)dω, j = 2, 3, (5)

Ωp(t) =
1√
2π

∫ ∞

−∞

Λp(ω) exp(−iωt)dω, (6)

where ω is the Fourier-transform variable. We have

α2 = −
iκ(µ31

µ21

) + (ω + δ − ωs

2 + iγ3)

(ω + δ − ωs

2 + iγ3)(ω + δ + ωs

2 + iγ2) + κ2
Λp, (7)
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α3 = −
(µ31

µ21

)(ω + δ + ωs

2 + iγ2) + iκ

(ω + δ − ωs

2 + iγ3)(ω + δ + ωs

2 + iγ2) + κ2
Λp, (8)

∂Λp

∂z
− i

ω

c
Λp = iB[α2 + (

µ31

µ21
)∗α3], (9)

Substituting Eqs. (7,8) into Eq. (9), we then obtain the solution for the pulsed laser field as follows:

Λp(z, ω) = Λp(0, ω) exp[iK(ω)z], (10)

where the propagation constant K(ω) is denoted by

K(ω) = ω
c − B(

iκ(
µ31

µ21
)+(ω+δ−ωs

2
+iγ3)

(ω+δ−ωs
2

+iγ3)(ω+δ+ ωs
2

+iγ2)+κ2 + (µ31

µ21

)∗
(

µ31

µ21
)(ω+δ+ ωs

2
+iγ2)+iκ

(ω+δ−ωs
2

+iγ3)(ω+δ+ ωs
2

+iγ2)+κ2 )

= β(0) + β′(0)ω + 1
2β′′(0)ω2 + · · · ,

(11)

The expressions of K(0), K ′(0) and K ′′(0) shown in the Appendix A. The physical interpretation of Eq. (11) is
rather clear. K(0) = φ + iβ describes the phase shift φ per unit length and absorption coefficient β of the pulsed
laser field, K ′(0) gives the group velocity Vg = Re[1/K ′(0)], and K ′′(0) represents the group-velocity dispersion that
contributes to the laser pulse’s shape change and additional of the pulsed laser field intensity. It should be emphasized
that optical solitons produced in this way generally travel with a group velocity given by Vg = Re[1/K ′(0)].

Following the method developed by Refs. [3, 4, 7], we take a trial function Λp(z, ω) =
∼

Λp(z, ω) exp[iK(0)z] and
substitute it into the wave equation

∂Λp

∂z
= iK(ω)Λp (12)

we can obtain

exp[iK(0)z]∂eΛP (z,ω)
∂z

= i[K ′(0)ω + 1
2K ′′(0)ω2]Λ̃P (z, ω) exp[iK(0)z]

(13)

Here we only remained the terms up to order ω2 in expanding the propagation constant K(ω). In order to balance the
interplay between group velocity dispersion and nonlinear Kerr-effect due to self-phase modulation[39], it is necessary
for us to consider the terms on the right-hand side of Eq. (4) and to analyze the nonlinear polarization of the pulsed
laser field, i.e.,

iB[Ã
(1)
2 + (µ31

µ21

)∗Ã
(1)
3 ][A

(0)
1 ]∗

= iB[A
(1)
2 + (µ31

µ21

)∗A
(1)
3 ] + NLT,

(14)

where NLT means the nonlinear terms given by NLT = −iB[A
(1)
2 +(µ31

µ21

)∗A
(1)
3 ][

∣∣∣A(1)
2

∣∣∣
2

+
∣∣∣A(1)

3

∣∣∣
2

], the explicit derivation

of Eq. (14) see the Appendix B.
Below we will derive the nonlinear evolution equation for Ωp. Performing the inverse Fourier transformation for

the above evolution equation (13)

∼

Ωp(z, t) =
1√
2π

∫ ∞

−∞

exp(−iωt)
∼

Λp(z, ω)dω, (15)
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associating with the nonlinear polarization terms, we can straightforwardly obtain the following nonlinear evolution

equation for the slowly varying envelope
∼

Ωp(z, t)

−i
∂

∼

Ωp(z,t)
∂z − iK ′(0)

∂
∼

Ωp(z,t)
∂z + 1

2K ′′(0)
∂2

∼

Ωp(z,t)
∂t2

= W exp(−2βz)

∣∣∣∣
∼

Ωp(z, t)

∣∣∣∣
2 ∼

Ωp(z, t),

(16)

where absorption coefficient β = Im[K(0)], and the nonlinear coefficient W is given by

W = B(δ+ωs/2)
[(δ+ωs/2)2+γ2

2
+κ2]2

− i
B(γ2−κ

µ31

µ21
)

[(δ+ωs/2)2+γ2

2
+κ2]2

+
∣∣∣µ31

µ21

∣∣∣
2 B[(δ−ωs/2)−iγ3+2iκ

µ31

µ21
]

[(δ+ωs/2)2+γ2

2
+κ2][(δ−ωs/2)2+γ2

3
+κ2]

+
∣∣∣µ31

µ21

∣∣∣
2 B[(δ+ωs/2)−iγ2−2iκ

µ31

µ21
]

[(δ+ωs/2)2+γ2

2
+κ2][(δ−ωs/2)2+γ2

3
+κ2]

+
∣∣∣µ31

µ21

∣∣∣
4 B[(δ−ωs/2)−iγ3+2iκ

µ31

µ21
]

[(δ−ωs/2)2+γ2

3
+κ2]2

.

(17)

We define ξ = z, and η = t − K ′(0)z, according to ∂/∂z ∼ ∂/∂ξ − K ′(0)∂/∂η and ∂/∂t ∼ ∂/∂η, the nonlinear
evolution equation of Eq. (16) can be simplified as

i
∂

∼

Ωp

∂ξ
− 1

2
K ′′(0)

∂2
∼

Ωp

∂η2
= −W exp(−2βξ)

∣∣∣∣
∼

Ωp

∣∣∣∣
2 ∼

Ωp . (18)

If the splitting between |2〉 and |3〉 can be controlled by adjusting the height and width of the tunnelling barrier so
that the absorption of the pulsed laser field was largely suppressed and thus we can neglect the collapse of the pulsed
laser field, i.e., the power transmission exp(−2βξ) = 1. We can choose the reasonable and realistic set of parameters
to satisfy β ≃ 0, K ′′(0) = Re[K ′′(0)] + Im[K ′′(0)] ≃ Re[K ′′(0)] and W = Re(W ) + Im(W ) ≃ Re(W ). Based on the
Eqs. (13,14), we can obtain the standard nonlinear Schrödinger equation governing the pulsed laser field evolution

i
∂

∼

Ωp

∂ξ
− 1

2
K ′′(0)

∂2
∼

Ωp

∂η2
= −Re(W )

∣∣∣∣
∼

Ωp

∣∣∣∣
2 ∼

Ωp, (19)

which admits of solutions describing bright and dark solitons. It is well known whether the solutions to Eq. (19) are
the bright solitons or the dark solitons depends on the sign of product Re[K ′′(0)] ·Re(W ), i.e., Re[K ′′(0)] ·Re(W ) < 0
for bright solitons and Re[K ′′(0)] · Re(W ) > 0 for dark solitons. If we can adjust the tunnelling barrier of QW so
that the pulsed laser field is resonant with the average frequency ω0 (δ = 0), and the energy splitting between the
levels |2〉 and |3〉 due to the coherent coupling of the tunnelling is much larger than the population decay rates for

subbands (ωs ≫ Max(γ2, γ3)), it is straightforward to show that Re[K ′′(0)] ≃ −32B[|µ21|2 + |µ31|2]/ω4
s |µ21|2 < 0,

Re[W ] ≃ −8B[|µ21|4 − |µ31|4]/ω3
s |µ21|2 and Vg ≃ ω2

s |µ21|2 /4Bc[|µ21|2 + |µ31|2]. As a result, the solutions of the

Eq. (19) are closely associated with the value |µ31/µ21|2, which corresponds to the ratio of the intersubbands dipole

moments µ31 and µ31 of the respect transitions. In the case of
∣∣∣µ31

µ21

∣∣∣ < 1, bright solitons are produced; in contrast,

dark solitons occur. The form of a fundamental bright soliton is given by

Ωp = Ωp0sech(η/τ) exp[iξRe(W ) |Ωp0|2 /2] exp[iK(0)ξ], (20)

where sech(η/τ) is the hyperbolic secant function. Amplitude Ωp0 and width τ are arbitrary constants subjected only
to the constraint |Ωp0τ | = −Re[K ′′(0)]/Re(W ).

We now present numerical examples to demonstrate the existence of ultraslow bright and dark solitons in the system
studied through simulating the Eq. (18). We consider a system where the population decay rates and the dephasing
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FIG. 2: Surface plot of the amplitude for the generated fundamental bright soliton |Ωp/Ωp0|
2 exp(−2βξ) versus dimensionless

time η/τ and distance ξ/L under the boundary condition Ωp(ξ = 0, η) = Ωp0sech(η/τ ) by the numerical simulations. Here, we

have chosen the relative parameter γ2l = 5.6 meV, γ3l = 7.0 meV, γdph
21

= 1.5 meV, γdph
31

= 2.3 meV, B = 6cm−1 meV, ωs = 50

meV,
˛

˛

˛

µ31

µ21

˛

˛

˛
= 0.9, δ = 0, L = 1.0 cm, and τ = 1.0 × 10−6s.

rates of the subbands |2〉 and |3〉 are γ2l = 5.6 meV, γ3l = 7.0 meV, γdph
21 = 1.5 meV, and γdph

31 = 2.3 meV, respectively.
From the above estimates, we obtain ε = 0.77, which is close to the ideal value ε = 1 and corresponds to a large
tunneling efficiency leading a strong Fano-type interference effect. We first consider the case of dark solitons. Taking

B = 6cm−1 meV,
∣∣∣µ31

µ21

∣∣∣ = 1.2, ωs = 50 meV, and δ = 0, in which the splitting on resonance(coupling strength) ωs can

be controlled by adjusting the height and width of the tunneling barrier. And we can obtain Vg/c ∼ 10−4. With these
parameters, standard nonlinear Schrödinger equation (19) with Re[K ′′(0)] ·Re(W ) > 0 is well characterized, and thus
we have demonstrated the existence of dark solitons that travel with usltraslow group velocities in a semiconductor

double quantum well structure. For bright solitons, we take
∣∣∣µ31

µ21

∣∣∣ = 0.9 with all other parameters given above

unchanged. In this case we obtain Vg/c ∼ 10−4. As shown in Fig. 2, these parameters and results again show that
standard nonlinear Schrödinger equation (19) with Re[K ′′(0)] · Re(W ) < 0, which is well characterized and that the
formation of bright solitons occurs. In Fig. 2, the numerical simulation of Eq. (18) for the bright soliton shows an
excellent agreement with Eq. (20).

It is worth noting that the above-described parameter sets also lead to negligible loss of the probe field for both the
bright and the dark solitons described, as can be seen in Fig. 2. Besides, we have used the one-dimensional model in
calculation where the momentum-dependency of subband energies has been ignored. According to the Ref.[32], there
is no large discrepancy between the reduced one-dimensional calculation and the full two-dimensional calculation.
For details about two-dimensional calculations can be found in Refs.[28, 29]. In the present paper, we have set the

parameters γdph
ij and γil to satisfy γdph

ij < γil, a resonant probe can prapagate with little absorption. If the dephasing

decay rates γdph
ij is too large, the effect tunneling induced interference will become less pronounced according to the

factor ε = κ/
√

γ2γ3, and the probe will be more and more absorbed.
In summary, we have investigated the propagation of a single pulsed laser field in a specific asymmetric double

QW structure via Fano type interference from the Maxwell- Schrödinger equations of the pulsed laser field across
the quantum wells, we have obtain a NLS Schrödinger equation governing the evolution of pulsed laser field. As a
result, we achieve the ultraslow optical bright and dark solitons in the system, which is a novel scheme to achieve
the generation of solitons in semiconductor QW. The present investigation is much more practical than its atomic
counterpart due to its flexible desigh and the controllable interference strength. Such ultraslow optical solitons may
provide a new possibility for designing high-fidelity optical delay lines and optical buffers in semiconductor quantum
wells structure.

The research is supported in part by National Natural Science Foundation of China under Grant Nos. 10704017,
10634060, 90503010 and 10575040, by National Fundamental Research Program of China 2005CB724508. W.X.Y
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Appendix A

In Eq. (11), The expressions of K(0), K ′(0) and K ′′(0) are written as follow,

K(0) = −
B[(δ + ωs/2) + iγ2 − iκµ31

µ21

]

(δ + ωs/2)2 + γ2
2 + κ2

−
B

∣∣∣µ31

µ21

∣∣∣
2

[(δ − ωs/2) + iγ3 + iκµ31

µ21

]

(δ − ωs/2)2 + γ2
3 + κ2

, (A1)

K ′(0) = 1
c +

B[(δ+ωs/2)2−γ2

2
−2iγ2(δ+ωs/2)−2iκ

µ31

µ21
]

[(δ+ωs/2)2+γ2

2
+κ2]2

+
B|µ31/µ21|

2[(δ−ωs/2)2−γ2

3
−2iγ3(δ−ωs/2)+2iκ

µ31

µ21
]

[(δ−ωs/2)2+γ2

3
+κ2]2

,

(A2)

K ′′(0) = − 2B[(δ+ωs/2)2−γ2

2
−2iγ2(δ+ωs/2)−2iκ

µ31

µ21
]

[(δ+ωs/2)2+γ2

2
+κ2]3

−
2B

˛̨
˛ µ31

µ21

˛̨
˛
2

[(δ−ωs/2)2−γ2

3
−2iγ2(ωs/2−δ)+2iκ

µ31

µ21
]

[(δ−ωs/2)2+γ2

3
+κ2]3

.

(A3)

Appendix B

Considering the right side of Eq. (4) and analyzing the nonlinear polarization of pulsed laser field, we can obtain

iB[Ã
(1)
2 + (

µ31

µ21
)∗Ã

(1)
3 ][A

(0)
1 ]∗ = iB[A

(1)
2 + (

µ31

µ21
)∗A

(1)
3 ]

∣∣∣A(0)
1

∣∣∣
2

. (B1)

By using the relations:

∣∣∣A(0)
1

∣∣∣
2

+
∣∣∣A(1)

2

∣∣∣
2

+
∣∣∣A(1)

3

∣∣∣
2

= 1, (B2)

A
(1)
2 = −

iκµ31

µ21

+ (δ − ωs

2 + iγ3)

(δ − ωs

2 + iγ3)(δ + ωs

2 + iγ2) + κ2
Ωp, (B3)

A
(1)
3 = −

µ31

µ21

(δ + ωs

2 + iγ2) + iκ

(δ − ωs

2 + iγ3)(δ + ωs

2 + iγ2) + κ2
Ωp, (B4)

we have

iB[Ã
(1)
2 + (µ31

µ21

)∗Ã
(1)
3 ][A

(0)
1 ]∗

= iB[A
(1)
2 + (µ31

µ21

)∗A
(1)
3 ][1 −

∣∣∣A(1)
2

∣∣∣
2

−
∣∣∣A(1)

3

∣∣∣
2

]

= iB[A
(1)
2 + (µ31

µ21

)∗A
(1)
3 ] − iB[A

(1)
2 + (µ31

µ21

)∗A
(1)
3 ][

∣∣∣A(1)
2

∣∣∣
2

+
∣∣∣A(1)

3

∣∣∣
2

].

(B5)

Thus NLT can be expressed as
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NLT = −iB[A
(1)
2 + (

µ31

µ21
)∗A

(1)
3 ][

∣∣∣A(1)
2

∣∣∣
2

+
∣∣∣A(1)

3

∣∣∣
2

]. (B6)
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