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Abstract

Due to its real-time, non-radiation based three-dimensional (3D) imaging capabilities, ultrasound 

(US) has been incorporated into various orthopedic procedures. However, imaging artifacts, low 

signal-to-noise ratio (SNR) and bone boundaries appearing several mm in thickness make the 

analysis of US data difficult. This paper provides a review about the state-of-the-art bone 

segmentation and enhancement methods developed for two-dimensional (2D) and 3D US data. 

First, an overview for the appearance of bone surface response in B-mode data is presented. Then, 

classification of the proposed techniques in terms of the image information being used is provided. 

Specifically, the focus is given on segmentation and enhancement of B-mode US data. The review 

is concluded by discussing future directions of research and additional challenges which need to 

be overcome in order to make this imaging modality more successful in orthopedics.
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INTRODUCTION

The demand for an accurate, efficient and less invasive surgery is increasing the importance 

of surgical procedures performed with computer assistance. High precision during 

interventions, the ability to perform operations with minimal incision, decreased operation 

time, declined uncertainty for intra- and post-operative complications and improved safety 

(reduced radiation exposure) to both patient and surgeon are some of the important 

advantages of such systems. The first application of computer assistance in surgery, with the 

use of stereotactic frames, was for neurosurgery in order to locate brain tumors1.

Following this initial procedure, computer-assisted surgery (CAS) systems started to grow in 

different application domains with computer-assisted orthopedic surgery (CAOS) being one 

of the main ones. Due to the rigid structure of the target anatomy (bone) orthopedic 

procedures are especially suitable for CAS systems. The first clinical study, where a CAOS 

system was investigated, described an in-vitro validation experiment for spinal fusion 
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surgery2. Following this initial study, similar technologies have been adapted to many 

different procedures in the field of orthopedics such as total hip replacement (THR)3, total 

knee replacement (TKR)4, intramedullary nail locking5 and tibial, pelvic and distal radius 

osteotomies6–8.

Imaging is one of the most important components of any CAOS system. Currently the 

dominant imaging modalities used in CAOS are pre-operative X-ray, computed tomography 

(CT) and magnetic resonance imaging (MRI) and intra-operative two- (2D) or three- (3D) 

dimensional fluoroscopy (fluoro-CT)5,9–12. Due to the superior bone imaging quality, CT is 

the preferred pre-operative modality used for planning the intervention11,12. However, MRI 

has also emerged as pre-operative imaging alternative specifically for procedures where CT 

is not necessarily required such as femoroacetabular impingement surgeries13,14 or total 

knee arthoplasty using patient specific instrumentation15,16. The main drawbacks of MRI 

and CT in CAOS are the cost of imaging, radiation exposure from CT and mostly being 

performed pre-operatively for planning the intervention. The principal imaging modality for 

intra-operative imaging in CAOS is 2D/3D fluoroscopy devices10,17–20. However, 2D 

representation of a 3D anatomy necessitates multiple fluoroscopy scans taken from different 

directions. Therefore, accuracy of the surgical procedure and reproducibility of the surgical 

actions therefore largely depend on information obtained from 2D fluoroscopy images and 

the experience of the surgeon. Three-dimensional fluoroscopy units provide 3D information; 

however, they are twice as expensive and not widely available as standard 2D units. Finally, 

both of these modalities operate with ionizing radiation causing important concerns for the 

safety of the operating staff and patient.

In order to provide a radiation-free, real-time and 3D imaging alternative to intra-operative 

fluoroscopy special attention has been given to incorporate ultrasound (US) into CAOS 

procedures21–25. US-based guidance systems for non-surgical procedures such as epidural 

anesthesia and/or spinal blocks have also been developed26–30. Nonetheless, due to the high 

levels of noise, imaging artifacts, limited field of view and bone surfaces appearing blurred 

and several mm in thickness, US has not become a standard imaging modality in orthopedics 

(Fig. 1). These difficulties prohibited the use of US as a standalone intra-operative imaging 

modality and the collected scans were registered to pre-operative plan developed using 

CT/MRI data. Accurate, automatic and real-time registration is critical for efficient image 

guidance and anatomical restoration in many orthopedic procedures. In order to achieve this 

goal, focus has been given to develop bone segmentation methods from US data which is the 

main focus of this review paper.

In their review paper Noble and Boukerroui31 provide an overview of many segmentation 

methods developed for US imaging in the context of soft tissue segmentation. Specific focus 

was given to cardiology, breast cancer and prostate cancer31 applications. Moradi et al.32, in 

their review paper, focus on the application of US-based diagnosis systems for prostate 

tissue. A review of segmentation and registration methods of MRI and US data for prostate 

cancer detection has been provided by Zhu et al.33 Katouzian et al.34 provide an overview of 

the segmentation algorithms developed for intravascular US (IVUS) images and discuss 

methodological challenges associated with the developed algorithms. Molinari et al.35 

present a review paper about measurement of intima-media thickness (IMT) and wall 
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segmentation from carotid US data. In a recent book chapter publication, Schuman provides 

a review of US registration approaches for computer assisted orthopedic interventions36. 

This paper provides a review of methodologies developed for the segmentation of bone 

surfaces from US data. In this review paper, methods developed for the enhancement of bone 

surfaces from radiofrequency (RF) and B-mode US data are also included since these 

enhanced images could potentially be used as an input to a subsequent segmentation or 

registration method.

The review paper is organized as follows: It starts with an analysis of US image response 

characteristics for bone surfaces. It then examines major works on bone US image 

segmentation and enhancement classified by image information being used with a specific 

focus on B-mode data. The review is finalized with the author’s conclusions and discussions 

about possible future trends in the field of bone imaging with US.

MATERIALS AND METHODS

Bone response characteristics in ultrasound data

US images are formed by measuring the amplitude and the travel time of the reflected sound 

echoes to reach the US transducer. If there is a high acoustic impedance mismatch between 

two tissue interfaces the reflected sound echo signal will have a high amplitude resulting in a 

high intensity pixel appearance in the formed US image. A high-intensity pixel in an US 

image indicates a strong likelihood of the presence of a boundary, such as soft tissue 

interface or bone. Since bone tissue has one of highest acoustic impedance values compared 

to other tissues such as muscle, fat, liver or water, most of the signal is reflected back from 

the bone interface resulting in a high-intensity feature in the reconstructed US image. This 

high-intensity bone feature is followed by a region with very low-intensity values appearing 

right after bone boundary. This low-intensity region, “shadow region”, is one of the typical 

US imaging artifacts denoting that interior bone surfaces cannot be imaged with US 

imaging. The high-intensity feature depicting bone boundary response looks like a line with 

a shape closely resembling the surface. However, compared to bone surface appearance in 

CT or fluoroscopy imaging, the surface response in US is not a sharp transition region but 

rather has a thickness which can reach a value of 4 mm in certain cases. The response 

thickness is affected by the inclination of the image surface with respect to the US 

transducer. The greater the inclination of the imaged surface, the greater the response 

thickness. Furthermore, the finite beam width in the elevational direction produces a thick 

response when it is projected to a 2D plane. The actual bone boundary may merge within 

this response37 (Fig. 2).

Figure 3 shows B-mode US images obtained in vivo by scanning a femur bone. Data are 

collected by changing the orientation of the US transducer with respect to the imaged 3D 

anatomy. Despite the fact that the US images are representing the same bone, the features 

corresponding to the bone surface appear different with varying scanline profiles (Fig. 3; 

bottom row). The bone surface feature shown on the right US image has the typical 

characteristics namely a high-intensity feature followed by an intensity drop representing the 

shadow region. This is also confirmed with the corresponding scanline profile (Fig. 3; 

bottom right). However, the response features on the middle and left US images appear 
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very different. The bone surface response on the left image is not a high-intensity region any 

longer and soft tissue interfaces have similar intensity values as the bone feature. The bone 

surface response on the middle US image has a thick response and the shadow region does 

not have a distinct intensity drop compared to the other two images shown.

Due to the previously mentioned imaging artifacts manual identification of bone surfaces 

from B-mode US data has been reported in the earlier proposed US-guided CAOS 

applications22,23,38. Despite the accurate results obtained in these studies, a major drawback 

was the time needed for manual segmentation. The accuracy of the segmentation also 

depends on the operator performing the manual segmentation which may introduce 

significant inter- and intra-user variability23,38. Several groups have explored ways to 

automate US bone segmentation for various applications. The proposed methods were based 

on the use of image intensity and gradient information or local phase image features. In the 

next sections, we outline the details of the developed methods in terms of the features being 

used.

Segmentation and enhancement of bone surfaces using image intensity and gradient 
information

Initial work on segmenting bone surfaces from US data has focused on the use of image 

intensity and gradient information. Since the shadow region is an important indication of 

bone surface presence in the acquired US data, this information was later incorporated, as an 

additional feature, into the proposed segmentation methods to improve the accuracy and 

robustness of the segmentation. In their work, Kowal et al.39 used a combination of depth-

weighted thresholding, image morphology and connected component labeling. The proposed 

method was validated on scans obtained from bovine and porcine phantoms. A mean 

accuracy of 0.42 mm and a 0.8-second average processing time for each US image frame 

was reported. Daanen et al.40 proposed a multistage framework. During the first stage, the 

B-mode US intensity image was masked with an Otsu-thresholded image to create a new 

image called fuzzy intensity image (FII). FII results in the enhanced representation of the 

high-intensity features belonging to the bone surfaces in the acquired US images. The 

obtained FII was used during the second stage of the algorithm which used the fact that all 

the US signal is reflected back from the bone surface creating the shadow region. Bone 

structures were segmented, from the FII, by scanning each column in the image and 

extracting the final pixel before the intensity drop. This extracted surface was further 

optimized by using the information that the bone surfaces appear as continues features in the 

image. The method was validated on three different cadavers and in-vivo patient scans. 

Results were compared with manual expert segmentation. For patients, the maximum mean 

error was 8.8 pixels, with a pixel size of 0.112 mm × 0.109 mm, while the minimum mean 

error was 4.545 pixels. For cadavers, the maximum mean error was 4.056 pixels and the 

minimum mean error was 2.679 pixels. The time to delineate one image was less than 4 

seconds. Jain et al.37 proposed a Bayesian probabilistic framework converting the B-mode 

US images to a probability image where the bone surfaces were represented with higher 

values. Qualitative results on in-vitro scans, obtained by scanning a female pelvic bone 

immersed inside a water tank, were reported. Quantitative validation was not reported due to 

the fact that the authors were interested in using the enhanced images as an input to a 
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registration method. Foroughi et al.41 introduced a method based on dynamic programing. 

The two-stage segmentation method involved enhancement of US images using intensity 

and shadow region information followed by a cost function which was iteratively optimized 

to segment the bone surfaces. The proposed method was evaluated on cadaver scans and 

achieved an accuracy of less than 0.3 mm with a computation time of 0.55 seconds. Lopez-

Perez et al.42 segmented elongated bones such as ulna, humerus or clavicle using an active 

snake models. Phantom data validation achieved a surface reconstruction error of 1.16 mm. 

Masson-Sibut et al.43 proposed a three-stage bone segmentation algorithm. The first stage 

involved vertical gradient image filtering followed by intensity thresholding. The second 

stage was used to eliminate false positive points by using the continuity information of bone 

surface. The final stage consisted closing the extracted bone contour using least square 

polynomial approximation. In-vivo volunteer scans were collected for quantitative 

validation. The reported maximum the RMSE was 0.8 mm with a processing time of 10–15 

images per second.

Some groups have combined segmentation techniques with intra-operative registration of CT 

to US21,44–46. The purpose of these studies was to overcome the limitations of US image 

segmentation by fusing CT datasets where bone is more easily identified. Amin et al.21 

combined three different image features: high-intensity feature indicating bone surface 

presence, edge feature obtained from the bone shadow region by using a directional edge 

detector and a spatial prior obtained from the CT scan. Instead of explicit segmentation of 

the bone surfaces from the US data, the three features were incorporated into the registration 

method and optimized at each iteration. No accuracy results for the bone surface 

segmentation were provided; rather, registration error results were reported which were 1.94 

mm for average translation and 0.90° for average rotation21. Brendel et al.44 used only an 

adaptive depth gain compensation method where high-intensity features appearing in the 

middle of the US image were enhanced. Bone surfaces from CT data were segmented by 

using the physics US bone imaging. The mean registration accuracy, obtained from in-vivo 
human lumbar spine scans, was 0.5° and 0.5 mm. In the study by Ionescu et al.45, the bone 

surface was extracted using linear filtering followed by watershed-based image 

segmentation. This segmentation is then updated during the US-CT registration process. 

Reported mean accuracy for in-vivo vertebrae surface registration was lower than 2° and 

0.87 mm. Beitzel et al.46 proposed the use of image thresholding, morphology, connected 

component labeling and cubic B-spline smoothing operations, respectively for segmenting 

the bone features from US data. This segmentation was updated iteratively during the 

registration process. Bone detection validation on cadaver scans achieved a mean root mean 

square distance (RMSD) of 0.38 mm between the automatic and manual segmented surfaces. 

The C++ implementation using Open CV achieved a processing time of 20–30 milliseconds. 

Yan et al.47 used a backward tracing method making use of the US shadow regions for 

surface extraction. The backward tracing method traversed shadow regions until it reached 

the high-intensity bone pixels which were selected for segmentation. The extracted bone 

surfaces were used during a subsequent CT-US registration method. Phantom and cadaver 

validation experiments yielded target registration errors (TRE) of under 1 mm for the 

phantom and under 1.6 mm for the cadaver scans. Registration time was 2 minutes but the 

computation time for US bone surface extraction was not reported. Penney et al.48 enhanced 
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bone surfaces using a measure based on the high pixel intensity, representing to the bone 

surfaces, and the ratio of the number of zero pixels between the pixel of interest and the last 

pixel of the corresponding column to the total number of pixels between them. The main 

idea was based on the fact that both of these measurements will result in high values for 

bone features because of the large difference in acoustic impedances between soft tissue and 

bone. Registration was performed on scans obtained from cadaver experiments. The reported 

mean TRE was 2.3 mm. Bone surface localization accuracy was not reported. Rasoulian et 
al.49 used the same method as that by Forough et al.41 for segmenting the spine bone 

surfaces from US data. However, the Gaussian filter, part of the original algorithm, was 

replaced by sticks filter followed by anisotropic diffusion filtering. Phantom and sheep 

cadaver experiments resulted in a mean TRE of 1.99 mm and 2.2 mm, respectively. Bone 

localization error was not reported. In a recent work, Baka et al.50 proposed a machine 

learning-based approach where the intensity-based features were used as an input to a two 

different classifiers to create probability maps showing the expected bone interface in the 

collected US images. During the second step, bone surfaces were segmented using a 

dynamic programing approach similar to that by Forough et al.41 The reported segmentation 

recall and precision rates were 0.87 and 0.81, respectively.

Segmentation and enhancement of bone surfaces using image local phase information

Image phase information is a key component in the interpretation of a scene as it conveys 

more information regarding the image structure than magnitude information51. Figure 4 

demonstrates the importance of image phase for bone US data. Investigating the 

reconstructed images (Fig.4c,d), we can see that the dominant structure in the image 

corresponds to the one where the phase information was combined (Fig. 4). The use of local 

phase image information in the context of segmentation and/or enhancement of bone 

structures from US data was first proposed by Hacihaliloglu et al.52 and extensively 

investigated in their consecutive publications53–56. In their initial work, a 2D Log-Gabor 

filter was used to extract the image phase information which was combined into a feature 

descriptor named phase symmetry (PS) in order to extract bone features52. The method was 

validated on phantom and in-vitro experiments and achieved a mean localization error of 0.4 

mm with a processing time of 0.5 seconds. The same method was also used for the 

localization of bone fractures52. This work was later extended for segmenting 3D bone 

surfaces from volumetric US data and was validated on clinical scans as well53,54. In further 

works of Hacihaliloglu and colleagues55,56, local phase information was used to construct an 

image descriptor called local phase tensor (LPT) which enhanced spine bone surfaces from 

US data. Validation was performed by registering a statistical shape model (SSM) of the 

spine to the enhanced bone surfaces. The overall reported target registration error (TRE) was 

0.2 mm ± 0.4 mm where the processing time for a 2D US image was 0.05 seconds.

One of the important aspects of local phase-based image enhancement is the optimization of 

the filter parameters. Hacihaliloglu et al.53,57 achieved this using the information obtained 

from the image domain. Optimum filter parameters improved the localization error results 

and the robustness of the algorithm to typical US imaging artifacts53,57. Since the filtering is 

performed in the frequency domain, Anas et al.58 proposed a framework for the optimization 

of the filter parameters using the information extracted from the frequency domain. Phantom 
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validation experiments resulted with mean localization error of 1.08 mm. The same method 

was recently extended to 3D for processing volumetric US data59. Cadaver validation 

achieved an average mean surface and Hausdorff distance errors of 0.7 mm and 1.8 mm, 

respectively59.

Hybrid approaches

Hybrid approaches, where local image phase information was combined with image 

intensity information, were also proposed for extraction of bone surfaces from US data60,61. 

Jia et al.60 combined local image phase information with local image intensity information 

and proposed a dynamic programming-based segmentation method. Validation was 

performed on in-vivo volunteer scans obtained from the greater trochanter area of the femur 

bone. The average Euclidean distance error, of the proposed method, was 0.12 mm with a 

processing time of 4.1 seconds. Berton et al.61 combined image intensity, gradient and 

shadow region features with local phase image features and local binary patterns. The 

obtained image features were used as an input to a classification method segmenting the 

image into three regions: bone, soft tissue and acoustic shadow. Validation results obtained 

from in-vivo volunteer scans achieved a dice similarity coefficient values of 85%, 91% and 

92% for bone, acoustic shadow and soft tissue, respectively. Quader et al.62 combined local 

phase information with local signal attenuation and bone shadowing in order to create a bone 

descriptor called confidence in PS (CPS). The proposed method was validated on ex-vivo 
phantom and in vivo human data. The localization error for phantom and in-vivo data were 

0.54 mm and 1 mm, respectively. The reported computation time was 0.26 seconds. Ozdemir 

et al.63 combined local phase information with local patch image intensity statistics, 

shadowing, attenuation, local binary patterns and speckle statistics. The extracted features 

were used during a Markov Random Fields (MRF)-based graph modeling approach for 

segmentation of bone surfaces. In-vivo validation results revealed a root-mean-square error 

of 0.59 mm with a computation time of 2 minutes.

DISCUSSION

Specific imaging advantages such as, real-time, non-radiation-based 3D imaging make US a 

perfect candidate for CAOS procedures. However, a wide range of imaging artifacts, low 

SNR and bone surfaces appearing several mm in thickness has limited the applicability of 

this imaging modality in orthopedic procedures. Furthermore, a small field of view 

complicates the interpretation of the acquired data. In order to overcome these problems, a 

number of studies have attempted to segment the bone surfaces from US data. The 

segmented bone surfaces were then registered to a pre-procedure plan developed using CT 

or MRI imaging modalities. Since accurate and robust segmentation proved to be a difficult 

process some researchers have focused on the enhancement of the bone surfaces which were 

subsequently registered to the pre-procedure plan. The registration process also provided a 

solution to the small field of view problem. Despite the successful results, of the developed 

segmentation algorithms, integration of US into different CAOS procedures continues to be 

a challenging process for the clinicians and technicians.
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In order to make US an essential imaging modality in orthopedics, several important criteria 

have to be satisfied. The most important criterion is that a clinically acceptable accuracy and 

robustness of the segmentation method needs to be ensured. Since the extracted surfaces are 

used during the subsequent registration process, the segmentation accuracy needs to be 

below the required clinical accuracy of the computer-guided procedure. Another important 

component during assessment studies is the correct dissemination and reproducibility of the 

studies. One of the major missing components in US bone segmentation research is that 

there are still no publicly available datasets on which different algorithms could be 

compared. A direct comparison of the developed methods is difficult since there are different 

metrics used for validation of the segmented surfaces to manual segmentation results. One 

solution to this could be a joint effort in order to construct a publicly available database. In 

order to make US part of a standard of care imaging modality in orthopedics, a greater level 

of standardization in the validation process and the construction of a globally acceptable 

dataset consisting of clinically collected scans are required. Of secondary, but still critical, 

importance is the design and associated effectiveness of the US-guided system. Potential 

manual interactions during US data processing need to be reduced to minimum or better 

completely removed. The spotlight should be the surgery and not the image acquisition or 

segmentation process. In addition to the automation process, the computation time of the 

segmentation should not delay the surgical procedure. Promising results for general medical 

image processing employing GPU computation power64,65 give hope that identical 

applications applied to US bone segmentation could achieve dramatic improvement in the 

processing time. The final criterion is the assessment of the proposed methods. The 

developed algorithms need to be validated in surgical settings using data collected from in-
vivo patient studies.

Some of the papers reviewed in this work have tried to address the aforementioned criteria 

with their algorithms. However, only few methods fulfill these criteria completely. Finally, 

most of the developed methods have focused on a single anatomical bone region and have 

incorporated the distinct appearance of the imaged surface into their framework in order to 

improve robustness and accuracy. A general framework applicable to segment any bone 

surfaces is still an open research question.

In recent years, researchers have been looking into designing segmentation or enhancement 

methods based on the information extracted from the raw RF US data66. Although access to 

the RF data is currently only available in US machines with dedicated research interfaces, 

more companies are providing access to the signal domain, and it appears that this new and 

rich information will be extensively sought in the coming years. Elastography or strain 

imaging has also been investigated by various groups67,68. Despite the fact that deeper tissue 

displacements are harder to detect, the results are promising for bone enhancement or 

segmentation of superficial bone surfaces such as radius, ulna or tibia. In a recent work, 

Zhuang et al.69 have proposed a new beamforming approach where they have showed that 

the proposed phase factor-based beamforming results in the suppression of noise and 

enhancement of phantom bone features. Although the results were only validated on 

phantom data, investigating new beamforming techniques for enhancement of specular 

surfaces is an encouraging direction. Finally, we also would like to mention that methods 

based on deep learning for medical image segmentation have achieved very successful 
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results70,71. Investigation of similar methods for the segmentation or enhancement of bone 

features from US data is also a new promising research direction.

CONCLUSIONS

Accurate and robust segmentation of bone surfaces or the enhancement of bone surfaces 

from acquired US data plays an important role in US-based orthopedic procedures. This 

paper presented an extensive review of the current US bone segmentation and enhancement 

methods developed for various orthopedic applications. In order to avoid direct comparison, 

algorithms were categorized into three groups: algorithms using image intensity and gradient 

information, algorithms using local image phase information and hybrid approaches. 

Techniques belonging to the hybrid group have gained popularity as they link the strengths 

of both intensity and phase-based methods. It should be noted that the segmented surfaces 

are used to register a pre-procedure plan, developed from CT or MRI, to the acquired US 

scans and are not used as standalone images for guidance during the orthopedic procedures. 

Therefore, some of the developed methods have focused more on the success of the 

registration method rather than the bone localization accuracy. Accordingly, we also 

reviewed studies where segmented or enhanced bone surfaces were used for registration to a 

pre-operative modality. However, in order to fully characterize the overall guidance error of 

the developed image guidance system, bone surface localization error should be assessed. 

We finalize our review by discussing some of the recent works, investigated by various 

groups, which provide encouraging results and new directions for the incorporation of US 

imaging into various orthopedic procedures.
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Figure 1. 
B-mode US images of different bone surfaces (left to right: femur, pelvis, distal radius). Red 

arrows point to the soft tissue interfaces with similar intensity values as the bone surfaces, 

which are pointed with yellow arrows.
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Figure 2. 
(a) Propagation of an ultrasound (US) pulses (red shapes) along one particular scanline 

(yellow line). Example echo (blue shape) was generated by reflections of the pulse from 

structures in the tissue medium all along this path, and the echoes (red shapes) travel back to 

the transducer. The image is showing a B-mode US image of a distal radius obtained in vivo. 

(b) Thicker bone surface response is observed due to the elevational beam thickness. The 

actual bone response ends up being merged inside this thick response. (c) Effect of the 

imaged surface geometry on the bone surface response. The received echoes from different 

directions other than the main direct line of sight result in an increased bone response.
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Figure 3. 
Bone response characteristics. Top row: In vivo US images of femur bone. Bottom row: 

Bone scanline profiles belonging to the bone surfaces shown in the top row. The selected 

scanline is indicated as white vertical line in the B-mode US image data.
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Figure 4. 
Importance of image phase information for image reconstruction. (a) In-vivo 2D B-mode US 

image of human femur bone. (b) Different in-vivo 2D B-mode US image of the human 

femur bone obtained by changing the US transducer position and imaging setup. (c) New 

reconstructed image obtained using the phase information from image (b) and magnitude 

from image (a). (d) New reconstructed image obtained using the phase information from 

image (a) and magnitude from image (b). Investigating (c) and (d) we can clearly see that 

the dominant feature corresponds to the image from where the phase information was taken.
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