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Abstract: Oxidative degradation of 2,4-dinitrotoluenes in aqueous solution was executed using
persulfate combined with semiconductors motivated by ultrasound (probe type, 20 kHz). Batch-
mode experiments were performed to elucidate the effects of diverse operation variables on the
sono-catalytic performance, including the ultrasonic power intensity, dosage of persulfate anions,
and semiconductors. Owing to pronounced scavenging behaviors caused by benzene, ethanol, and
methanol, the chief oxidants were presumed to be sulfate radicals which originated from persulfate
anions, motivated via either the ultrasound or sono-catalysis of semiconductors. With regard to
semiconductors, the increment of 2,4-dinitrotoluene removal efficiency was inversely proportional to
the band gap energy of semiconductors. Based on the outcomes indicated in a gas chromatograph–
mass spectrometer, it was sensibly postulated that the preliminary step for 2,4-dinitrotoluene removal
was denitrated into o-mononitrotoluene or p-mononitrotoluene, followed by decarboxylation to
nitrobenzene. Subsequently, nitrobenzene was decomposed to hydroxycyclohexadienyl radicals and
converted into 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol individually. Nitrophenol compounds
with the cleavage of nitro groups synthesized phenol, which was sequentially transformed into
hydroquinone and p-benzoquinone.

Keywords: dinitrotoluene; persulfate; semiconductor; sulfate radical; ultrasound

1. Introduction

2,4-dinitrotoluene is a vital raw material used primarily for the manufacture of tolylene
diisocyanate, an important petrochemical intermediate in the synthetic leather industry.
Its derivatives are extensively applied in the preparation of rubbers, paints, and dyes [1].
However, it has been specified to be one of the prior contaminants to be treated by the US
Environmental Protection Agency [2]. Factory effluents polluted with 2,4-dinitrotoluene
should be disposed of on account of their serious toxicity and carcinogenic properties [3].
There is an increasing trend of the generation of related wastes from the activities of these
industries [4]. Consequently, the mineralization of 2,4-dinitrotoluene has attracted much
attention in the last decade.

Up to now, several publications have focused on the sonochemical decomposition
of 2,4-dinitrotoluene [5–7]. Thermal pyrolysis is proposed to be the main degradation
mechanism of 2,4-dinitrotoluene oxidation, wherein sonolytic temperature is the most
significant influencing factor. The sonochemical destruction of 2,4-dinitrotoluene could
be obviously accelerated with the assistance of TiO2 powder, which supplied extra nuclei
for the generation of cavitation microbubbles. In our previous work, it was found that
the removal rate of 2,4-dinitrotoluene using a traditional electro-Fenton method could
increase significantly through the use of ultrasonic irradiation due to the enhancement
of the mass transfer rate of oxygen toward the cathode for the production of hydrogen
peroxide [8]. The other conventional methods for the treatment of nitroaromatics include

Molecules 2023, 28, 4351. https://doi.org/10.3390/molecules28114351 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28114351
https://doi.org/10.3390/molecules28114351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules28114351
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28114351?type=check_update&version=3


Molecules 2023, 28, 4351 2 of 16

TiO2/UV [9,10], Fenton’s reagent/UV [11,12], O3 [13], H2O2/O3, and UV/O3 methods [14],
wherein hydroxyl radicals and holes were considered to be principal oxidants [15,16].
Nonetheless, increasing interest has been paid to sulfate-radical-based processes because
of their higher redox potential (2.6–3.1 V) and the long lifetime of sulfate radicals in
wastewater [17,18]. Sulfate radicals can be generated via persulfate anions motivated by
various manners, such as thermal energy, ultraviolet irradiation (Equation (1)), electron
donation of transition metal ions (Equation (2)) [19–21], electrochemical reduction by
cathode (Equation (3)) [22], and ultrasonic irradiation (Equation (4)) [23].

S2O8
2− + Thermal Energy/UV→ 2 SO4

•− (1)

S2O8
2− + Metaln+ → SO4

•− + SO4
2− + Metal(n+1)+ (2)

S2O8
2− + e− → SO4

•− + SO4
2− (3)

S2O8
2− + US→ 2SO4

•− (4)

US denotes ultrasonic irradiation.
It has been recognized that the sono-activated persulfate process is effective for the ox-

idative degradation of 2,4-dinitrotoluene, wherein some persulfate anions are transformed
into reactive sulfate radicals via cavitation microbubbles [24,25]. The removal efficiency of
2,4-dinitrotoluene could increase upon the addition of electrolytes, which would inhibit
the coalescence of tiny cavitation microbubbles, leading to a higher cavitation strength [26].
Persulfate combined with zero-valent iron (Fe0) was used to dispose 2,4-dinitrotoluene, of
which a reduction in nitro groups and a sequential sulfate radical oxidation mechanism
was proposed [27]. An analogous announcement on the reduction in the nitro group of
2,4-dinitrotoluene to an amino group, resulting in an enhancement of its removal rate, was
also reported for the process of persulfate coupled with iron sulfide [28]. Additionally,
the decomposition of 2,4-dinitrotoluene was performed using persulfate activated by Fe2+

released from the electrolysis of iron metal integrated with active carbon [29,30]. Fe-Mn
binary oxide was also verified for the effective transformation of persulfate into sulfate
radicals via electrons transfer over active sites of Fe2+, Mn2+, and Mn3+ [31]. Nonetheless,
natural aquatic constituents, including HCO3

−, CO3
2−, and NO3

−, exhibited negative
effects on the degradation of 2,4-dinitrotoluene in the persulfate/Fe2+ process [32].

Recently, a promising process has been developed on persulfate motivated simulta-
neously with ultrasound and heterogeneous semiconductors, which were stimulated by
sonoluminescence emitted from cavitation microbubbles [33,34]. The light energy of sonolu-
minescence meets the requirement for the band gap energy of the semiconductors, leading
to the generation of electron–hole pairs. The sono-induced electrons of the semiconductors
would convert persulfate anions into sulfate radicals. In fact, it has been applied success-
fully for the mineralization of aniline [35] and nitrobenzene [36], whereas the systematic
investigation of semiconductor species commonly applied is scarce. Consequently, this re-
search is devoted to making clear the relationships between heterogeneous semiconductors
and ultrasonic irradiation via the mineralization of 2,4-dinitrotoluene in aqueous solution
using persulfate integrated with a variety of semiconductors. A series of semiconductors
were examined, including ZnO [37], Ni2O3 [38], NiO [39], SnO2 [40], Fe2O3 [41], Cu2O [42],
TiO2 [43], PbO [44], and Pb3O4 [45]. Experiments on the synthetic Ag (1–4 wt%)/NiO
semiconductors with distinct band gap energy were also conducted, wherein the influential
operating variables on the degradation behaviors of 2,4-dinitrotoluene were investigated,
such as the ultrasonic power intensity, persulfate concentrations, and dosage of Ag/NiO.
The 2,4-dinitrotoluene degradation pathways imposed by persulfate combined with semi-
conductors under ultrasonic irradiation were cautiously determined as well.
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2. Results and Discussion
2.1. Comparison of Persulfate Oxidation Simply and Persulfate Integrated with Diverse
Semiconductors under Ultrasonic Irradiation

Figure 1a illustrates the time-dependent drawings of the TOC removal efficiency
executed by persulfate oxidation and persulfate integrated with various semiconductors
under ultrasonic irradiation, respectively. Transparently, 2,4-dinitrotoluene removal rates
using persulfate integrated with semiconductors motivated by ultrasound were much
faster than those achieved by utilizing persulfate oxidation alone. This observation may
be interpreted with an increase in the yield of highly reactive sulfate radicals (E◦ = 2.6 V),
wherein ◦◦persulfate anions (E◦ = 2.01 V) could be motivated either by ultrasound [21] or
via the sono-catalysis of semiconductors [46,47]. Particularly, it is likely that the increment
in the TOC removal efficiency between the presence and absence of semiconductors could
be associated with the band gap energy of semiconductors, including SnO2 (3.9 eV) [38],
Ni2O3 (3.67 eV) [48], ZnO (3.37 eV) [49], NiO (3.23 eV) [50], TiO2 (P-25) (3.1 eV) [51], Pb3O4
(2.2 eV) [52], Fe2O3 (2.2 eV) [53], Cu2O (2.15 eV) [54], and PbO (1.99 eV) [55]. Low band
gap energy is beneficial for the oxidative removal of 2,4-dinitrotoluene (refer to Figure 1b).
That is, the sono-catalytic performance is significantly promoted over semiconductors with
low band gap energy, wherein the reactions which occurred are listed as follows.

Semiconductor + US→ h+
vb + e−cb (5)

S2O8
2− + e−cb→ SO4

•− + SO4
2− (6)

SO4
2− + h+

vb→ SO4
•− (7)
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(b) The increment in TOC removal efficiency between presence and absence of semiconductors versus
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The symbol of h+
vb stands for sono-induced holes in the valence band and e−cb stands

for sono-induced electrons in the conduction band.

2.2. Effect of Band Gap Energy on Persulfate Integrated with Ag/NiO Semiconductor

To disclose the relationship between the sono-catalytic activity and band gap energy of
semiconductors, Ag (1–4 wt%)/NiO semiconductors were prepared, examined, and tested.
Figure S1 demonstrates the FE-SEM images of Ag (1–4 wt%)/NiO semiconductors. It
indicates that most of the surface of NiO was smooth, coated with some irregularly shaped
particulates. As the loading amounts of Ag increased, more clumps of particulates were
observed. Table 1 presents EDS element analyses of Ag (1–4 wt%)/NiO semiconductors.
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The real weight percentage of Ag measured was in agreement with that impregnated
theoretically. Figure 2 illustrates X-ray diffraction patterns of Ag (1–4 wt%)/NiO semi-
conductors. The four particular diffraction peaks at 2θ values of 37.5◦, 43.8◦, 63.9◦, and
77.4◦, corresponding to the planes of (111), (200), (220), and (311), respectively, possess
characteristic peaks of the face-centered cubic structure of metallic silver [56,57]. This
provides more evidence for the existence of Ag metal loaded on the surface of NiO.

Table 1. The elemental compositions of semiconductors by EDS analyses and band gap energy
by UV-DRS.

Semiconductor Ag (wt%) Ni (wt%) O (wt%) Band Gap Energy (eV)

NiO 0.00 86.48 13.52 3.45
Ag (1 wt%)/NiO 0.97 81.37 17.66 3.15
Ag (2 wt%)/NiO 1.43 81.11 17.46 2.87
Ag (3 wt%)/NiO 2.56 81.04 16.40 2.77
Ag (4 wt%)/NiO 3.90 78.08 18.02 2.53
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Figure 2. X-ray diffraction patterns of Ag (1 wt%)/NiO, Ag (2 wt%)/NiO, Ag (3 wt%)/NiO, Ag
(4 wt%)/NiO, and NiO semiconductors.

Figure 3 depicts the UV-vis diffuse reflectance spectra of Ag/NiO semiconductors. The
NiO spectrum exhibits two main peaks at wavelengths of 370 and 390 nm, corresponding to
band gap energy of 3.23 eV [50]. Instead, the spectra of Ag/NiO present two sharp peaks at
wavelengths of 380 and 400 nm, followed with a broad peak between the wavelength of 460
and 610 nm. This implies that Ag/NiO responds strongly to visible light. This phenomenon
could be attributed to the loading of Ag metal, which furnished an electron sink and pre-
vented the recombination of sono-induced electrons with holes, leading to an enhancement
of the yield of conductive electrons descended from NiO [58–60]. Likewise, the band gap
energy of Ag/NiO was evaluated on the basis of Tauc’s relation ((αhν)1/n = A(hν − Eg)),
in which hν manifests incident photo energy. The “n” value was usually set at a value of
2 or 1/2, depending on whether its electronic transition was in either a direct or indirect
state. The variation in (αhν)2 was portrayed versus photo energy (hν) in a graph, wherein
the band gap energy was estimated from the intercept of the tangent line to the X-axis
(see Supplementary Materials: Figure S2) [61–64]. Accordingly, the band gap energy of
Ag (1–4 wt%)/NiO was determined between 3.15 and 2.53 eV (refer to Table 1), consistent
with the results of Pandey et al. [65]. As expected, Ag (1–4 wt%)/NiO semiconductors
with lower band gap energy were favorable for the removal of 2,4-dinitrotoluene compared
with NiO. The increment of the TOC removal efficiency in comparison to the presence or
absence of Ag (1–4 wt%)/NiO was inversely proportional to the band gap energy (see
Figure 4), consistent with the results demonstrated in Figure 1b. The superior sono-catalytic
performance of semiconductors with lower band gap energy was excited more easily by
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sonoluminescence and could be ascribed to the increased enhancement of the electric
charge conduction. It is likely that sonoluminescence could provoke them to generate
electron–hole pairs. The sono-induced electrons may transform persulfate anions into sul-
fate radicals; likewise, sono-induced holes may convert sulfate anions into sulfate radicals
(see Equations (6) and (7)). Because of the higher removal efficiency of 2,4-dinitrotoluene,
Ag (4 wt%)/NiO was elected as a candidate for further testing.
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XPS analyses were executed to examine the intrinsic electronic state of Ag (4 wt%)/NiO.
Figure 5 illustrates the Ni 2p XPS spectra of original Ag (4 wt%)/NiO and Ag (4 wt%)/NiO
reacted. As far as original Ag (4 wt%)/NiO is concerned, four peaks centered at 851, 859,
870, and 877 eV were observed, which were separately assigned to the binding energy of Ni
2p(3/2) and Ni 2p(1/2) [66,67]. Nonetheless, the binding energy of Ni 2p(3/2) and Ni 2p(1/2)
of Ag (4 wt%)/NiO shifted to 852 and 860 eV and 871 and 878 eV, respectively, after sono-
catalytic experiments. It is evident that some Ni2+ states on the surface of Ag (4 wt%)/NiO
have shifted to Ni3+ states relative to the original one [38] due to the migration of the sono-
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induced electrons generated. The outcomes verify a previous hypothesis that persulfate
anions could be motivated into sulfate radicals via sono-induced electrons descended from
semiconductors irradiated by ultrasound. Additionally, Ag (4 wt%)/NiO may convert
fractional sulfate anions into sulfate radicals via sono-induced holes, which make a minor
contribution towards the oxidation of 2,4-dinitrotoluene.
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2.3. Effect of Scavenger Dosages on Persulfate Integrated with Ag (4 wt%)/NiO under
Ultrasonic Irradiation

The identical concentration of scavengers, including benzene, ethanol, and methanol,
was added to the aqueous solution, respectively, to evaluate the main reactive radicals for
2,4-dinitrotoluene oxidation in the process of persulfate coupled with Ag (4 wt%)/NiO mo-
tivated by ultrasound. As presented in Figure 6, the degradation rate of 2,4-dinitrotoluene
was severely suppressed due to the existence of benzene, which reacted to sulfate rad-
icals quickly at the high rate constant of 3 × 109 M−1 s−1 [17]. On the other hand, the
2,4-dinitrotoluene decomposition rate was moderately inhibited by the presence of ethanol
or methanol, which reacts to sulfate radicals under rate constants of 7.7 × 107 M−1 s−1 and
3.2 × 106 M−1 s−1 independently [68]. The descent of the 2,4-dinitrotoluene removal effi-
ciency was consistent with the scavenging ability of sulfate radicals. The outcomes expose
that sulfate radicals, which originated from persulfate anions, were dominant oxidants at
the conditions of persulfate combined with Ag (4 wt%)/NiO irradiated by ultrasound.
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2.4. Effect of Ultrasonic Power Intensity on Persulfate Integrated with Ag (4 wt%)/NiO under
Ultrasonic Irradiation

It has been recognized that the optimization of ultrasonic power is an important issue
for process design. Figure 7a illustrates the time-dependent drawings of the TOC removal
efficiency under a variety of ultrasonic power intensities. Obviously, the 2,4-dinitrotoluene
removal rate increased upon an increase in the ultrasonic power intensity. The yield of
sulfate radicals would be expected to significantly increase, caused by the intense motiva-
tion of persulfate through ultrasonic irradiation or the sono-catalysis of Ag (4 wt%)/NiO
semiconductors. Contrarily, the 2,4-dinitrotoluene decomposition rate was restrained at
the highest power intensity (260 W cm−2). The phenomenon at extreme conditions could
be attributed to a severe rise in the power intensity, leading to the acute generation of
cavitation microbubbles, which would probably coalesce into vast bubbles and give rise
to a decline in the cavitation strength. Accordingly, it would result in the formation of
lower sulfate radical yields, corresponding to a lesser extent of benzene scavenging effects
(shown in Figure 7b). The experimental outcomes coincide with the announcement of
Sivakumar et al. [69,70], wherein the optimization of the ultrasonic power intensity has
been found to be useful for the degradation of rhodamine and nitrophenol. In addition,
the amount of oxygen gas dissolved in wastewater would significantly decrease due to
the degassing effects caused by ultrasound [8]. Thus, the quantity of hydroxyl radicals
descended from oxygen gas and sono-induced electrons on Ag (4 wt%)/NiO would trans-
parently diminish (shown in Equation (8)). As a rule, it convinces us that sulfate radicals
play dominant roles for 2,4-dinitrotoluene elimination.

O2 + 2H2O + 3e−cb → 3OH− + •OH (8)
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ferent persulfate concentrations. Apparently, the 2,4-dinitrotoluene degradation rate 
displays an increasing trend upon raising persulfate concentrations. The events could be 
reasonably ascribed to a high sulfate radical yield descended from high concentrations of 
persulfate anions. Conversely, the mineralization rate of 2,4-dinitrotoluene decreased as 
there was an excess persulfate concentration (70 mM) by virtue of unexpected side reac-
tions among persulfate residuals and sulfate radicals [71,72] due to a higher persulfate 
concentration being detected at the end of testing [73]. For the sake of elucidating the 
correlation between sulfate radical yields and benzene scavenging effects, experiments 
associated with or without benzene were performed independently (refer to Figure 8b). 
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2.5. Effect of Persulfate Concentrations on Persulfate Integrated with Ag (4 wt%)/NiO
under Ultrasonic Irradiation

Based on economic viewpoints, it is essential to establish an optimal persulfate concen-
tration on persulfate integrated with Ag (4 wt%)/NiO motivated by ultrasound. Figure 8a
presents the time-dependent drawings of the TOC removal efficiency at different persulfate
concentrations. Apparently, the 2,4-dinitrotoluene degradation rate displays an increasing
trend upon raising persulfate concentrations. The events could be reasonably ascribed
to a high sulfate radical yield descended from high concentrations of persulfate anions.
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Conversely, the mineralization rate of 2,4-dinitrotoluene decreased as there was an excess
persulfate concentration (70 mM) by virtue of unexpected side reactions among persulfate
residuals and sulfate radicals [71,72] due to a higher persulfate concentration being detected
at the end of testing [73]. For the sake of elucidating the correlation between sulfate radical
yields and benzene scavenging effects, experiments associated with or without benzene
were performed independently (refer to Figure 8b). This clearly indicates that benzene
scavenging effects exhibit an identical inclination with both sulfate radical yields and the
TOC removal efficiency. Especially, the results outlined above confirm the inference that
sulfate radicals were the principal oxidants.
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composition rates rise with an increase in Ag (4 wt%)/NiO dosages, whereas an excess 
dosage of Ag (4 wt%)/NiO (≥1.5 g L−1) causes an unexpected conflict. The enhancement of 
2,4-dinitrotoluene degradation rates could be ascribed to higher sulfate radical yields 
which originated from persulfate anions motivated by sono-induced electrons over Ag (4 
wt%)/NiO (refer to Equation (6)). Nonetheless, the surplus amount of Ag (4 wt%)/NiO 
powder (≥1.5 g L−1) could attenuate the ultrasonic wave propagation, bringing about 
feebleness in the cavitation strength [7,74]. An identical trend was also observed on both 
the TOC removal efficiency and benzene scavenging effect (see Figure 9b). The results 
offer additional evidence that sulfate radicals are mainly responsible for the oxidation of 
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2.6. Effect of Dosages of Ag (4 wt%)/NiO Integrated with Persulfate under Ultrasonic Irradiation

A crucial dosage of Ag (4 wt%)/NiO for the promotion of 2,4-dinitrotoluene removal
rates is necessary. Figure 9a demonstrates the influence of the addition of Ag (4 wt%)/NiO
on the TOC removal efficiency. It shows distinctly that 2,4-dinitrotoluene decomposi-
tion rates rise with an increase in Ag (4 wt%)/NiO dosages, whereas an excess dosage
of Ag (4 wt%)/NiO (≥1.5 g L−1) causes an unexpected conflict. The enhancement of
2,4-dinitrotoluene degradation rates could be ascribed to higher sulfate radical yields
which originated from persulfate anions motivated by sono-induced electrons over Ag
(4 wt%)/NiO (refer to Equation (6)). Nonetheless, the surplus amount of Ag (4 wt%)/NiO
powder (≥1.5 g L−1) could attenuate the ultrasonic wave propagation, bringing about
feebleness in the cavitation strength [7,74]. An identical trend was also observed on both
the TOC removal efficiency and benzene scavenging effect (see Figure 9b). The results
offer additional evidence that sulfate radicals are mainly responsible for the oxidation of
2,4-dinitrotoluene. It is notable that 2,4-dinitrotoluene contaminants can be totally elimi-
nated under conditions of ultrasonic power intensity = 220 W cm−2, T = 318 K, persulfate
concentration = 60 mM, and Ag (4 wt%)/NiO dosage = 1.35 g L−1. Particularly, under
silent conditions, the 2,4-dinitrotoluene removal efficiency reached about 26%, which is
lower than that achieved by the utilization of sono-activated persulfate oxidation alone
(Figure 1a). This supports that persulfate anions could be excited either by ultrasound or
via sono-induced electrons on semiconductors into sulfate radicals. In the research, the
sono-catalytic stability of Ag(4 wt%)/NiO was examined via repetitions of six tests (shown
in Figure 10). Evidently, the 2,4-dinitrotoluene removal efficiency reached nearly 98%
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during the whole experiment. This convinces us of the promising application of Ag/NiO
semiconductor in industrial wastewater treatment.
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Figure 9. (a) Effect of Ag (4 wt%)/NiO dosages on the TOC removal efficiency in the process of persul-
fate integrated with Ag (4 wt%)/NiO motivated by ultrasound. (b) The difference in 2,4-dinitrotoluene
degradation efficiency between the absence and presence of benzene, detected by a UV-Vis spec-
trophotometer, served as benzene scavenging effects. (US: ultrasonic irradiation, Silent: absence of
ultrasonic irradiation).
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under optimal operating conditions.

2.7. Reaction Pathway of 2,4-Dinitrotoluene on Persulfate Integrated with Ag (4 wt%)/NiO
under Ultrasonic Irradiation

Within the period of the tests on persulfate cooperated with Ag (4 wt%)/NiO motivated
by ultrasound, most of the reaction intermediates obtained from microextraction were cau-
tiously identified on a GC-MS spectrometer. Table 2 summarizes the outcomes, wherein the
ingredients comprise 2,4-dinitrotoluene feedstock, o-mononitrotoluene, p-mononitrotoluene,
nitrobenzene, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, phenol, hydroquinone, and p-
benzoquinone. As concerns o-mononitrotoluene and p-mononitrotoluene, the electron-
donating methyl group gives rise to the enhancement of the electron density of nitro
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groups, leading to the denitration of 2,4-dinitrotoluene [75]. However, the occurrence
of nitrobenzene reveals the degradation pathway of oxidation on the methyl group of
o-mononitrotoluene or p-mononitrotoluene, followed with the cleavage of carboxylic acid.
With regard to 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol, they could be descended
from hydroxycyclohexadienyl radicals, which proceeded with the addition of O2 and the
sequential detachment of HO2• into hydroxylated compounds [66,76]. The denitration of
nitrophenols happened explicitly on account of the phenol sensed [77]. Obviously, hydro-
quinone was thought to be a reactive intermediate of phenol, which would be successively
transformed into p-benzoquinone via hydrogen abstraction based on our previous stud-
ies [35,36]. Ultimately, 2,4-dinitrotoluene was completely decomposed into carbon dioxide,
nitrate ions (sensed at UV-Vis 313 nm), and water. On the basis of the authenticated degrada-
tion compounds, Figure 11 illustrates the plausible 2,4-dinitrotoluene oxidation pathways
opened up by sono-motivated persulfate integrated with Ag/NiO semiconductors.

Table 2. Compositions of feedstock and degradation intermediates determined by GC-MS.

Component m/z (Relative Abundance, %)

Feedstock
2,4-Dinitrotoluene

Degradation intermediate 51 (13.2), 63 (35.7), 78 (16.4), 89 (60.8), 90 (26.1), 119 (25.5), 165 (100), 166 (13.9)

o-Mononitrotoluene 39 (28.2), 63 (27.7), 65 (82.9), 77 (30.4), 89 (30.8), 91 (61.3), 92 (62.3), 120 (100)
p-Mononitrotoluene 39 (24.9), 63 (25.4), 65 (71.0), 77 (26.8), 89 (20.9), 91 (100), 107 (34.5), 137 (86.9)

Nitrobenzene 50 (15.6), 51 (37.6), 65 (13.5), 74 (8.9), 77 (100), 78 (7.4), 93 (16.9), 123 (70.0)
2-Nitrophenol 39 (15.6), 53 (9.5), 63 (20.1), 64 (13.9), 65 (25.4), 81 (19.5), 109 (18.0), 139 (100)
3-Nitrophenol 39 (35.8), 53 (10.6), 63 (14.7), 64 (7.9), 65 (63.7), 81 (15.8), 93 (51.3), 139 (100)
4-Nitrophenol 39 (44.2), 53 (23.2), 63 (287.1), 65 (79.9), 81 (32.9), 93 (27.0), 109 (67.0), 139 (100)

Phenol 38 (5.2), 39 (12.5), 40 (6.9), 55 (6.3), 63 (6.5), 65 (20.8), 66 (27.2), 94 (100), 95 (7.6)
Hydroquinone 39 (6.9), 53 (14.3), 54 (12.8), 55 (10.5), 81 (25.4), 82 (12.2), 110 (100), 143 (9.6)

p-Benzoquinone 26 (18.0), 52 (17.7), 53 (17.2), 54 (63.2), 80 (28.3), 82 (36.0), 108 (100), 110 (12.0)
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3. Experimental Methods 
3.1. Test on Persulfate Integrated with Semiconductors Motivated by Ultrasound  

Experimental system composed of main apparatus was identical to that used in our 
previous work [35]. The sonolytic reactor was continuously imposed by ultrasound at the 
frequency of 20 kHz with a changeable power intensity from an ultrasonic generator 
equipped with a titanium probe in the dimensions of Φ13 mm × 60 mm (Chrom Technol. 
Corp. UP-1200, Bellows Falls, VT, USA). The reactor was made of double jacket cylinder, 
wherein semiconductors were packed into a basket, completely immersed in the aqueous 
solution. The operating temperature was held steadily at 318 K by means of a thermostat 
fitted with a water circulation loop [26]. Prior to the testing, some real wastewater at the 
180 mg L−1 concentration of 2,4-dinitrotoluene accompanied with traces of sulfate and 
nitrate anions originated from mixed acids catalysts on the basis of GC-MS and ion 
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3. Experimental Methods
3.1. Test on Persulfate Integrated with Semiconductors Motivated by Ultrasound

Experimental system composed of main apparatus was identical to that used in our
previous work [35]. The sonolytic reactor was continuously imposed by ultrasound at
the frequency of 20 kHz with a changeable power intensity from an ultrasonic generator
equipped with a titanium probe in the dimensions of Φ13 mm × 60 mm (Chrom Technol.
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Corp. UP-1200, Bellows Falls, VT, USA). The reactor was made of double jacket cylinder,
wherein semiconductors were packed into a basket, completely immersed in the aqueous
solution. The operating temperature was held steadily at 318 K by means of a thermostat
fitted with a water circulation loop [26]. Prior to the testing, some real wastewater at
the 180 mg L−1 concentration of 2,4-dinitrotoluene accompanied with traces of sulfate
and nitrate anions originated from mixed acids catalysts on the basis of GC-MS and ion
chromatography analyses (rendered from military ammunition plants) was well agitated
with the proportional weight of sodium persulfate (≥99.5%, Fluka, Buchs, Switzerland)
and diverse semiconductors, respectively, including ZnO, Ni2O3, Fe2O3, SnO2 (≥99.0%,
mentioned above purchased from Riedel-de Haen), NiO, PbO (≥99.9%, Alfa Aesar, Haveril,
MA, USA), Cu2O (SHOWA), TiO2 (Degussa P-25), and Pb3O4 (99.9%, Sigma-Aldrich,
St. Louis, MO, USA). In this research, batch-mode experiments were executed for 3 h at
atmospheric pressure. For the duration of the testing, the wastewater was sampled at
30 min intervals from the reactor, immediately quenched by an ice bath (273–277 K) [78].
Subsequently, a total organic carbon (TOC) analyzer was used for the measurement of the
contained organic compound content.

For the sake of verifying the influence of the band gap energy of semiconductors
on the removal efficiency of 2,4-dinitrotoluene, a series of tests were carried out on Ag
(1–4 wt%)/NiO, manufactured via commercial NiO powder impregnated with weighted
silver nitrate (≥99.5%, Riedel-de Haen, Berlin, Germany) and calcined at 473 K for 3 h.
In addition, experiments with a variety of ultrasonic power intensities (140 to 260 W cm−2,
ultrasonic power output/titanium-tip area) were executed to elucidate the effects of ultrasonic
irradiation. In order to achieve an optimal persulfate concentration on 2,4-dinitrotoluene
decomposition rates, some tests were performed at persulfate concentrations between 40.0
and 70.0 mM. On the other hand, experiments with diverse Ag/NiO dosages (1.05 up to
1.50 g L−1) were fulfilled as well. In this study, all the experiments were accomplished at
least in duplicate to confirm the data acquired.

3.2. Total Organic Carbon (TOC) Analysis

For the duration of the experiments on persulfate integrated with semiconductors
motivated by ultrasound, the wastewater was regularly sampled and instantly analyzed
using a total organic carbon instrument (GE Corp. Sievers InnovOx, Trevose, PA, USA),
installed with a nondispersive infrared (NDIR) detector. All of the organic ingredients
in the samples would be completely mineralized into carbon dioxide by way of sodium
persulfate at the supercritical condition of water. On the contrary, the inorganic pollutants
would be decomposed into carbonic acid via the acidification treatment of phosphoric
acid. Original data were calibrated to the standard curve, established cautiously by the
potassium hydrogen phthalate solutions between the concentrations of 0 and 500 mg L−1.

3.3. Physicochemical Characterizations of Ag/NiO

The surface morphology and silver contents of Ag/NiO were examined by way of
a precise field-emission scanning electron microscope (FE-SEM, JSM-6500F, JEOL, Tokyo,
Japan) cooperated with an energy dispersive X-ray spectroscope (EDS, JED-2300, JEOL,
Tokyo, Japan). The crystalline structures of original Ag/NiO were analyzed using an X-ray
diffractometer (Brucker, Advance-D825A, Billerica, MA, USA) equipped with monochro-
mated high-intensity CuKα radiation (λ = 1.5418 Å) in an accelerating voltage of 40 kV
and emission current of 30 mA among the 2θ range of 10–80◦. By means of a UV-Vis spec-
trometer (UV-DRS, Lambda 850, PerkinElmer, Waltham, MA, USA), the ultraviolet-visible
diffuse reflectance spectra of Ag/NiO were determined, wherein an integrating sphere
was performed at the wavelength of 380 to 800 nm, referring to the chemical compound of
BaSO4. The surface electronic states of the original and reacted Ag/NiO were examined
utilizing an X-ray photoelectron spectrometer (XPS, Axis Ultra, Kratos Analytical, Stretford,
UK) installed with a monochromatic AlKα source at the radiation energy of 1486.71 eV.
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The C 1s core level of adventitious carbon (284.8 eV) served as the reference state of the
binding energy.

3.4. Scavenging Effects

To elucidate the chief oxidizing agents, the mineralization of 2,4-dinitrotoluene using
the process of persulfate integrated with Ag/NiO under ultrasonic irradiation was also
carried out in the existence of scavengers, including benzene, methanol, and ethanol, respec-
tively [17,71]. The 2,4-dinitrotoluene content in wastewater was detected at the wavelength
of 254 nm using a UV-Vis spectrophotometer (Lambda 850, PerkinElmer, Waltham, MA,
USA) [30]. Especially, the difference in the removal efficiency of 2,4-dinitrotoluen in the
absence/presence of benzene served as an indirect sign to the yield of sulfate radicals [36].
Transparently, the benzene scavenging effect could be magnified with higher yields of
sulfate radicals, leading to an intense difference in the 2,4-dinitrotoluene removal efficiency.
Therefore, the benzene scavenging index would be reasonably substituted for sulfate rad-
ical yields upon exploring the influence of operating parameters on 2,4-dinitrotoluene
removal rates.

3.5. Gas Chromatograph–Mass Spectrometer Analysis (GC-MS)

The wastewater (300 mL) was withdrawn from the sonolytic reactor until the process
of persulfate coupled with Ag/NiO motivated by ultrasound was conducted for 1.5 h. The
typical microextraction fiber (Carboxen/Polydimethylsiloxane, 75 µm, Supelco, Bellefonte,
PA, USA) was completely immersed into the aqueous solution to adsorb and concentrate
simultaneously the organic compounds involved. Sequentially, the fiber was packed tightly
into a syringe which was directly connected to the injection port of the gas chromatograph-
mass spectrometer (Hewlett Packard 59864B/HP 5973 MASS). Analyses were carried out
by a capillary column with dimensions of 30 m × 0.25 mm (film thickness 0.25 µm, UA-5,
Metal ULTRA ALLOY, Fukushima, Japan), wherein helium gas (99.995%) acted as the
carrier gas and the operation temperature was programmed from 303 to 573 K at a heating
rate of 20 K min−1. Most degradation intermediates of 2,4-dinitrotoluene were explicitly
identified on the basis of mass spectra referenced to those of the database (Wiley 275 L,
Hoboken, NJ, USA) with authority.

4. Conclusions

On the basis of the above discussion, it is apparent that 2,4-dinitrotoluene pollu-
tants can be predominantly mineralized by reactive sulfate radicals which originate from
persulfate anions, motivated via either ultrasound or sono-induced electrons on semicon-
ductors. The higher removal rate of 2,4-dinitrotoluene was achieved with semiconductors
with lower band gap energy due to being easily excited by sonoluminescence. Addi-
tionally, the 2,4-dinitrotoluene degradation rate was retarded sequentially by benzene,
ethanol, and methanol, indicating that sulfate radicals are the main oxidants. In accor-
dance with GC-MS analyses, it could be reasonably hypothesized that 2,4-dinitrotoluene
was initially denitrated into o-mononitrotoluene or p-mononitrotoluene, followed with
decarboxylation into nitrobenzene. Then, nitrobenzene was oxidized to 2-nitrophenol,
3-nitrophenol, and 4-nitrophenol, respectively, by way of hydroxycyclohexadienyl radicals.
Phenol was definitely monitored on account of the denitration of nitrophenol compounds
and was sequentially decomposed into hydroquinone and p-benzoquinone. In this research,
2,4-dinitrotoluene could be almost completely eliminated. This means that persulfate inte-
grated with suitable semiconductors irradiated by ultrasound is a promising method for
the disposal of wastewater in toluene nitration processes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28114351/s1, Figure S1: FE-SEM images of the (a)
Ag (1 wt%)/NiO, (b) Ag (2 wt%)/NiO, (c) Ag (3 wt%)/NiO and (d) Ag (4 wt%)/NiO semiconductors.
Figure S2: The band gap energy of Ag/NiO was evaluated on the basis of Tauc’s relation ((αhν)2 vs. hν).
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