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Abstract

This paper describes a robust voice activity detector using an ultrasonic Doppler sonar device. An

ultrasonic beam is incident on the talker’s face. Facial movements result in Doppler frequency

shifts in the reflected signal, that are sensed by an ultrasonic sensor. Speech-related facial move-

ments result in identifiable patterns in the spectrum of the received signal, that can be used to

identify speech activity. These sensors are not affected by even high levels of ambient audio

noise. Unlike most other non-acoustic sensors, the device need not be taped to a talker. A simple

yet robust method of extracting the voice activity information from the ultrasonic Doppler signal

is developed and presented in this paper. The algorithm is seen to be very effective and robust to

noise, and can be implemented in real time.
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Ultrasonic Doppler Sensor for Voice Activity

Detection
Kaustubh Kalgaonkar†,Rongquiang Hu‡,Bhiksha Raj⋆

Abstract— This paper describes a robust voice activity detector
using an ultrasonic Doppler sonar device. An ultrasonic beam
is incident on the talker’s face. Facial movements result in
Doppler frequency shifts in the reflected signal, that are sensed
by an ultrasonic sensor. Speech-related facial movements result
in identifiable patterns in the spectrum of the received signal,
that can be used to identify speech activity. These sensors are
not affected by even high levels of ambient audio noise. Unlike
most other non-acoustic sensors, the device need not be taped to a
talker. A simple yet robust method of extracting the voice activity
information from the ultrasonic Doppler signal is developed and
presented in this paper. The algorithm is seen to be very effective
and robust to noise, and can be implemented in real time.

I. INTRODUCTION

VOICE Activity Detectors (VAD) are used to separate

regions of speech from non-speech in voice recordings.

VADs are important components of speech coding, denoising

and recognition systems. VAD algorithms have typically been

based on measurements derived from the audio signal itself,

such as energy and zero-crossing rates [1], statistical models

of speech and noise components of the audio [2], source

separation and decision-making based on combination of dif-

ferent features computed from the audio signal [3], etc.The

performance of these algorithms often deteriorates rapidly with

increasing levels of ambient/background noise.

A recent trend has been the use of auxiliary sensors to

provide additional evidence of speech activity. Devices like

glottal electromagnetic sensors (GEMS) [4], P-mics [5], elec-

troglottographs (EGG) [6] and bone-conduction microphones

[7], provide secondary measurements of the speech production

process and are relatively insensitive to audio noises. While

systems deploying such auxiliary sensors have improved per-

formances over conventional VADs, they have one serious

drawback: the auxiliary sensors must be in physical con-

tact with the talker. Bone conduction microphones must be

mounted to sense vibrations of facial bones, P-mics, GEMS

and EGG sensors must be mounted on the talker’s throat.

In a variety of applications such as information kiosks,

automotive interfaces, multi-user UIs [8] etc., it isdesirable

to have hands-free UIs that can automatically detect when

a speaker is addressing them and also endpoint the speech,

without requiring direct manipulation by the user. Often these
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applications are deployed in noisy environments where speech-

only VADs may be ineffective. Contact-based secondary sen-

sors like electroglottograph, bone-conduction mic etc. are

clearly not useful in these applications, as each user who has

to use this device (e.g. a kiosk in the mall or bus, train station)

will have to mount the sensor on his/her neck or face before

using the application.

In [9] Hu and Raj introduced an acoustic-Doppler-based

auxiliary sensor for VAD that does not require direct mounting

on the talker’s person. It consists of an ultrasonic transmitter-

receiver pair that is deployed at a distance from the talker

and utilizes the Doppler effect to derive information about

the movement of the talker’s mouth. In addition to being

deployable from a distance, the ultrasonic sensor also has the

advantage of being very inexpensive (e.g. we built an ultra-

sonic transmitter receiver pair using off-the-shelf components

for 3 USD).

Unlike other auxiliary sensors such as GEMS, EGG and P-

mics, the measurements derived by the Doppler sensor (which

relate the velocity of facial components to the frequency of

the captured signal) are not linearly relatable to speech. Hu

et. al. use a support vector machine classifier that combines

evidence from the speech signal and the Doppler sensor to

classify frames of incoming audio as speech or non-speech.

The classifier must be trained offline on joint speech and

Doppler recordings, and consequently the performance of the

algorithm is highly dependent on the training data used.

In this paper we present a new algorithm for extraction

of VAD information from acoustic Doppler readings of the

talker’s mouth. We utilize a simple FM demodulation scheme

to extract combined frequency and energy measurements

that are used to determine if the talker is speaking. Unlike

the algorithm in [9], no training is required. Further, the

algorithm is observed to obtain highly accurate VAD from

only the Doppler measurements, without utilizing the acoustic

data itself,effectively making the performance of the VAD

independent of the background noise level. The algorithm is

computationally efficient and can be implemented in real-time.

The paper is organized as follows: Section 2 discusses the

Doppler effect in the context of voice activity detection and

the acoustic Doppler sensor. In Section 3 we describe the

demodulation of the Doppler signal. Section 4 explains our

VAD algorithm. Section 5 presents experimental evaluation

of the proposed VAD algorithm. Finally, conclusions are

presented in Section 6.
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(a) Talker facing the mic/Doppler receiver (b) Paper between talker and mic/Doppler receiver (c) Talker not facing the mic/Doppler receiver

Fig. 1. Audio signal, spectrogram of Doppler signal, spectrogram of demodulated Doppler signal and energy track overlaid with VAD output for three
conditions.

II. THE DOPPLER EFFECT AND THE ACOUSTIC DOPPLER

SENSOR

The Doppler effect is the phenomenon by which the fre-

quency perceived by a listener who is motion relative to a

signal emitter is different from that emitted by the source.

Specifically, if a signal emitter emits a frequency f that is

reflected by an object moving with velocity v with respect to

the emitter, the reflected frequency f̂ sensed at the emitter is

shifted with respect to the original frequency f , and is given

by

f̂ =
vs + v

vs − v
f ≈

(

1 +
2v

vs

)

f (1)

where vs is the velocity of sound in the medium. The approxi-

mation to the right in Equation (1) holds true if v ≪ vs. If the

Fig. 2. Recording setup. The larger sensor in the middle is the microphone

signal is reflected by multiple objects moving with different

velocities, multiple frequencies will be sensed, one from each

object.

In this paper we utilize an acoustic-Doppler-based sensing

device that uses the above principle to sense movements of a

talker’s face. The device consists of a transmitter that emits a

continuous ultrasonic tone at 40 kHz and a transducer that is

tuned to receive signals around 40 kHz. The transmitter and

receiver are mounted close to the microphone that captures

the speech signal. Figure 2 shows an example configuration.

In our setup the ultrasonic transmitter and receiver are both

about 8 mm in diameter, which is approximately equal to the

wavelength of the 40 kHz tone1. Both the sensors are relatively

directional, with a beamwidth of about 60◦.The talker should

face the microphone/ultrasonic transmitter arrangement while

speaking and must positioned within the beam of the receiver,

no more than 60 cm from device. The emitted ultrasonic tone

is incident on the talker’s face and the reflected signals are

sensed by the receiver. The lip movements are not registered

if the talker is more than 60 cm from the device, making the

1A more compact setup may be obtained using smaller ultrasonic elements,
that are freely available. Also, a single broad-band sensor can replace the
combination of the audio microphone and the ultrasonic sensor

setup robust to spurious movements and bystanders beyond

the range of 0.6 m.

The human face is an articulated object with multiple com-

ponents moving with different velocities when a person speaks.

The ultrasonic signal reflected by the talker’s face therefore has

a range of frequencies. These frequencies represent Doppler

shifts caused by the velocities of facial components. The

orientation of the talker’s face affects the spectrum of the

reflected ultrasonic signal – the spectra observed when talkers

face the device are different from those observed when they

do not. Similarly, the spectra of ultrasonic signals reflected

from a talker’s face are different from those of reflections from

other moving or static objects. Figure 1 shows reflections from

various targets. The objects and conditions of the experiments

were specifically chosen to elaborate the difference in the

reflections. Figure 1(a) shows the audio waveform and spec-

trogram of the corresponding ultrasonic Doppler signal, when

the talker faces the sensor. Figures 1(b) an 1(c) show the audio

and the Doppler spectrogram when the ultrasonic signal is not

reflected directly from the talker’s face and when the talker

does not face the sensor respectively. The spectrum of the

received ultrasonic signal when the talker is facing the device

is very different from the other two cases where the ultrasonic

reflection are not recording lip movements, demonstrating that

there is a strong correlation between the presence of speech

and the characteristics of the spectra of the reflected ultrasonic

signal.

III. ANALYSING THE SIGNALS FROM THE DOPPLER

SENSOR

The Doppler sensor emits a continuous tone that may be

represented as s(t) = sin(2πfct), where fc is the emitted

frequency (40 kHz in our case). The target (i.e. the talker’s

face) is an articulated object that can be modeled as a discrete

combination of moving components, where the ith component

has a time-varying velocity vi(t). The signal sensed at the

Doppler(Ultrasonic) receiver is a sum of the signals reflected

by various moving components. Note that this is different

from the conventional Doppler-sensing scenario where a single

target moving with a single, possibly time-varying velocity, is

to be tracked. Equation (2) represents a situation where several

targets are simultaneously sensed. Fortunately in this particular

case we do not need to resolve/track individual targets;it is

sufficient to detect the presence of these multiple targets. This

can be done by processing the combined reflections from the
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face. The combined reflection from all moving components is

given by:

d(t) =
∑

i

ai sin

(

2πfc

(

t +
2

vs

∫

t

0

vi(τ)dτ

)

+ φi

)

(2)

Equation (2) utilizes the approximate form of the Doppler’s

equation given in Equation (1). ai is the amplitude of the

signal reflected by the ith component and is related to its

distance from the sensor. Although ai is also time-varying,

the changes are relatively slow, compared to the cosine terms.

For the purpose of our analysis, we therefore assume it to be a

constant gain term. φi is a phase term representing the relative

phase differences between the signals reflected by the various

facial components.

If fc is considered to be the carrier frequency then Equation

(2) represents the sum of multiple Frequency Modulated (FM)

signals operating on the carrier frequency fc.

Most of the information related to the movement of facial

components resides in the frequency of the signals as seen in

Equation (2). For effective VAD, we demodulate the signal us-

ing simple frequency demodulaton [10], so that the frequency

information is now expressed as the amplitude of the cosine

components. This demodulated signal also provides a measure

of the energy of these movements. Frequency demodulation

of the received signal results in a spectral-decomposition like

output.

To demodulate the signal, we first differentiate the received

signal d(t). Differentiating Equation (2) we get

d

dt
d(t) =

∑

i

2πaifc

(

1 +
2vi(t)

vs

)

·

cos

(

2πfc

(

1 +
2

vs

∫

t

0

vi(τ)dτ

)

+ φi

)

(3)

The derivative of d(t) is amplitude demodulated; by multipli-

cation with a sinusoid of frequency fc, followed by low-pass

filtering with cut-off frequency of fc. This gives us

LPF

(

sin(2πfct)
d

dt
d(t)

)

=

−

∑

i

2πaifc

(

1 +
2vi(t)

vs

)

sin

(

2πfc

vs

∫

t

0

vi(τ)dτ + φi

) (4)

where LPF represents the low-pass-filtering operation.The

signal represented by Equation (4) encodes velocity terms in

both, the amplitudes and frequencies of its spectral compo-

nents. If the signal is analyzed in short analysis windows,

the velocities of the frequencies do not change significantly

within the analysis frame and the right hand side of Equation

(4) can be interpreted as a frequency decomposition of the left

hand side. The signal contains energy primarily at frequencies

related to the various velocities of the moving facial structures.

The energy at any velocity is a function of the number and

distance of facial components moving with that velocity, as

well as the velocity itself.

Figure 1(a) shows the spectrogram of the original Doppler

signal as well as that of the demodulated signal (given by

Equation (4)). The latter exhibits greater visual correlation to

the presence of speech than the former.

In general, speech-related facial movements in the direction

of the Doppler sensor are relatively slow. Correspondingly,

most of the speech-related energy in the spectrum of the

demodulated Doppler signal is found to lie in the 50 Hz-125

Hz frequency range (this was also verified by processing hours

of speech and doppler data). Frequencies outside this range,

although related to speech activity, are often corrupted by the

carrier frequency, as well as harmonics of the speech signal

including any background speech or babble, particularly in

voiced segments. Hence, we restrict our analysis to the 50 Hz-

125 Hz frequency band for VAD. Figure 1 shows the 25 Hz-

150 Hz band of the spectrograms of the demodulated Doppler

signal for three recording conditions. The spectrogram of the

reflected ultrasonic signal where the talker is facing the sensor

distinctly stands out.

IV. VOICE ACTIVITY DETECTION

Fig. 3. Flow Chart of VAD Algorithm

The algorithm for detecting speech activity is shown by the

flowchart in Figure 3. The Doppler signal is first digitized

and demodulated. Since the data are digitized, the derivative

of Equation (4) is obtained through Euler approximation.

The demodulated signal is segmented into frames of 64 ms.

Adjacent frames overlap by 50%.

A hamming window is applied to each of the frames,

following which the energy in the 50 Hz-120 Hz frequency

band is extracted using Görtzel’s algorithm [11].

The energy contour is median filtered to reduce the high

fluctuations within the speech regions. Finally, to determine

if the tth frame contains speech activity, the median filtered

energy Et in the frame is compared to an adaptive threshold

βt. The threshold βt is adapted to track the background level

of the Doppler signal as follows βt = βt−1 + µ(Et − Et−1),
where µ is an adaptation factor that can be adjusted for

optimal performance. Figure 1 also shows the plot of the

energy extracted from the Doppler signal overlaid by a plot of

the regions determined to be speech by our VAD algorithm.

The energy contour has prominent peaks that correspond to

regions of speech only when the talker is facing the sensor.

Consequently, the VAD algorithm only detects presence of

speech in 1(a). Even though speech is present and recorder on

the audio channel, for cases 2 and 3 Figures 1(b) and 1(c),

the VAD output is negative due to the absence of the energy

in the band of interest of the received Doppler signal.

V. RESULTS

A small corpus of simultaneous recording of speech and

Doppler sonar signals was made at Mitsubishi Electric Re-
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−10dB Car Noise

0dB Car Noise

Fig. 4. Audio, energy contour and Doppler VAD output at 0 dB and -10 dB

search Labs. The corpus consists of 4 talkers(3 male, 1 female)

speaking 30 TIMIT sentences under different conditions: quiet,

car, babble, competing speech and music. The noise was not

digitally added, i.e. the recordings were made in the presence

of these noise sources. The boundaries of the speech signal

were hand labeled (to provide the “ground truth” for the

VAD). The SNR of the utterances was estimated from the

RMS values of the speech and non speech regions. SNR was

varied over a large region (-10 dB to 20 dB). Two voice

TABLE I

ACCURACY OF VOICE ACTIVITY DETECTORS

Noise Type SNR Audio only VAD (%) Doppler VAD(%)

Office
-10dB 8.01 92.8

0 89.55 95.11
10 90.47 97.43

Car
-10dB 1 92.92
0dB 54.84 97.68

10dB 67.45 96.23

Babble
-10dB 5 94.42
0dB 52.50 96.05

10dB 60.76 95.17

Speech
-10dB 0 93.94
0dB 57.02 97.37

10dB 62.78 96.84

Music
-10dB 2 95.56
0dB 50.89 95.52

10dB 54.32 96.21

activity detectors were implemented, one was based on the

audio recordings (speech) only and the other was the Doppler-

based algorithm described in Section 4. The audio-only voice

detector uses a prior speech presence probability model with

minimum statistics noise estimation [2]. Table I shows the

frame-wise percentage VAD accuracy. Doppler based VAD is

very robust to noise and has nearly constant performance at

all the noise levels. The performance of the audio-only VAD

deteriorates rapidly with increase in noise power.

Also, the Doppler based VAD is fairly immune to noise

type and the detection accuracy in the presence of competing

speech is comparable to that in the presence of any other

noise. On the other hand, the performance of the audio-only

VAD deteriorates in the presence of competing speech as the

noise and actual speech signal have the same characteristics.

Figure 4 shows the VAD applied to audio signals recorded

at 0 dB and -10 dB SNR. Audio-energy based VAD will not

be able to isolate speech in such conditions, but the Doppler-

based voice activity detector was able to identify each speech

segment correctly.

Since the Doppler-based VAD detects speech through facial

motion, it is likely that it will be triggered by other kinds

of motion as well. As a test, we let both the speech-based

and Doppler-based detectors run continuously in an open

office space, with people moving around, background speech,

and ambient noise. The “Doppler-mic”shown in Figure 2 is

mounted on microphone stand 5 ft above the ground ensuring

that a 40 KHz tone could be directed towards a talkers face.

Recordings were made for over 80 minutes. Nobody addressed

the system in this time. The speech energy based speech detec-

tor generated 30 spurious frame-level voice activity decisions

per minute on average in this period, as compared to 1 false

decision per minute generated by the Doppler-based VAD.

VI. CONCLUSION

The proposed voice activity detector is observed to be

very robust in all type and levels of noise. The Doppler

sensor provides complimentary data that is not captured by

the acoustic microphone: it captures facial movement. The

receiver is relatively insensitive to audio noise, by virtue of

which the Doppler-based VAD can isolate regions of speech

activity in extremely high noise conditions.

The algorithm currently does not utilize the audio signal

itself to determine speech activity, since our goal was to

enable robust speech activity detection under noise conditions

where the audio signal becomes an unreliable indicator of

speech activity. One consequence of this is that the VAD can

sometimes be triggered by spurious lip movements or other

similar motion. Such false alarms can be greatly reduced by

appropriately correlating results obtained from the Doppler

VAD to the audio channel, in a manner that takes the current

noise level into account. Further, by incorporating the energy

features used in this paper in a learning framework such as

[9], the VAD performance may be further improved.

While the current paper deals only with VAD, the corre-

lation between the Doppler measurements and the underlying

speech may be utilized for improved denoising of the speech

signal. These and related topics are topics of current and future

investigation.
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