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Abstract

Ultrasound elastography (USE) is a recent technology that has experienced major developments in the past two decades. The
assessment of the main mechanical properties of tissues can be made with this technology by characterisation of their response to
stress. This article reviews the two major techniques used in musculoskeletal elastography, compression elastography (CE) and
shear-wave elastography (SWE), and evaluates the studies published onmajor electronic databases that use both techniques in the
context of tendon pathology. CE accounts for more studies than SWE. The mechanical properties of tendons, particularly their
stiffness, may be altered in the presence of tendon injury. CE and SWE have already been used for the assessment of Achilles
tendons, patellar tendon, quadriceps tendon, epicondylar tendons and rotator cuff tendons and muscles. Achilles tendinopathy is
the most studied tendon injury with USE, including the postoperative period after surgical repair of Achilles rupture tendon. In
relation to conventional ultrasound (US), USE potentially increases the sensitivity and diagnostic accuracy in tendinopathy, and
can detect pathological changes before they are visible in conventional US imaging. Several technical limitations are recognised,
and standardisation is necessary to ensure repeatability and comparability of the results when using these techniques. Still, USE is
a promising technique under development and may be used not only to promote an early diagnosis, but also to identify the risk of
injury and to support the evaluation of rehabilitation interventions.

Key Points

• USE is used for the assessment of the mechanical properties of tissues, including the tendons.

• USE increases diagnostic performance when coupled to conventional US imaging modalities.

• USE will be useful in early diagnosis, tracking outcomes and monitoring treatments of tendon injury.

• Technical issues and lack of standardisation limits USE use in the assessment of tendon injury.
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Abbreviations

CE Compression elastography
SWE Shear-wave elastography
US Ultrasound
USE Ultrasound elastography

Introduction

Ultrasound (US)-based methods are of particular interest due
to their inherent advantages, such as wide availability, rela-
tively low cost and quick procedures [1]. Over the last two
decades, there has been significant development in different
methods to perform tissue elasticity measurements [2]. Some
authors claim that ultrasound elastography (USE) could rep-
resent the most important advance in US medical imaging
since Doppler establishment [3].

USE can be applied in a variety of medical fields. In
oncology, it can be used to assess liver, breast or prostatic
lesions. Evaluation of the thyroid gland, gynaecological
or musculoskeletal pathologies are also possible using
USE [4].
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USE is based on the principle that the application of a stress
force on a tissue will induce internal displacements intrinsi-
cally related to its elastic properties [5, 6].

There are different techniques of USE which share three
common steps: excitation application (stress), tissue response
measurement (strain) and mechanical parameters estimation [7].

Applying a focused radiation force from a linear US array
which induces shear waves defines shear-wave elastography
(SWE) [8]. The repeated manual compression of tissues by
using a hand-held US transducer to produce strain defines com-
pression elastography (CE) or static strain elastography [9].

The elastic modulus is a parameter used to quantify elas-
ticity. The elastic modulus has larger variation compared to
the parameters of other imaging modalities, allowing higher
discrimination between different tissues and between normal
and pathologic tissues [7]. This elastic modulus can be defined
as the slope of a stress–strain curve, during elastic strain,
reflecting the elastic properties of the tissues, and it is inverse-
ly proportional to the degree of strain, assuming that applied
stress is uniform [10]. The Young’s elastic modulus (E) and
shear elastic modulus (G) represent the elastic modulus and
are most applicable to biological tissues.

US is an exceptional diagnostic tool for tendon injuries
evaluation, including tendinopathies and tendon ruptures
[11]. The biomechanical modifications arising from physio-
logical and pathologic processes can be assessed by using
USE, which has a great applicability on early diagnosis [9].

Tendinopathy is defined as an overuse injury histologically
characterised by the proliferation of tenocytes, collagen fibre
disorganisation, increase of non-collagenic matrix, fluid accu-
mulation between fibres, capillary proliferation and calcifica-
tion, which can all induce modifications of the viscoelastic
properties of the tendon and, consequently, be noticeable on
USE [12–14]. Early diagnosis of tendinopathies is crucial to
implement conservative measures to avoid severe tendinous
injury or even rupture. The modifications on tissue elasticity
can be early detected by USE potentially even before there
are visible abnormalities on conventional B-mode ultrasonog-
raphy [15, 16]. USE may also play a role on rehabilitation, as a
tool to monitor and guide ongoing treatments, including after a
surgical repair of a tendon rupture, and to predict the return to
previous activities (especially in high-level athletes) [17, 18].

This article intends to review the two major techniques used
in USE, CE and SWE, and the studies published on major
electronic databases that use both techniques in tendon patholo-
gy evaluation. The major findings regarding elasticity character-
isation, correlations, performance characterisation and current
limitations of this technology are featured in the present review.

Compression elastography (CE)

CE is a qualitative or semi-quantitative technique based on the
application of compressive waves on tissues [3]. During

examination, the operator executes rhythmic and regular com-
pressions in the area of interest to obtain an axial strain on the
tissue. Given a certain amount of applied stress, softer tissues
have more deformation and, therefore, experience larger strain
than stiffer tissues. These strains are obtained by the variation
of longitudinal distance, calculated from the time taken by the
US waves to return to the transducer before and after com-
pression (Fig. 1). A specialised software encodes the signals
obtained and then displays on the US screen a colour-coded
elastogram. For the colour elastogram, red usually indicates
soft consistency, blue indicates hard consistency, and green
and yellow encode intermediate stiffness [19].

Young’s elastic modulus (E) is inversely proportional to the
measured strain (E = stress/strain) based on Hooke’s law [2].
The determination of the Young’s modulus requires quantifi-
cation of the stress distribution within the tissue, which is
challenging using CE because the applied force (stress) can
be highly variable and not standardised. This is a major draw-
back as, unlike Young’s modulus values, the data acquired by
this technique do not represent tissue intrinsic properties.
However, there are semi-quantitative methods that can be
used, such as the strain ratio, an index of the relative elasticity
between a chosen region of interest (ROI) in the examined
tissue and a reference ROI, usually the adjacent subcutaneous
tissues. A visual scoring system that compares the colour of
the compressed area to the colour of the surrounding area
could also be used [20].

CE is also affected by the depth of the tissues of interest and
probe position, increasing the difficulty in obtaining precise mea-
surements with this highly operator-dependent procedure [21].

Shear-wave elastography (SWE)

In addition to morphological information, SWE can also quan-
tify the absolute elasticity value of soft tissue structures [22].

Shear waves can be induced through various methods, such
as US push beams (supersonic shear imaging) or by external
mechanical vibrations (transient elastography). These waves
can be either longitudinal, where the particles oscillate in the
direction of wave propagation, or transversal, in which parti-
cles oscillate perpendicular to the direction of wave propaga-
tion. The transverse wave propagation speed is called the
shear-wave velocity (Vs) (Fig. 2) [23].

Transient elastography uses an external actuator to provide
a single cycle of low-frequency vibration that generates shear
waves and US methods to track the resulting motion. Motion
estimation can be performed using cross-correlation of con-
secutively acquired radiofrequency data. It measures only re-
gional elasticity with limited depth and provides only a rela-
tive measure of stiffness [2].

Supersonic shear imaging creates shear waves over a great-
er range of depth by using multiple push beams focused at
different depths within the tissue and then uses ultra-high
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frame rate ultrasonic imaging to track these waves as they
propagate [23].

The obtained tissue displacement maps are used to
calculate the propagation velocity of the shear waves.
The distribution of shear-wave velocities is directly re-
lated to the shear modulus G, with the latter being de-

fined as G ¼ ρV2
s where ρ is the material density. The

shear modulus is sensitive to the probe positioning and
shear waves have the potential for faster propagation
along the longitudinal axis of the tendon [24]. The shear

modulus discloses good correlation with the Young’s
elastic modulus (E) and can be related by the following

equation: E≅3G ¼ 3ρV2
s [23]. The more isotropic and

homogeneous the tissue, the more accurate the estimate
of the elasticity modulus. This determination is not ac-
curate for anisotropic and heterogeneous tissues like ten-
dons that combine elastic and viscous properties.
Nevertheless, the elastic modulus can be used as an ob-
jective indicator of the relative elasticity of tissues of the
same type under the same testing conditions [15, 25].
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SWE allows the assessment of qualitative elastograms and
quantitative measurements, and it is considered more objec-
tive, since it is less influenced by inter-operator variability,
providing potentially more reproducible results than CE.
However, some limitations must be considered, particularly
the limited size, shape and depth of the ROI [26].

Materials and methods

A bibliographic research was made on PubMed, Ovid
MEDLINE, Cochrane Library, EMBASE and PEDro for arti-
cles published up to February 2018 related to the assessment
of pathologic tendons, ruptured tendons, tendons with
tendinopathy and on systemic diseases, using CE or SWE
techniques. The keywords Belastography ,̂ BUS^,
Bsonoelastography ,̂ Bshear wave^, Btendinopathy ,̂ Btendon^,
Btendons^, Breal-time^ and Bstrain^ were used in different
combinations.

Results

A total of 39 studies assessing pathologic tendons were found
using USE, 26 using CE (Table 1) and 13 using SWE
(Table 2).

Almost all studies documented a decrease in tendon stiff-
ness when tendinopathy is present. Conversely, a process of
reactive fibrosis can happen in ruptures and, consequently, an
increase in tendon stiffness may be observed [18]. Most of the
published studies tested CE in tendinopathy; however, in re-
cent years, there has been an increasing interest in SWE as a
possible reliable tool to detect and accurately quantify the
stiffness of tendons.

Achilles tendon

The Achilles tendon is the strongest and thickest tendon in the
human body, has a superficial location and good differentia-
tion from surrounding tissues, making it particularly suitable
for USE assessment [4]. A total of 16 studies (11 using CE and
5 using SWE) were found in the assessment of abnormal
Achilles tendon.

Regarding CE, it was demonstrated almost perfect intra-
observer repeatability and variable inter-observer repeatability
[64–66]. Regarding SWE, it revealed high reproducibility and
moderate to high repeatability [64, 67, 68].

Normal Achilles tendons have a homogenous stiff pattern,
whereas pathological ones exhibit a more heterogenous and
reduced stiffness pattern [12, 16, 27, 31–34, 52–54], except
for one study, using CE, that found symptomatic tendons to be
harder than the asymptomatic ones [28]. Studies using CE
showed moderate to perfect correlation of USE with

conventional US in Achilles tendinopathy evaluation [27,
28, 31, 32] and excellent correlation with functional scores,
greater than conventional US [34]. The application of CE
demonstrated superior [34] or comparable results [27] in terms
of specificity, sensitivity and accuracy compared to conven-
tional US in the diagnosis of clinically symptomatic Achilles
tendinopathy. A study by Klauser et al. [31] showed perfect
agreement of CE with histology (Figs. 3 and 4), along with
moderate agreement between conventional US and histology.

The use of SWE revealed high specificity [12, 53] in the
detection of tendinopathy and the combined use of conven-
tional US is recommended to increase the sensitivity of the
diagnosis [52]. Coombes et al. described that a low Achilles
Vs is correlated with higher age, self-reported pain and dis-
ability over the preceding week, and with decreased loading
capacity of the Achilles tendon [53]. Studies in athletes dem-
onstrated that tendon softening may predict pain and
tendinopathy [38, 69–71]. Using conventional US, Fredberg
et al. identified athletes with the greatest risk of developing
tendon disorders [72]. Hence, USE may be useful in the de-
tection of subclinical tendinopathy, providing time for prophy-
lactic procedures (reduction of the load and eccentric training,
for example). Once rehabilitation is considered the standard
treatment for restoring the original mechanical properties of
the tendon, it is crucial to assess the relation between clinical
functional outcomes and the mechanical properties of the
Achilles tendon.

In case of a tendon rupture, loss of tension, haematoma or
effusion contribute to a significant decrease in stiffness, as
verified by Chen et al. [54] and Aubry et al. [12], who iden-
tified signal-void areas at SWE. Domenichini et al. state that
dynamic SWE is recommended for rupture diagnosis, since a
totally ruptured tendon will not become taut when stretched
[73].

USEwas studied after the surgical repair of Achilles tendon
rupture [17, 29, 30, 55]. In this scenario, there is an increase in
tendon stiffness and heterogeneity according to the physiolog-
ical healing process, probably due to the structural
disorganisation of collagen fibres, with predominance of type
III collagen instead of type I as usual. An increased stiffness in
the contralateral tendonwas also reported [74, 75] and that can
be due to overload during the rehabilitation period or a sign of
predisposition to tendinopathy [17]; however, the explanation
remains unclear. Using SWE, Zhang et al. showed that, in
addition to increased tendon stiffness, there was a positive
correlation between the degree of tendon functionality and
its elasticity, suggesting that lower elastic modulus values
might predict poor mechanical properties, and functional out-
comes, with worse healing of repaired tendons [55]. It is
known that a repairedAchilles tendon never regains its normal
US appearance. Therefore, USE is useful for monitoring ten-
don repair and rehabilitation, eventually avoiding re-rupture
from early tendon loading [76].
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Gehmert et al. carried out a laboratory study in rabbits
demonstrating, through USE evaluation, that the application
of mesenchymal stem cells in a ruptured Achilles tendon can
totally restore their elastic properties [30]. Another recent lab-
oratory study by Yamamoto et al. with Achilles transected
tendons in rabbits described that, at the healing site, there
was a gradual decrease of the strain ratio and the tendon be-
came significantly harder over time [36]. They also demon-
strated a correlation between the strain ratio and mechanical

and histological properties of the healing tendon tissue.
According to these findings, USE may reflect biological
healing processes and, in that way, contribute to define the
appropriate time to return to previous activity with lower risk
of re-rupture.

USE has also been studied in systemic diseases. A stiffness
reduction of the Achilles tendon was observed in patients with
ankylosing spondylitis [32], in diabetic patients with foot ul-
cers [33] and in acromegaly patients [35].

Fig. 3 Images of a normal Achilles tendon using CE and histological
correlation. a Conventional ultrasound (US) image of the middle
portion of the Achilles tendon in the longitudinal plane. The star
indicates the homogenous fibrillar pattern defining normal tendon
appearance. b Image of ultrasound elastography (USE) at the same
level as in a. The blue-green area of the elastogram represented by the
star indicates tissue stiffness where biopsy was subsequently performed. c
Histological image obtained with orcein staining showing parallel
collagen fibrils, without adipose infiltration and capillary proliferation.
Reproduced, with permission, from Klauser et al. [31], copyright
(2013) by the Radiological Society of North America, Inc. (RSNA)

Fig. 4 Images of an Achilles tendon with tendinopathy using CE and
histological correlation. a Conventional US image of the insertion of
the Achilles tendon in the longitudinal plane. The asterisks indicate the
hypoechoic area without tendon thickening. CAL: calcaneus. b Image of
USE at the same level as a. The red area of the elastogram represented by
asterisks is indicative of anomalous decrease of stiffness where biopsy
was subsequently performed. c Histological image obtained with azan
staining showing loss of the parallel fibrillar structure of the collagen,
loss of fibre integrity (asterisks), adipose infiltration (circles), capillary
proliferation (plus) and mucoid deposition (star). Reproduced, with
permission, from Klauser et al. [31], copyright (2013) by the
Radiological Society of North America, Inc. (RSNA)
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Patellar tendon

The reproducibility of the CE technique in healthy patellar
was characterised with good intra- and inter-observer reliabil-
ity by Porta et al. [77]. Excellent intra-observer reliability and
moderate to excellent inter-observer reliability were reported
for SWE [56, 68, 78].

Conventional US shows hypoechogenic regions in a
tendon with patellar tendinopathy. However, asymptom-
atic individuals can have abnormal tendon morphology,
including hypoechogenic regions at conventional US
that do not help to predict the subsequent development
of symptoms [79, 80].

Five studies using USE were found (two using CE and
three using SWE) and the results were discrepant concerning
elasticity characterisation. Three studies had results favouring
a decrease in stiffness [37, 38, 52] and two studies, using
SWE, described an increase of Vs and, therefore, stiffness in
patellar tendinopathy [53, 56]. There are important methodo-
logical differences that can explain this disparity. It should be
emphasised that different regions of the same tendon were
assessed and different sizes of ROIs were used: Dirrichs et
al. measured Vs using an ROI of 1 mm in diameter placed at
the most rigid area of the tendon [52], Coombes et al. used a
larger ROI and measured Vs at the middle and proximal parts
of the tendon [53] and Zhang et al. [56] measured Vs at a
proximal part. It has been shown that the elastic modulus is
influenced by the size of the ROI (Kot et al. reported that the
elastic modulus of the patellar tendon increased with increas-
ing size of the ROI [81]), as well as by the assessed tendon
portion [15, 77, 82].

The patellar tendon is connected to two hard and fixed
structures (patellar bone and tibial tuberosity), contrary to
the other studied tendons, which are connected on one side
to a softer and more compliant structure (muscle). This fact is
stated by Porta et al. as an explanation of their results, in which
the healthy patellar tendon was characterised by a soft pattern
using CE [77]. Therefore, it is not clear which pattern and
elasticity values are able to differentiate a healthy patellar
tendon from a patellar tendinopathy.

Zhang et al. assessed 13 athletes with unilateral patellar
tendinopathy using SWE and found a correlation between
increased stiffness of painful tendon and the intensity of pain
and degree of dysfunction [56]. Using CE, Ooi et al. described
symptomatic patellar tendons in athletes as softer than asymp-
tomatic ones and better related to functional scores than con-
ventional US. The same study showed that USE increased
conventional US sensitivity and accuracy in the diagnosis of
patellar tendinopathy [38].

Patellar tendinopathy is common among active athletes
[83], so USE may be employed to assist sports medicine cli-
nicians, providing a more effective rehabilitation in athletes
with patellar tendinopathy.

Epicondylar tendons

Repetitive microtrauma is considered the main factor that
leads to epicondylar tendinopathy. In lateral epicondylitis, ex-
tensor carpi radialis brevis (ECRB) is the most commonly
affected muscle, but supinator and other wrist extensors can
also be involved. Any activity involving excessive and repet-
itive use of these muscles can result in multiple microtears,
leading to a cycle of tendon degeneration and repair [84–86].
The use of conventional US to differentiate the tissue affected
by degenerative disease from the healthy tissue can be chal-
lenging because, often, both have the same echogenicity [86,
87]. Seven studies (six using CE and one using SWE) showed
a decrease in stiffness pattern on symptomatic tendons
[39–44]. For instance, Fig. 5 represents an elastogram and
US images of a normal and a pathologic epicondylar tendon.
The focal hypoechoic area in the deep part of the
ECRB tendon, corresponding to collagen degeneration with
fibroblastic proliferation, is the most common US finding of
lateral epicondylitis [88]. Using CE on lateral epicondylitis,
De Zordo et al. found slightly more focal lesions and a more
frequent involvement of the lateral collateral ligament and the
peritendinous fascia compared to conventional US [39].
Lateral collateral ligament tear and large intra-substance tears
are related to poor outcomes when using non-operative treat-
ment. In these cases, autologous blood injection, platelet-rich
plasma cell therapy and surgery are approaches to be consid-
ered [89].

Park et al. described that USE findings were related to pain
during resistive middle finger extension on physical examina-
tion, meaning that the superficial group was affected, and,
therefore, the combination with conventional US may add
information to differentiate the injured group fibres [41].

Three studies concluded that USE was superior to conven-
tional US in terms of accuracy and/or sensitivity [39, 41, 42].
Klauser et al. studied epicondylar tendons in cadavers and
concluded that the combination of USE and conventional
US provided better correlation with histology than the use of
both modalities alone [43, 44].

Correlations of USE findings with clinical symptoms
scores [52], symptom duration and history of corticoid injec-
tion were found [41]. Studies addressing elasticity changes on
follow-up and rehabilitation treatments were not found for
epicondylar tendinopathy. The functional outcomes and the
relation with USE should be further evaluated in future
research.

Rotator cuff tendons

In our research, five studies used CE and seven studies used
SWE in cases of rotator cuff tendinopathy or supraspinatus
tendon tear. Good to very good intra- and inter-observer
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repeatability were reported for measurement of Vs in the
supraspinatus muscle and tendon [58, 90].

Globally, a stiffness decrease and a heterogeneous pattern
of softness are described in affected tendons compared to
normal ones (Fig. 6) [46–48, 58, 60, 91]. This makes USE
particularly interesting when conventional US cannot differ-
entiate between healthy and pathological tissue. The findings
on USE were correlated to magnetic resonance imaging
(MRI) [45, 46, 49, 62] and conventional US [45, 46, 60].
Rosskopf et al. demonstrated that Vs decreased with increas-
ing fat content and supraspinatus muscle atrophy, and was
increased in the final stage of fatty infiltration [58]. Krepkin
et al. found that Vs was negatively correlated with T2*
weighted values measured on MRI sequences and tear size
of the degenerated supraspinatus tendon, reflecting the ten-
don quality [62]. Seo et al. also stated that CE was able to
quantify the severity of the fat atrophy of the supraspinatus
tendon, reporting excellent accuracy and inter-observer reli-
ability [45]. Since supraspinatus fatty infiltration and muscle
atrophy can predict repeated tears rates and poor functional
outcomes, it must be acknowledged that USE may confer
prognostic utility in surgical repair decision [92, 93]. Hatta

et al. found that quantitative SWE assessment of the
supraspinatus muscle was highly correlated with extensibil-
ity of the musculotendinous unit on cadaveric shoulders.
Therefore, USE could offer a non-invasive method to predict
rotator cuff extensibility during the preoperative planning
phase for a rotator cuff repair [61]. Hou et al. also
hypothesised that SWE may be useful in the preoperative
setting for patient selection and surgical planning, as it can
reflect tendon quality or post-operative failure rates [60].

Muscle stiffness can be related to rotator cuff
tendinopathy. An increased stiffness on the upper trapezius
muscle assessed with SWE was associated with rotator cuff
tendinopathy in a study of volleyball players by Lin et al.
[57]. These authors suggested that athletes with increased
shear modulus on the upper trapezius may have higher risk
of developing rotator cuff tendinopathy and, consequently,
USE applied in the upper trapezius can be employed for
prevention/rehabilitation purposes. Another study found that
deltoid muscle softening had a correlation with
tendinopathy severity assessed by conventional US [60].

The evaluation of 39 patients with calcifying tendinopathy
using SWE allowed to define a non-dark pattern that was a

Fig. 5 CE in the evaluation of the common tendon of the lateral
epicondyle. a USE image of the common extensor tendon in the
longitudinal plane in a healthy individual. The tendon insertion is
shown to have a rigid homogeneous structure (arrows). b (a) The B-
mode conventional US image of the extensor tendon in the longitudinal
plane. High-grade tendinosis is seen with fibre dehiscence (yellow
ar rows ) . A t the same leve l , Dopp le r (b ) demons t r a t e s
hypervascularisation and the elastogram (c) shows pathological
decrease of the common extensor tendon stiffness. c (a) B-mode

conventional US image of the common extensor tendon in the
longitudinal plane demonstrating bulging and thickening of the
insertion (white arrows). At the same level, the elastogram (b) shows
irregular stiffness, involving the peritendinous fascia (black arrows),
with pathological adhesion between the tendon and the surrounding
tissue. LE: lateral epicondyle, RH: radiohead. Reproduced, with
permission, from Klauser et al. [26], copyright (2014) by the
Radiological Society of North America, Inc. (RSNA)
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predictor of symptomatic relief after fine needle aspiration.
These results reflect the utility of USE in the evaluation and
management of rotator cuff calcific tendinosis [57].

Other tendons

Tendinopathy of the long head of biceps tendon was
characterised with CE in one study. The authors found that
the affected tendons had softening areas on USE, with a pos-
itive correlation with conventional US [50].

The quadriceps tendon was also characterised with CE in
patients undergoing chronic haemodialysis and it was de-
scribed as being thinner and softer with greater colour hetero-
geneity on the elastogram compared to the controls [51].

Limitations and recommendations

Despite the great interest in USE, the published literature is
still very scarce and deeply focused on cross-sectional studies,
not controlled and with small populations. USE techniques
have several limitations that can affect the reproducibility
and comparison of results.

CE is not a quantitative technique and, thus, has led to the
use of alternative methods, such as the relative ratio of strain,
different scoring and graduation systems, and external soft-
ware [16, 64, 94, 95].

The elastogram represents relative strains, i.e. the elasticity
of the structure under analysis is compared with that of the
adjacent tissues, which can lead to great dispersion of the re-
sults. An acoustic coupler with a known Young’s modulus has
been developed for a more consistent strain ratio measurement
reference and was shown to be reproducible and to correlate
with qualitative elastography measurements [65, 96, 97].

The window size may affect the stress distributions of the
elastogram and should be standardised. A suggested standard
size using CE states a depth of three times the tendon size and
about three-quarters of the screen in longitudinal scans with
the inclusion of the paratenon in transverse scans [95]. Kot et
al. showed significant differences in the maximum elastic
modulus for different sizes of ROIs in patellar tendon and
rectus femoris muscle, proportionally increasing with the sizes
of the ROI, possibly by including more muscle fascia and
dense collagen fibre than in smaller ROIs [81].

Compression elastography is a highly operator-dependent
technique and particularly vulnerable to intra- and inter-
operator variability [64, 95, 98, 99]. The application of com-
pression–decompression cycles with moderate and appropri-
ate compressive force can be challenging. The application of
too much or too little force affects the calculation of the strain
due to non-linear elastic properties of the tissues [23].
Currently, several techniques and software integrate USE sys-
tems in order to provide visual feedback that ensures the cor-
rect application of pressure, helping to reduce inter-observer

Fig. 6 Images of supraspinatus tendon using SWE. a Appearance of a
normal supraspinatus tendon showing anisotropy (white arrow) due to
curvilinear orientation of the tendon. b Corresponding elastogram
showing heterogeneous stiffness in the region of anisotropy and
absence of measurement in the deepest region in the humeral head
(which is expected since it is a high stiffness structure with limited

propagation of the shear waves). c Longitudinal elastography by shear
waves of the supraspinatus tendon with tendinopathy. An elastographic
pattern of disorganisation and heterogeneity is evidenced, in contrast to
the more homogenous pattern of a normal tendon (b). Adapted, with
permission, from Winn et al. [18], copyright (2016) The Author(s).
Published by Baishideng Publishing Group Inc. All rights reserved
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variability and assist image acquisition [64]. Several tri-
als of compression cycles must be performed and the
images should be obtained in the central phase of the
compression, as they provide the best contrast. The im-
ages obtained at the beginning and at the end of each
cycle are often inaccurate [16, 27].

Tissue slip artefacts occur when the ROI leaves the frame
during the compression–decompression cycles. Such artefacts
can be minimised by aligning the probe head with the region
of interest during compression [18].

During the evaluation of structures with prominent bone
projections, it is difficult to apply uniform compression,
compromising the validity of the obtained elastograms. It
should also be noted that cross-sectional elastograms, due to
the higher probability of artefacts, are inferior in quality com-
pared to longitudinal perspectives [64, 100]. In addition, per-
sistent fluctuations in the distribution of stresses during com-
pression occur at the limits of the longitudinal elastogram. To
exclude results in these limits, overlapping elastograms must
be obtained. For example, dividing the Achilles tendon into
three parts allows the overlap of elastograms to not include the
limits [101].

SWE allows a more objective data quantification and is
more reproducible; however, most of the commercial US de-
vices do not provide this modality yet [9, 102].

Most US equipment with elastography requires a min-
imum distance (usually 1–2 mm) between the structure of
interest and the surface of the skin for the calculation of
the elastograms. In lean individuals, this minimum dis-
tance may not be observed, leading to the use of gel
spacers to meet this requirement, which is not proved to
accurately produce the same results [16, 27, 64, 95].
Transducer pressure affects not only CE measurements
but also SWE parameters. Kot et al. reported that the
measured elastic modulus of the rectus femoris and the
patellar increased with added transducer pressure [81].
Conversely to CE, SWE does not require deformation or
compression of targeted tissues and, for that reason, light
pressure with the transducer is recommended.

The disposition of the structure to be examined as well as
the probe position will also influence the results obtained with
USE. Two studies using USE in the patellar tendon reported
that elasticity was greater in flexion and less in the full exten-
sion position [103, 104].

A comparative cross-sectional study between profes-
sional athletes and healthy volunteers concluded that
using CE in the patellar portion of the tendon presents
greater stiffness when compared to the tibial portion
[82]. Several studies using SWE emphasised the impor-
tance of both spatial location and ankle posture in the
evaluation of the Achilles tendon [12, 74, 105, 106].
Helfenstein-Didier et al. found that the Achilles tendon
shear modulus increased with passive dorsiflexion and,

regardless of the ankle angle, it was significantly higher
in the proximal region of the tendon [102]. Aubry et al.
also confirmed that stiffness of the Achilles tendon in-
creased when it was stretched, and that Vs values were
higher when the measurements were acquired parallel to
the fibres as opposed to perpendicular to the fibres,
because of tendon anisotropy [107]. The highly aniso-
tropic nature of the tendon requires the positioning of
the US probe in a perfectly parallel or perpendicular
direction to the fibres [108]. The abduction angle of
the shoulder may affect USE results when assessing
the supraspinatus tendon. Baumer et al. found lower
mean Vs for the supraspinatus muscle and tendon com-
pared to the mean Vs reported by Rosskopf et al., sug-
gesting that Vs values may decrease with increasing
abduction angle [58, 63].

The currently available USE systems are based on the
pre-requisite assumption that tissue is homogenous and
isotropic [109, 110], which is not completely true regard-
ing tendons. The vendor system can be a source of vari-
ability and, for that reason, the same equipment, when
following up patients, should be used to ensure reproduc-
ibility of the results [111, 112].

Ageing seems to be associated with poorer elastic proper-
ties of tendons, supported by USE usage in the assessment of
the Achilles tendon, the patellar tendon and the supraspinatus
muscle and tendon [15, 53, 63, 74, 106, 107, 113].
Microstructural changes including increased collagen cross-
linking may be an explanation for the increase in tendon stiff-
ness with ageing [114].

The stiffness of the tendon is also affected by mechan-
ical loading and exercise [115–118]. Three studies using
SWE reported that exercise is associated with greater elas-
ticity of the Achilles tendon [119–121]. Furthermore, a
significant correlation was found between CE results in
the Achilles tendon and BMI. Another study found a neg-
ative correlation between patellar tendon thickness and
strain ratio with smoking load [59, 122]. Therefore, it is
important to consider that these factors may interfere with
elastic properties on tendons and, consequently, limit the
comparison between studies that used USE in different
populations.

In what concerns the set of limitations related with USE, it
is necessary to standardise the following: technical parameters
(pressure applied to the probe, size of the region of interest,
acquisition time, equipment used), examination protocols (in-
cluding spatial arrangement of the probe and the structure to
be analysed, as well as segmentation of the tendon portions),
variables and classification systems. In general, it is impera-
tive to guarantee the adequate reproducibility and comparabil-
ity of the results.

Given the scarcity and limitations of the existing lit-
erature, a more structured and systematic approach is
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needed in the future with controlled multicentre studies,
encompassing broader populations at different ages and
with different activities and long-term follow-up. Studies
that correlate with conventional imaging methods (MRI
and US), histology and biomechanical and clinical data
should be performed. Based on the available techniques
of elastography, their role and importance also need to
be assessed.

Conclusions

Ultrasound elastography (USE) is a non-invasive technol-
ogy that has evolved in recent years. This technology
allows a qualitative and quantitative evaluation of the me-
chanical properties of the tissues adjuvant to conventional
ultrasound (US).

Shear-wave elastography (SWE) is considered more objec-
tive, quantitative and reproducible than compression
elastography (CE).

USE also confers potential value to conventional US
due to increased sensibility and accuracy in the evalua-
tion of tendinopathies. Studies to date suggest that elas-
tic properties of tendons change under pathological con-
ditions, identifiable with USE even before they are vis-
ible with conventional imaging methods. USE may be
useful in early diagnosis, delineation of the extent and
degree of tendinous degeneration, tracking outcomes of
treatments, including the post-surgical follow-up, and as
a screening tool in the sports context, allowing athletes
to modify their training plan to avoid tendon injury. It
could also provide insights for physical medicine and
rehabilitation researchers in what concerns tendon prop-
erties and their impact on function.

Currently, USE presents several limitations, being
highly subjective, lacking standardisation, affecting the
inter-operator variability and reproducibility of the re-
sults obtained. The applicability in the evaluation of
tendon injury is not yet perfectly defined, and SWE
seems to better respond to some of the limitations com-
pared to CE, because it provides more objective results
and less technical variations. It is our opinion that the
use of USE should be reserved for specialised centres at
the present time to serve diagnosis, monitoring and re-
search purposes, where the results can be compared
with other imaging techniques and integrated into clini-
cal practice by multidisciplinary teams.

Thus, an appropriate standardisation and structured
future research are required in order to reinforce the
role of USE as a valuable complementary technique in
the assessment of tendon injury for diagnostic purposes,
treatment decisions and response evaluation to rehabili-
tation interventions.
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