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Abstract

Ultrasound imaging is a commonly used modality for breast cancer detection and diagnosis. In this 

review we summarize ultrasound imaging technologies and their clinical applications for the 

management of breast cancer patients. The technologies include ultrasound elastography, contrast-

enhanced ultrasound, three-dimensional ultrasound, automatic breast ultrasound, and computer-

aided detection of breast ultrasound. We summarize the study results seen in the literature and 

discuss their future directions. We also provide a review of ultrasound-guided, breast biopsy and 

the fusion of ultrasound with other imaging modalities, especially magnetic resonance imaging 

(MRI). For comparison, we also discuss the diagnostic performance of mammography, MRI, PET, 

and CT for breast cancer diagnosis at the end of this review. New ultrasound imaging techniques, 

ultrasound–guided biopsy, and the fusion of ultrasound with other modalities provide important 

tools for the management of breast patients.
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INTRODUCTION

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death 

among females worldwide (Torre, et al. 2015). Among women in the United States, breast 

cancer has the highest incidence of all cancers and is the second most common cause of 

cancer death after lung cancer (Siegel, et al. 2015). It is estimated that there were 252,710 

new cases (30% in all cancers) and 40,610 deaths (14% in all cancers ) of breast cancer in 

females of the Unites States in the year 2017(Siegel, et al. 2017). A woman living in the 

United States has a 12.3% or a 1-in-8 lifetime risk of being diagnosed with breast cancer 

(DeSantis, et al. 2014). Early diagnosis is important for both treatment and the prognosis. 

Patients with smaller primary cancers at the time of their diagnosis had a significantly higher 

survival rate and a significantly reduced probability of dying from their cancer (Duncan and 

Kerr 1976). Early detection of breast cancer and accurate assessment of lesions are the goals 

of various image modalities. As a conventional, medical imaging modality, ultrasound (US) 

has had a very important role in breast cancer detection, image-guided biopsy, and lymph-

node diagnosis for many years.

We conducted the literature search within the PubMed database using the keywords: 

“Breast” and “Ultrasound” in the title field plus “Cancer” and “Ultrasound” in the Abstract/

Title filed and with dates from 1996 to 2017. We also used the Google Scholar database for 

additional literature search. After reading the abstracts, we manually selected the relevant 

papers for this review. Each cited study had the IRB/ IACUC approval which was part of the 

search criteria. In this review, we begin with the explanation of various ultrasound 

techniques, including the ultrasound elastography technique, contrast–enhanced ultrasound, 

three-dimensional ultrasound, automatic breast-volume scanning, and computer-aided 

detection of breast cancer. We then provide an overview of ultrasound- guided breast biopsy 

and summarize ultrasound fusion with other imaging modalities navigation systems. We also 

review the performance of various imaging modalities for breast-lesion detection and lymph-

node diagnosis. Finally, we conclude with discussions and future directions.

ULTRASOUND IMAGING TECHNIQUES FOR BREAST CANCER DETECTION

Breast ultrasound imaging in the clinic

Ultrasound can assess the morphology, orientation, internal structure, and margins of lesions 

from multiple planes with high resolution both in predominantly fatty breasts and dense, 

glandular structures. The general criteria for breast cancer detection with ultrasound are 

listed in Table 1. Among those characteristics, surrounding tissue, shape, margin contour, 

lesion boundary, and posterior acoustic features were significant factors to consider when 

classifying a lesion. Ultrasound has been used to classify benign, solid lesions with a 

negative predictive value of 99.5% (Stavros, et al. 1995). The measurement results of tumor, 

including the "halo", predicted tumor size for invasive lobular carcinoma, with a high 

diagnostic accuracy (Skaane and Skjorten 1999). The Breast Imaging Report and Data 

System (BI-RADS) of the American College of Radiology (ACR) (Radiology 2015) has 

been widely used in most of the countries where breast cancer screening is implemented. BI-

RADS is designed to reduce variability between radiologists when creating reports for 

mammography, ultrasonography or MRI. The fourth version of the American Edition (2003) 

Guo et al. Page 2

Ultrasound Med Biol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is completed by ultrasonography and MRI lexicons. As an extensive update of the Fourth 

Edition, the BI-RADS Fifth Edition (2013) made some revisions based on accumulated 

clinical practice. Observer variability of BI-RADS for breast ultrasound (Lee, et al. 2008) 

showed that inter- and intra-observer agreement with the BI-RADS Lexicon for US is 

satisfactory. The use of the BI-RADS Lexicon can provide an accurate and consistent 

description and assessment of breast US. BI-RADS is integrated in the standard DICOM and 

is implemented directly on the digital mammography stations and in the computer-aided 

diagnosis (CAD) (Balleyguier, et al. 2007).

Ultrasound elastography

Elasticity is a property of a substance. Deformation occurs when the body is subjected to 

external forces and the original shape or size is restored upon removal of the external force. 

The slight deformation of tissue can be followed and marked by the speckle, ubiquitous, and 

low attenuation of ultrasound images. Echo data is acquired by the high speed of ultrasound 

to observe the tissue displacement (Bamber, et al. 2013). Elastosonography has become a 

routine tool in ultrasonic diagnosis which could measure the consistency or hardness of the 

tissues noninvasively in order to differentiate benign from malignant breast lesions.

Different categories for various elastographic techniques: Many different 

elastography techniques are available to measure and display elastography qualitatively or 

quantitatively using the displayed modus and different forces. Commonly used techniques 

are strain elastography (SE), acoustic radiation force impulse imaging (ARFI), transient 

elastography (TE), point shear-wave elastography (pSWE) and shear-wave elastography 

(SWE). According to the property displays there are three types, i.e. strain or strain rate, 

displacement, and shear wave speed. Strain elastography calculates and displays tissue 

strain; acoustic radiation force impulse imaging detects and displays tissue displacement; 

transient elastography and point shear-wave elastography records the shear-wave 

propagation speed (without making an image); and shear-wave elastography displays images 

of shear-wave speed (Bamber, et al. 2013). There are two types of applied forces in 

elastography, i.e. quasi-static, e.g. by probe palpation, and dynamic, e.g. by thumping, 

vibrating, acoustic radiation force. Quasi-static force is induced mechanically, while 

dynamic force could be induced by ultrasound. Shear-wave elastography is quantitative and 

its applied force is a dynamic force and needs to create shear. Other methods can use 

dynamic power, but can also use static or quasi-static force. Ultrasound-based elastography 

is created by a focused US impulse that transmits ultrasound pulses at a high speed from the 

same transducer and without compressing the skin. ARFI and SWE are both based on an 

acoustic force created by the focused US impulse.

Strain elastography: principle and applications: Strain elastography uses a hand-

held probe with a slightly longitudinal pressing method or respiratory movement and obtains 

the hardness response information by estimating the deformation along the longitudinal axis 

and the strain distribution of the internal tissue. Strain elastography technology can be used 

to qualitatively and semi-quantitatively study the elastic strain rate ratio of a lesion with that 

of the surrounding normal tissue. Compression technology is easy to implement, although it 

suffers from a higher operator dependence and poor reproducibility. Real-time elastography 
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(RTE), which generates “strain imaging” by compression, assesses the relative elasticity of 

the tissue in a specific area of interest creating an elastogram, i.e. a color-coded map, that is 

superimposed on the US image. The relative elasticity may vary according to the studied 

tissues, the size of the RTE-box and the exerted pressure. As tissue is mechanically 

nonlinear, the strain from a given force decreases with increasing force and the tissue 

becomes harder as more force is applied. The resolution of strain image changes with 

different contrast discrimination of the strain and also changes with the window sizes or 

displacement, strain estimators and the smoothing window, palpation speed and amplitude, 

persistence, etc. There are some artifacts that may influence the strain images, such as 

friction between the transducer and skin which could decrease the strain of surface tissue; a 

narrow compressor which generates limited strain with poor homogeneity and decays 

rapidly with depth; the artifact of strains concentration which might be seen when there is a 

hard inclusion in a soft background and which can explain the high strain at slip boundaries 

and edge enhancement; and the “egg shell” which might occur when soft regions are buried 

in a stiff background as stiff tissue prevents the generation of strain inside the egg. The 

procedures which help generate good strain images include: close to the target; and some 

distance to tissue boundaries, anatomical plane and other structures.

The investigation of 169 ex vivo breast tissue samples (Samani, et al. 2007) showed that the 

elastic modulus of normal breast fat and fibroglandular tissue are similar while 

fibroadenomas were approximately twice as stiff. Fibrocystic disease and malignant tumors 

exhibited a 3–6-fold increased stiffness while high-grade, invasive ductal carcinoma 

exhibited up to a 13-fold increase in stiffness compared to fibroglandular tissue (Samani, et 

al. 2007). A five-point scale was adopted according to the hardness of nodules in strain 

elastography (Itoh, et al. 2006). Score 1 indicates deformability of the entire lesion; score 2 

indicates deformability of most of the lesion with some small, stiff areas; score 3 indicates 

deformability of the peripheral portion of a lesion with stiff tissue in the center; score 4 

indicates that the entire lesion is stiff; and score 5 indicates that the entire lesion and 

surrounding tissue are stiff. A lesion scoring from 1 to 3 points was considered benign 

(Figure 1), while that scoring at 4 or 5 points was malignant. According to the 10 largest 

published studies with the five-point scale and a cut-off value between 3 and 4 for assessing 

malignancy, Carlsen (Carlsen, et al. 2013) presented the comparison of the diagnostic 

performance between the SE and B-mode. All of eight studies showed a better sensitivity for 

B-mode than for SE, while seven of these studies showed better specificity and higher 

accuracy for SE than for B-mode imaging; combined B-mode and SE sensitivity decreased 

in three of five studies, while specificity and accuracy increased in four of five studies.

Acoustic radiation force impulse Imaging (ARFI): ARFI employs a short acoustic 

impulse of high intensity to display displacement of tissue elements in a longitudinal 

direction and qualitatively creates a static map of the relative stiffness of the tissues within a 

small box. The tissue displacement can be accessed according to the area ratio (Li, et al. 

2015). Compared to strain elastography, ARFI imaging has better resolution, less inter-

observer variability, and less influence by the stress concentration and by slip movement 

anterior to the imaged region, and exhibits a better image in deep tissue. However, the ARFI 

method can only create static images and not dynamic sequences, such as strain images, and 
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it also depends on absorption and reflection of the pushing beam and delay between the push 

and the displacement measurement. ARFI mentioned above refers to the acoustic radiation 

force impulse imaging (virtual tissue imaging, VTI). In some literature studies the point 

shear-wave elastography (pSWE) is referred to as ARFI quantification, i.e. virtual touch 

tissue quantification, VTQ, and which has been used for the method where a regional 

average of only shear-wave speed is measured using radiation force excitation (Bamber, et 

al. 2013). The quantitative method employs a primary acoustic impulse focused on a region 

of interest where it generates pressure waves in transverse propagation in order to deform 

the tissues. The primary impulse is followed by a few, interrogating impulses distributed in 

the surrounding tissues and designed to calculate the propagation velocity of pressure waves. 

The propagation velocity and attenuation of the waves are related to the stiffness and visco-

elasticity of the tissue. The waves travel faster in stiff tissues than in non-stiff tissues. This 

quantitative method provides pressure-wave velocity but no spatial distribution.

According to a meta-analysis (Li, et al. 2015) ARFI elastography seems to be a good method 

for differentiating between benign and malignant breast lesions. The cut-off values for the 

shear-wave velocity of VTQ ranged widely from 2.89 to 6.71 m/s, while the VTI area ratio 

only ranged from 1.37 to 1.66. The values of the total sensitivity and specificity were 0.843 

and 0.932 for the VTQ of ARFI and 0.864 and 0.882 for the VTI of ARFI, respectively (Li, 

et al. 2015). According to other published studies, the mean VTI area ratio of the benign 

lesions of 1.08 ± 0.21 differed from that of the malignant lesions of 1.99 ± 0.63(Meng, et al. 

2011), while the mean shear-wave velocity differed from 4.49 to 8.22 ± 1.27 m/s in 

malignant lesions and from 2.25 ± 0.59 m/s to 3.25 ± 2.03 m/s in benign lesions (Bai, et al. 

2012, Meng, et al. 2011, Tozaki, et al. 2011).

Shear-wave elastography: A varying pressure applied to tissue surface generates shear 

deformation as well as longitudinal propagation. The propagate wave of shear deformation is 

utilized in sonography to obtain elastic information regarding tissue. Shear-wave 

elastography (SWE) uses acoustic radiation force to obtain real-time 2D or 3D quantitative 

shear-wave speed images. The speed of shear-wave propagation is proportional to the Young 

modulus (kilopascals, kPa), a measure of the resistance of tissue to shearing, and which is 

currently used to quantitatively measure lesion elasticity (Athanasiou, et al. 2010, Evans, et 

al. 2010). The image is a semitransparent, color overlap on a B-mode image in a region of 

interest, and which represents the distribution according to the local propagation velocity of 

the pressure waves. Values of the maximum and average stiffness and the standard deviation 

can also be measured. SWE is quantitative and displays no stress concentration with less 

operator dependence. High pre-stress will cause a high SWE artifact in superficial tissue. 

The shear-wave propagation near a boundary and thin layer might be invalid in order to 

assume the relationship between their speed and elastic modulus. As shear waves cannot 

propagate through pure fluid, SWE is sensitive to the average fluid content in tissue.

High mean stiffness values in shear-wave elastography have been shown to have a 

statistically significant positive association with the invasive size, high histologic grade, 

lymph-node involvement, tumor type, and vascular invasion for invasive breast cancer, and 

which suggests that higher mean stiffness values have poorer prognostic features (Evans, et 

al. 2012). The stiffness of malignant breast lesions may be influenced by the desmoplastic 
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reaction of intra- and extranodular infiltration of interstitial tissue or infiltration of the 

intraductal component, except in medullary and mucinous carcinomas (Goddi, et al. 2012). 

Wendie (Berg, et al. 2015) showed the median maximum stiffness (termed “Emax”) on 

shear-wave elastography of breast disease of various histopathologic grades (Figure 2). SWE 

provides more information regarding unidentifiable breast lesions (Figure 3).On shear-wave 

elastography, Evans (Evans, et al. 2012) reported that invasive tumors smaller than 10 mm 

had a mean stiffness of 64 ± 23 (SD) kPa, that tumors between 10–20 mm had a stiffness of 

129 ± 66 kPa, and that tumors larger than 20 mm had a stiffness of 156 ± 45 kPa.

Clinical applications of ultrasound elastography: Some clinical questions are worth 

noting: 1) Precompression is the amount of pressure applied during scanning. The 

precompression can change the tissue’s elastic properties in shear-wave elastography. If 

enough precompression is applied, the elastographic properties of all tissues are similar 

(Barr 2012). With minimal precompression, the differences of shear-wave speed for different 

tissues are maximized. Only a minimal amount of precompression is required in order to 

obtain better quality elastogram, while a mild amount of precompression is needed to obtain 

better quality B-mode images. 2) Under some biological conditions shear waves cannot form 

an image, for example, if the shear-wave velocity is too high it cannot be caught in 

extremely stiff cancer. When the elasticity cannot be evaluated, the color display will turn 

off This display should differ from a low shear-wave elasticity of soft-tissue areas. As a cyst 

which is non-viscous liquid does not support shear waves, they appear as black color. 3) The 

direction of a probe may affect shear-wave velocity, and which should be considered in 

clinical application. 4) Shear-wave propagation is depth limited. If a lesion is deeper than 4 

cm, it may not be possible to obtain a result. Repositioning the patient to make the lesion 

closer to the skin surface can help in these cases (Barr 2012). 5) The size of a mass 

influences the SWF result and it has been shown that smaller lesions have better sensitivity 

and specificity (Feng, et al. 2010, Giuseppetti, et al. 2005).

There has been controversy regarding the accuracy of breast ultrasound elastography 

compared to conventional B-mode Ultrasound, and SWE was not significantly more 

sensitive than grayscale ultrasound for the detection of either invasive ductal carcinoma or 

invasive lobular carcinoma (Sim, et al. 2015). However, elastography can lead to a re-

evaluation of the lesion (Figure 4), and the lesions that appear even echoic on B-mode 

imaging may have different strain properties. Four of 52 cases of lobular cancers were 

benign on both mammography and grayscale ultrasound, but were suspicious on SWE (Sim, 

et al. 2015). The diagnostic accuracy of shear-wave elastography for solid breast lesions is at 

least as good as grayscale ultrasound with BI-RADS classification (Evans, et al. 2010). 

Elastosonography is a simple, fast, and non-invasive diagnostic method that may improve 

the SP of diagnostic breast cancer, especially for BI-RADS 3 (Scaperrotta, et al. 2008). A 

prospective study in 939 patients proved that adding quantitative SWE features to the BI-

RADS feature in adjustment 3 and 4a class breast masses could improve the specificity of 

breast US mass assessment without loss of sensitivity (Berg, et al. 2012). Fausto used the 

strain ratio, the ratio of the glandular tissue and fat, and the ratio of the lesion and fat ratio to 

improve the diagnostic accuracy in BI-RADS 3 and 4 lesions (Fausto, et al. 2015).
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Elastography has been found to reduce the need for benign biopsies when they are used as a 

complementary tool to conventional ultrasound (Lee, et al. 2013). Elastography could then 

help to define the location of a biopsy and characterize a complex lesion (Figure 4). A recent 

study showed that anisotropy in 2D shear-wave elastography is an indicator of breast cancer 

(Skerl, et al. 2016). A meta-analytic (Sadigh, et al. 2012) comparison of the elasticity and B-

mode showed that the application of elastography as a single test is not superior to the B-

mode alone, but that in low-risk patients it is recommended to perform an elastography 

following a positive B-mode result in order to decrease the rate of unnecessary biopsies.

Contrast-enhanced ultrasound

The tumor’s vessel density is proportional to the tumor size and the pathological severity 

(del Cura, et al. 2005). The high density of blood vessels and vascular distribution disorders 

are present in breast malignant lesions. In order to visualize vascular structures and tissue 

with different vascularity, contrast-enhanced ultrasonography (CEUS) is used in clinical 

research (Kim, et al. 2003). CEUS utilizes intravenously injected gas microbubbles in order 

to improve backscattering from the vasculature (Calliada, et al. 1998). Microbubbles are 

specific gas encapsulated in various types of shells, with diameter sizes between 1 and 7 μm 

and more echogenic than red blood cells, and they are confined to intravascular spaces and 

do not leak through the vessel wall. SonoVue (Bracco Spa, Milan, Italy) ®, the commonly 

used contrast agent, is a blood–pool perfluora gas agent that consists of microbubbles of 

sulfur hexafluoride (SF6) stabilized by a phospholipid shell. Due to differences in the 

acoustic impedance and compressibility between the microbubbles and surrounding media, 

ultrasound contrast agents mainly act as nonlinear scatters. Nonlinear imaging techniques, 

including pulse inversion harmonic imaging, intermittent power Doppler, and subharmonic 

imaging, are used to reduce bubble destruction and provide improved depiction of 

microvascularity. Microbubble contrast agents, combined with nonlinear imaging 

techniques, could demonstrate the vascular morphology.

CEUS offers qualitative and quantitative analysis for characterizing breast lesions. 

Following SonoVue ® administration, different perfusion phases could be identified, i.e. 

early (0–1 min), mid (1–4 min), and late (4–6 min) phases (Zhao, et al. 2010). CEUS 

dedicated software produced the following parameters on time/intensity (T/I) curves 

(Figures 5, 6): peak %; time to peak (TTP); mean transit time (MTT); regional blood volume 

(RBV); and regional blood flow (RBF). Enhancement patterns in the early phase and 

contrast medium persistence in the late phase differ in benign and malignant breast lesions. 

The features of malignancy include early and fast enhancement in the early phase, 

centripetal filling, claw-shaped enhancement, higher maximum intensity, and contrast 

medium accumulation in the late phase (see Figure 5), while the features of benign tissue 

include delayed, centrifugal filling, homogeneous enhancement, and seldom contrast 

medium present in the late phase (see Figure 6) (del Cura, et al. 2005) (Zhao, et al. 2010) 

(Balleyguier, et al. 2009) (Jung, et al. 2005).

Since 2011, the EFSUMB Guidelines of CEUS for the breast remains an important topic for 

research, but has not been recommended for routine clinical use (Piscaglia, et al. 2012). The 

research of Ricci et al. showed that the sensitivity and specificity of CEUS for differentiating 
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malignant from benign breast lesions are 100% and 87.5%, respectively, and contrast-

enhanced sonographic patterns correlated well with those provided by MRI (Ricci, et al. 

2007). The positive predictive value (PPV) of CEUS evaluation was 91%, and the negative 

predictive value (NPV) was 73% (Caproni, et al. 2010). The size of a breast lesion measured 

with CEUS is larger than that measured with conventional ultrasound. Pathologic 

examination of a mass with measurement discrepancy revealed primarily ductal carcinomas 

in situ (DCIS) (Figure 7), invasive carcinoma with a DCIS component, adenosis with lobular 

hyperplasia in breast cancers, and inflammatory cell infiltration in one granulomatous 

mastitis (Jiang, et al. 2007). A mass with a well-defined margin has only a small possibility 

to get larger measurements on CEUS. Doppler ultrasonography with contrast-agent injection 

is highly efficient and better for evaluating the response of neoadjuvant treatment and 

confirmation of tumor hypervascularised destruction before radiofrequency (RF) in local, 

recurrent breast cancer (Vallone, et al. 2005) (Lamuraglia, et al. 2005). Enhancement 

patterns and parameters of contrast-enhanced US may be useful in the noninvasive 

prediction of the prognostic factors of breast cancer (Wan, et al. 2012).

Three-dimensional ultrasound

Three-dimensional (3D) ultrasound may offer new perspectives in the field of breast 

ultrasound. There are two, main types of 3-D ultrasound. One is the use of 2-D imaging 

equipment with a certain mechanical movement to reconstruct the 3-D ultrasound volume. 

The other one is real-time volumetric echo which uses a matrix array transducer that 

electronically scans a 3-D volume. Replacing a single row of elements in conventional linear 

transducers, the elements in a matrix array transducer are arranged in a two-dimensional (2-

D) grid. Matrix array generates a beam in both positions, and thus forming an entire, 

pyramid-shaped volume (Kisslo, et al. 2000). The probe was held still and patients were 

asked to stop breathing during the 1–3 s that the ultrasound unit required to generate the 3D 

volume. Then three perpendicular reconstructed planar sections, i.e. sagittal, transverse, and 

coronal planes, were displayed simultaneously on the ultrasound screen. The coronal 

reconstruction images can show the details of anatomy and spatial locations of a lesion and 

gland and thus potentially improve the characterization of breast lesions. A retraction 

phenomenon in the coronal plane of the 3D volume is the special characteristic of breast 

cancer (Figure 8). 3D ultrasound allows the calculation of the corresponding volume. At the 

same time, in 3D ultrasound the characteristics of the orientation, margin, margin contour, 

and surrounding tissue in the conventional planes are still significant and independent 

parameters (Watermann, et al. 2005).

A few preliminary studies have explored the use and advantages of contrast-enhanced 3-D 

US (3-D CEUS) in evaluating breast tumors (Forsberg, et al. 2004, Jia, et al. 2014, 

Sridharan, et al. 2015). Forsberg compared the diagnostic ability for breast cancer evaluation 

of 3-D US with 2-D US and 3-D power Doppler imaging, and showed that the areas under 

the receiver operating characteristic curve of 2-D CEUS imaging are 0.51 and 0.76 for 3-D 

CEUS, and when 3-D CEUS is combined with mammography it is 0.90 (Forsberg, et al. 

2004); The 3-D CEUS score for tumor angiogenesis agreed with that of contrast-enhanced, 

magnetic resonance imaging (DCE-MRI) and correlated well with the biological factors, i.e. 

microvessel density (MVD), the vascular endothelial growth factor (VEGF), and matrix 
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metalloproteinases (MMP-2, MMP-9) expression (Jia, et al. 2014). Sridharan showed that 

contrast-enhanced, 3-D subharmonic US could quantitatively evaluate the variations of 

vascular heterogeneity for benign and malignant breast lesions, i.e. a benign lesion showed a 

significant difference in vascularity between the central and peripheral, while a malignant 

lesion had no difference (Sridharan, et al. 2015).

Automated breast sonography

Handheld US is limited by operator dependence, non-reproducibility, and its inability to 

image and store three-dimensional (3-D) volumes of the breast. To overcome these 

limitations, an automated breast ultrasound system (ABUS) has been developed. This 

modality makes it possible to simultaneously visualize large sections of the breast from the 

skin surface to the chest wall and to store entire breast volumes on a picture archiving and 

communication system, and thus enabling temporal comparison of current studies with 

relevant prior studies. In 2008, the SonoCine system received U.S. Food and Drug 

Administration (US FDA) approval (Shin, et al. 2015). US standard sensor mounts on an 

articulated arm and scans the entire breast while the operator can adjust the angle and 

pressure of the transducer. The imaging produces the same image as 2D hand scanning. This 

technique does not allow three-dimensional (3D) manipulation or reconstruction of the raw 

data. The imaging is reviewed in real time, as any standard US examination, either at the 

time of the examination or later if the examination was recorded and stored. In September 

2012, Somo-v ABUS systems were approved by the US FDA to be used in women with 

dense breasts who have negative X-ray mammography results and have not undergone 

previous, invasive procedures. With this system, a larger transducer paddle (Figure 9) is 

placed over the breast with a small amount of compression applied in order to stabilize the 

breast, scan, and acquire the data (Shin, et al. 2015). The US transducer might have to be 

repositioned so as to cover the entire breast. 3D data reconstruction is made by computer 

algorithms. As the process of ABUS is without change and is automatic, it does not require 

highly trained specialists and can eliminate the fatigue of the technician. The acquisition 

time of ABUS is an average of 15 minutes for a patient with average- sized breasts (Shin, et 

al. 2015). It takes a proficient radiologist 3–10 minutes to interpret a case of ABUS results, 

depending on the complexity (Kaplan 2014). According to the ACRIN 6666 (American 

College of Radiology Imaging Network 6666) study, it takes a physician approximately 20 

minutes to scan a full bilateral examination (O’Connell, et al. 2013). Gel pad application for 

automated breast sonography is easy and provides significant pain relief, with the scan 

coverage expanded, and the image quality maintained (Kim, et al. 2015). Due to its digital 

capability, each sectional plane of the saved volume can be visualized (Figure 10), thereby 

avoiding the investigator- dependent and non-standardized documentation.

Wenkel reported that HHUS and ABUS had good agreement (Kappa 0.83 –0.87) regarding 

the BI-RADS classification (Wenkel, et al. 2008). In screening, the diagnostic quality of 

ABUS is similar to that of hand-held ultrasonography (HHUS) (Stoblen, et al. 2011). The 

ABVS can provide more accurate information for assessing the extent and location of 

lesions than handheld US (Li, et al. 2013, Shin, et al. 2011). It could, therefore, improve the 

detection accuracy of invasive cancers less than or equal to 1 cm (Kelly and Richwald 2011). 

Adding ABUS to mammography has improved the callback rates, accuracy of breast cancer 
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detection, and confidence in callbacks for dense-breasted women (Kelly, et al. 2010). The 

accuracy, SE, and SP of ABUS for breast cancer diagnosis were 79.0%, 83.3%, and 78.1%, 

respectively (Wojcinski, et al. 2013). ABUS appears accurate in assessing the preoperative 

extent of pure ductal carcinoma in situ (DCIS) (Li, et al. 2013). ABUS can reliably detect 

additional, suspicious lesions identified on breast MRI and may help with the decision 

regarding the biopsy guidance method, i.e. US vs. MRI, as a replacement tool for hand-held, 

second-look ultrasound (Chae, et al. 2013). The large probe of ABUS provides the whole 

coverage and characterization of a large mass (Figure 11) and it might provide an accurate 

measurement of a cancerous tumor larger than 5 cm (Shin, et al. 2015). ABUS can help to 

demonstrate intraductal abnormalities and the extent of these abnormalities in the ductal 

system (Figure 12). Categorization of ultrasonographic findings using automated breast US 

are useful for predicting the likelihood of malignancy (Tozaki and Fukuma 2012). ABUS 

may have a role as a replacement tool for hand-held, second-look US (Chae, et al. 2013).

Computer-aided detection for breast ultrasound

Breast ultrasound imaging and diagnosis is highly operator-dependent and may have a high 

inter-observer variation rate. Moreover, with the large amount of data that needs to be 

analyzed when using automated 3D breast ultrasound, the risk of oversight errors is 

substantial. Therefore, computer-aided diagnosis (CAD) is desirable in order to help 

radiologists in breast cancer detection and classification. Computer-aided detection (CAD) 

may be used as a second reader to improve the radiologists’ accuracy in distinguishing 

malignant from benign lesions on 2D and 3-D US volumetric images.

A CAD system generally consists of four stages, i.e. preprocessing, segmentation, feature 

extraction and selection, and classification. Interested readers are referred to a more detailed 

review in (Cheng, et al. 2010).

1) Preprocessing: The main purpose of image preprocessing is to enhance the 

image and suppress specklewhile preserving important diagnostic features. 

Speckle noise reduction techniques generally involve filtering methods, wavelet 

domain methods, and compound approaches (Cheng, et al. 2010).

2) Segmentation: Image segmentation separates objects from the background and 

allocates regions ofinterest for feature extraction. The techniques include 

histogram thresholding, the active contour model, Markov random field, and 

neural network. The active contour model combines prior knowledge regarding 

the relative smoothness of the 3D mass shape, as seen on the US volumetric 

image, with information in the image data in order to decrease the interference 

of image speckles, posterior shadowing, and variations of the gray level both 

within the mass and within the normal breast tissue. Sahiner (Sahiner, et al. 

2007) designed a computer algorithm to automatically delineate mass 

boundaries and extract features on the basis of segmented mass shapes and 

margins of 3D US volumetric images.

3) Feature extraction and selection: After mass segmentation, the features are 

extracted from a breastmalignant lesion and its margins for classification, 

including variance of intensities, entropy, average intensity, margin contrast, 
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volumetric height-to-width ratio, sphericity, compactness, posterior acoustic 

behavior, and speculation. These features can be divided into four categories, i.e. 

texture, morphological, model-based, and descriptor features. Most of these 

features are listed in the breast imaging report and data system. These features 

are also important for the design of CAD systems (Moon, et al. 2012). Features 

extracted from each different section were combined to define case-based 

features for a given mass. The case-based feature vectors were fed into 

classifiers, such as linear discriminant analysis, with stepwise feature selection 

in order to obtain computerestimated malignancy scores. It has been shown that 

texture features can distinguish malignant from benign lesions on 2-D US 

(Gomez, et al. 2012). Another study (Liu, et al. 2014) incorporated three, 

important types of texture features, including local binary patterns (LBPs), gray–

level, co-occurrence matrix (GLCM)-based features, and the Gabor filters, in 

order to classify benign and malignant lesions in automated three-dimensional 

breast ultrasound images. LBP features from the area surrounding the segmented 

lesion, texture features of squares and autocorrelation, and texture features based 

on 3-D GLCM could be used to classify the ABUS volumes of a breast lesion 

(Liu, et al. 2014). The ranklet transform after texture features extracted may be 

useful for improving the ability to discriminate between triple-negative breast 

cancer and benign fibroadenomas (Hipwell, et al. 2016). The phased, 

congruency-based binary pattern (PCBP) is an oriented local texture descriptor 

that combines the phase congruency (PC) approach with the local binary pattern 

(LBP). Tao Tan (Tan, et al. 2015) used a large number of 2D, Haar-like features 

to differentiate lesion structures from false positives. Chang used neutrosophic 

image transformation and fuzzy c-mean clusterings to define the lower and 

upper boundaries of the fibroglandular tissue in US images and then extracted 

the number of hypoechoic regions and histogram features. The detection result 

of the proposed system showed high agreement with that of the radiologists 

(Chang, et al. 2015).

4) Classification: The selected features were fed into a classifier in order to 

categorize the images intolesion/no-lesion or benign/malignant classes (Cheng, 

et al. 2010).The commonly used classifiers include linear classifiers, artificial 

neural networks, Bayesian neural networks, decision tree, support vector 

machine, and template matching. Hussain (Nagarajan, et al. 2013) proposed a 

method to classify mass regions by building an ensemble classifier that employs 

Gabor features and achieved the best result. Support vector machine (SVM) 

which utilizes a structure risk minimization to diminish the error of the learning 

machine and has been widely used for tumor classification (Cai, et al. 2015). 

Using a cascade of Gentle Boost classifier that combines these features can 

improve their previously developed CAD system in the initial candidate 

detection stage. A machine learning methodology involving pairing adaptive 

boosting with selective pruning achieved high diagnostic performance without 

the added cost of an additional reader for differentiating solid breast masses by 

ultrasound (Venkatesh, et al. 2015). A leave- one-case-out resampling method 

was used to train the classification system and to obtain the malignancy scores 
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(Sahiner, et al. 2007), and this method improved the radiologists’ accuracy in 

distinguishing malignant from benign breast masses on 3D US volumetric 

images. Bhatti PT (Bhatti, et al. 2001) used speed-weighted pixel density to 

quantify vascularity in and around each mass and made the conclusion that 

combining the vascularity measure with age can improve the discrimination of 

sonographically detected breast masses.

A computer-aided diagnosis (CAD) system can help readers to assess the probability that a 

particular lesion is malignant. The average area under the ROC curve for radiologists using 

CAD for discriminating malignant masses from benign masses on 3D volumetric US 

images, was increased from 0.83 (range, 0.81–0.87) to 0.90 (range, 0.86–0.93) (Sahiner, et 

al. 2007). The CAD system improves the performance of less experienced readers for 

distinguishing malignant from benign lesions in ABUS (Tan, et al. 2013).

Summary and Future Directions

Breast cancer detection is a widely used application of ultrasound imaging in the clinic. 

Ultrasound elastography and contrast enhanced ultrasound provide additional information 

for breast lesion based on duplex sonography. Elastography imaging is a qualitative and 

quantitative technique regarding tissue stiffness or hardness rather than anatomy. However, 

elastography images cannot distinguish between lesions and surrounding tissue when their 

elasticity properties are the same. The quality of the elastography image is limited by the 

depth of a lesion. Combination of B-mode and elastography could overcome these problems. 

Uniform standards for elastography commercial systems and uniform clear classification for 

elastography commercial modes are needed. A convenient system for elastography 

information could make elastography more widely used in clinical practice regarding breast 

disease. Contrast-enhanced ultrasound displays the vascular structure and perfusion of breast 

tumors and provides quantitative parameters on the time/intensity curve, which are useful for 

discriminating between benign and malignant lesions and follow-up after local treatment. 

Automated breast US presents useful information regarding breast lesions, from their 

coronal reconstruction plane and the extensive field of transverse and sagittal planes, with 

the advantage of consistent acquisition images, being less time-consuming, and causing less 

fatigue to the operator. In the next section, we will continue to discuss about the use of 

ultrasound for image-guided biopsy of breast cancer.

ULTRASOUND IMAGE–GUIDED BIOPSY OF BREAST CANCER

Various biopsy methods for the breast

Image-guided breast biopsy is currently the gold standard for the pathologic evaluation of 

breast cancer. It can be performed safely and reliably with minimal invasiveness in clinical 

practice and with increased patient convenience and decreased cost (Roe, et al. 1997). 

Ultrasound, stereotactic mammography, magnetic resonance imaging (MRI), and positron 

emission mammography (PEM) are now successfully used for the guidance of the biopsy 

needle in order to obtain a proper tissue sample that can be histologically assessed. The 

choice of image guidance for biopsy is based on a variety of factors, including which 

modality best visualizes the lesion, the physician’s clinical experience, patient comfort, cost, 
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ease of access, and equipment availability. The common methods of biopsy include fine-

needle aspirate biopsy, vacuum-assisted biopsy, and core-needle biopsy. Meta-analysis for 

various diagnostic biopsy methods for women at average risk of cancer showed that SE 

estimates were higher than 0.90 and SP estimates were higher than 0.91 for all methods 

(Dahabreh, et al. 2014).

Fine–needle aspiration biopsy (FNAB) of the breast has been considered a reliable sampling 

and less invasive morphological diagnostic method. This method reduces health care costs 

and the psychological pressure for the patients. FNAB can be performed with freehand for 

breast lesions that are palpable and for non-palpable breast lesions it could be guided by 

ultrasound or mammography. Cytopathology for the small-sized samples obtained by fine-

needle aspiration provide the necessary information, although it does not assess the tissue 

architecture. A prospective study involving palpable nodules with a diameter of more than 2 

cm showed fine-needle aspiration cytology with an SE of 90.4% and core biopsy with an SE 

of 95.2% (Dennison, et al. 2003). In a blinded analysis, the SE of FNAB cytology was 92% 

and the SP was 83% (Reinikainen, et al. 1999). However, FNAB has the drawback of 

inadequate or non-diagnostic cytological samples and a high false–negative rate (Delle 

Chiaie and Terinde 2004).

Core-needle biopsy can be performed with an automated core-biopsy gun or a hand-held 

biopsy needle. Automated core needles have different sizes, i.e. 14-, 16-, and 18-gauge. The 

quantity and quality of breast biopsy specimens depend on the needle size. Among the three 

needle sizes, 14-gauge, long-throw biopsy needles may provide the highest quality core 

samples for breast biopsy (Helbich, et al. 1998). The samples are sent for histological 

examination which is considered to be more reliable than fine-needle aspiration. Because 

core-needle biopsy samples only part of the breast abnormality, it seems to have a lower risk 

of complications than open surgical biopsy. The incidence of severe complications with core 

needle biopsy was less than 1 percent. The adverse events include hematomas, bleeding, 

vasovagal reactions, and infections. The percentage of patients experiencing any of these 

adverse events was less than 1.5 percent (Dahabreh, et al. 2014). There are potential risks of 

displacement of cancerous cells during biopsy, however, the clinical significance of these 

findings is unclear and tumor development on the biopsy-needle track is extremely rare.

Vacuum-assisted biopsy (VAB) was performed with an 11-G needle or a 10-G needle 

(Mammotome or EnCore or other Breast Biopsy System). In the review of the Brown 

Evidence-based Practice Center, vacuumassisted biopsy is also included to core-needle 

biopsy(Dahabreh, et al. 2014). Once it is inserted and rotated in the sampling chamber, 

tissue samples are captured from different areas of the lesion that is double the size of those 

obtained by conventional core needle biopsy. It can be used to remove a small, benign lesion 

and decrease the underestimation of atypical ductal hyperplasia (ADH) and ductal 

carcinoma in situ (DCIS) (Burbank 1997). The core biopsy and VAB system are usually 

guided by stereotactic mammography or ultrasound. The differences in SE and SP between 

US-guided automated and vacuum-assisted are 0.01 and -0.01(Dahabreh, et al. 2014).
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Ultrasound and stereotactic mammographic-guided biopsy

Ultrasound-guided biopsy is easy to perform and radiation-free. Operators can observe the 

plane and the angle between the lesion and the needle in real-time and verify and flexibly 

adjust the direction of the needle position (Liberman, et al. 1998, Parker, et al. 1993). A new 

needle guidance system was developed that coupled the transducer with three, rotational 

joints in order to eliminate the need to align the ultrasound scanning plane with the needle 

and displayed the needle trajectory before the insertion so that the participant could focus 

solely on the guidance of the needle toward the intended target lesion (Bluvol, et al. 2009). 

Sometimes 2D ultrasound is misleading with the artefactual appearance of the correct needle 

placement when it is positioned at the edge of a lesion. This inaccurate information can be 

compensated for with 3D ultrasound. The advantages of 3D ultrasound validation include a 

reduction in the number of core samples required in order to achieve a reliable histological 

diagnosis and a possible reduction in the risk of tumor cell displacement (Delle Chiaie and 

Terinde 2004, Smith, et al. 2001). A retrospective study showed the false-negative of US-

guided 14-gauge CNBs for breast lesions rate was 2.0% with a sensitivity of 95.4%(Jung, et 

al. 2017).

Stereotactic mammographic biopsy accounts for nearly half of all image-guided biopsies. 

Stereotactic mammographic biopsy is suitable for micro-calcifications, distortions, and focal 

densities, but it is limited by weight and breast thickness restrictions. Keranen demonstrated 

that the accuracy and clinical usefulness of vacuum-assisted biopsy using US guidance for 

breast micro-calcifications was comparable to stereotactic guidance (Keranen, et al. 2015). 

Radiological stereotactic and sonograms can also be used for preoperative localization by 

wire. Percutaneous biopsy of a non-palpable breast mass using either US or stereotactic 

guidance is less expensive than surgery and the cost savings are greater than with US-guided 

biopsy (Liberman, et al. 1998).

Summary and Future Directions

Image-guided biopsy is another important application of ultrasound techniques in addition to 

detection of breast cancers. Ultrasound-guided biopsy provides gold standard for 

pathological diagnosis and treatment selection. Since different imaging techniques may have 

complementary roles, combination of ultrasound with different imaging modalities could 

further improve biopsy accuracy in the future. In the following section, we will discuss 

about the combination of ultrasound with MRI, PET, CT, and Mammography for breast 

cancer diagnosis and biopsy.

COMBINATION OF ULTRASOUND WITH MRI, PET, CT OR MAMMOGRAPHY

Ultrasound–MRI fusion-guided diagnosis

Due to the high SE (Harms, et al. 1993) of breast MRI and the flexibility of US, research 

regarding the integration of sensitive MRI and real-time ultrasound has been conducted for 

many years (Curiel, et al. 2007). In 2000, it was reported (Obdeijn, et al. 2000) that the 

combined approach of MR imaging, sonography, and aspiration fine-needle cytology is a 

good alternative to the MR imaging–guided biopsy for revealing unknown primary sites in 

women with axillary lymph-node metastases from adenocarcinoma. In this section we will 
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discuss ultrasound fusion with MRI diagnosis for breast cancer, including second-look 

ultrasound and the ultrasound combined with supine–MRI fusing volume navigation 

technique.

Second- look ultrasound: Second-look US (SLUS) is an additional, targeted breast 

imaging examination in which the lesions found on MR images can be located by SLUS and 

can be histologically clarified by US-guided biopsy. The term, second-look, is used even 

when there is no initial US examination. Regardless of whether antecedent, bilateral, whole-

breast US is performed, SLUS is usually recommended before MR imaging–guided biopsy. 

Spick’s study demonstrated the variable utility of SLUS in MR imaging–detected lesions 

and showed that 57% (22.6%- 82.1%) of MRI lesions can be located by SLUS and can be 

histologically clarified by US-guided biopsy (Spick and Baltzer 2014). SLUS more 

frequently detected foci (67%) and masses (73%) than it did non-mass-like lesions (54%). 

Rim enhancement in masses and clumped enhancement in non-mass lesions were also 

significantly more likely to have an ultrasound correlate (Meissnitzer, et al. 2009). The 

detection rate of SLUS was independent of the lesion size on MR imaging and malignant 

lesions were less likely to be detected on SLUS than benign lesions (Candelaria and Fornage 

2011).

A study (Park, et al. 2013) summarized how second-look ultrasound could detect breast 

lesions with a suspicious MR imaging appearance. First, it is required to predict the location 

of each lesion on US based on axial MR images which show the lesion’s location relative to 

the mammary zones. Because 73% of mammographically detected cancers developed in a 1-

cm-wide zone beneath the subcutaneous fat or anterior to the retromammary fat (Stacey-

Clear, et al. 1993), on second-look sonography the operator should pay significant attention 

to areas surrounding the mammary fascia (Nakano, et al. 2012). Second, estimate the 

lesion’s location according to the lesion-to-nipple distance. Third, make use of the 

surrounding tissues. The anterior and posterior mammary fascias and the adjacent tissue are 

important factors in correlating lesions on breast US. Fourth, based on the lesion size, shape 

and other characteristics are used to locate the lesion. As lesions are compressed in a vertical 

direction by the US probe, they tend to appear smaller, and round lesions tend to appear oval 

or elliptical compared with their appearance on MR images. Furthermore, co-existing 

lesions, including ductal extension, known fibroadenomas, cysts, scars, implants or a known 

index cancer, are good landmarks to differentiate between MR imaging and US.

The rationale of MRI image fusion with US-guided biopsy: Although SLUS 

enhancements in 70% (128/182) of unsuspected abnormalities were found on breast MRI, 

there were still 30% (54/182) which were sonographically occult, including 15% (8/54) 

cancer (Destounis, et al. 2009). It is widely accepted that MRI-guided biopsy is very useful 

(Griebsch, et al. 2006, Harms, et al. 1993, Kuhl, et al. 2000, Leach, et al. 2005, Nunes, et al. 

1997, Weinreb and Newstead 1995). Results of MRI-guided methods for women at an 

average risk of cancer showed the SE and SP of 0.9 (0.57–0.99) and 0.99 (0.91–1.0) for 

automated biopsy and 1.0 (0.98–1.0) and 0.91(0.54–0.99) for vacuum-assisted biopsy, 

respectively, and for women at a high age risk of cancer the SE and SP are 0.90 (0.58–0.98) 

and 0.99 (0.92–1.0) for automated biopsy and 0.99 (0.98–1.0) and 0.92(0.61–0.99) for 
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vacuum-assisted, biopsy respectively (Dahabreh, et al. 2014). Sakamoto (Sakamoto, et al. 

2010) considered that the higher falsenegative rate of US-VAB for MRI-detected lesions 

(26%) than for US detected lesions (7.4%) was caused by the difficulties in MRI-US 

correlation, and which indicates the need for MRI-guided biopsy.

MRI-guided biopsy is time- and cost-consuming, and the prone patient position increases 

their inconvenience and tension. For MRI-guided biopsy, a patient in the prone position is 

repeatedly transferred in and out of the unit in order to estimate the location of the lesion and 

confirm placement of the needle. As the lesion might move during the needle insertion, and 

the position of the biopsy needle cannot be displayed in real-time images, there might be 

error in sampling. Several robotic systems and actuators for MRI-guided applications are 

being developed. US-guided biopsy has considerable advantages over MR imaging–guided 

biopsy, including its accessibility, efficacy, real-time visualization of lesions and biopsied 

tissue, cost-effectiveness, and less stress and discomfort for the patient. Therefore, it is 

necessary to construct a system combining MRI imaging and a sonogram.

Combined real-time ultrasound and MRI navigation system (RtMR-US): With 

real-time Volume Navigation development, US examinations and US guided biopsies can be 

navigated using other imaging data. The structures invisible to US but visible to other 

imaging modalities can be operated using US-guided biopsy navigated by the other 

modality. The number of identifiable lesions seen on US and the accuracy of image-guided 

intervention are increased if co-registration was made.

Technique and principle: Because Information regarding fusion medical imaging was 

obtained using different imaging modalities, spatial registration is required to assure that 

each pixel from different data sets represents approximately the same volume. Hipwell 

(Hipwell, et al. 2016) reviewed the current research and relevant publications of breast 

biomechanics modeling, breast image registration, and simulation algorithms. Image 

registration and data redistribution require manually co-registering a series of key points 

based on anatomic structures and the location of a lesion or fiducial markers before 

computer processing. The registration algorithm requires the measurement and identification 

of the orientation of the coordinate’s marker and transformation matrix in order to assure 

that the same point is marked on each image. The image fusion could be maintained in static 

and real-time. In static fusion, the 3D image data of two modalities were stored in one 

workstation; after co-registering the data of two modalities, the structure and lesion of each 

modality could be easily compared and evaluated on the fusion image. In real-time fusion, 

the data of MRI/PET/CT is saved in the US-guided navigation systems, and the 

MRI/PET/CT image of the aligned plane will be displayed in real time during an ultrasound 

examination and intervention. Patient movement and the difference of their position between 

each examination can lead to distortion and affect the entire image fusion. Real-time fusion 

of ultrasound with MRI or CT is commercially available in brain, breast, liver, prostate, 

kidney, musculoskeletal, endoscopic ultrasound, and interventional modalities (Ewertsen, et 

al. 2013).

The real–time, Ultrasound–guided, MRI navigation system enables simultaneous display of 

the same site of both imaging modalities side-by-side or superimposed. Breast MRI should 
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be performed with the patient in the same position as on ultrasound, i.e. the supine position 

with the arm raised. As skin maker, before MRI, three vitamin E soft-gel capsules could be 

fixed on 3,9,and 12 o’clock on the nipple (Pons, et al. 2014). After MRI, the skin markers 

are covered with a transparent dressing to replace the soft gel capsules. The MRI data in the 

format of digital imaging and communications in medicine (DICOM) was transferred to the 

ultrasound–guided, virtual navigation systems. The small sensor installed in the ultrasonic 

probe and electromagnetic tracking system, i.e. electromagnetic transmitter, provided 

information regarding the position and orientation for the fusion system. Figure 13 shows 

the US and RtMR-US system. The rigid transformation matrix allows probe movement and 

makes rotations arbitrary. As the patient is being scanned using sonography, the navigation 

system identifies the position and motion of the probe and simultaneously reconstructs a 

corresponding slice of MRI from the previously imported volume data. The MRI of multi-

planar reconstruction corresponding to the sonography image displayed real time at a rate 

exceeding 10 frames/s (Nakano, et al. 2009). When movement disturbs the coregistration 

image, adjusted function could be used for resynchronization.

Clinical research and results: A few studies have been published regarding the clinical 

applications of the ultrasound-MRI-guided system for breast biopsy. Preliminary experience 

by Fausto and co-workers (Fausto, et al. 2012) showed that the volume navigation technique 

of combined US-MR of the breast in normal breast tissue appears to be feasible, accurate, 

and reproducible. Live US images combined with contrast-enhanced MR is able to show the 

morphology of the glandular tissue with specific anatomic details (Figure 14). Pons (Pons, et 

al. 2014) showed the diagnostic performance of RtMR-US for breast lesions and axillary 

lymph nodes found on MRI and not on second-look US. The detection rate of the navigation 

technique (90.7%) was higher than that of conventional US (43%). The diagnostic 

performance of the MR-US navigation technique for identifying malignant nodules among 

overall lesions and axillary lymph nodes was: sensitivity 96.3% and 100%; specificity 18.8% 

and 30.7%; positive predictive value 66.7% and 43.7%; and negative predictive value 75% 

and 100%. Nakano conducted a series of studies using real-time virtual sonography (RVS) 

for detecting breast cancer. In 2009 Nakano (Nakano, et al. 2009) showed the sensitivity of 

RVS combined with MRI to be 98% for breast tumors and 83% for incidentally enhancing 

lesions. In 2012, Nakano (Nakano, et al. 2012) found that 90% of MRI-detected lesions 

were identified with second- look sonography using RVS, while the detection rate of MRI-

detected lesions using the conventional B-mode was limited to 30%. In his research of 2012 

(Nakano, et al. 2012), he showed that RVS combined with MRI can identify many more 

occult lesions than conventional B-mode, and the sonographic size of the lesions detected by 

RVS alone was significantly smaller than that of lesions detected by conventional B-mode. 

Figure 15 shows RVS detecting the MRI-enhancing lesions. The overall mean positioning 

error from the actual sonographic position to the expected MRI position in the three planes 

was 7.7 mm, 6.9mm, and 2.8mm for the x-, y-, and z-planes, respectively. In 2014, Nakano 

showed the result (Nakano, et al. 2014) that RVS coordinating the present US image with the 

past US image is a reproducible, operator-independent technique for comparison of US 

images of BI-RADS category 3 mass lesions obtained at different time points.
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Hybrid ultrasound/MRI fusion system: In addition to the navigation systems, there are 

a few studies exploring other methods for the coregistration of breast MRI and US. In 2003, 

Piron (Piron, et al. 2003) developed a hybrid biopsy system combining ultrasound and MRI. 

In this system, the breast was immobilized between lateral and medial compression plates, 

each supporting a breast MR coil. After pre-biopsy MRI, the MR coils were removed. The 

lateral fenestrated compression plate is for the biopsy plug which guides the needle at a 

defined position and angle. The medial compression plate has acoustical membrane for the 

US probe. The parameters for the appropriate transducer position and biopsy-needle 

trajectory were calculated based on the result of MRI to select the proper needle approach to 

the lesion. The lesion detected by MRI is identical to the US image. Piron performed an 

experiment with breast tissue mimicking the phantom and in which the average accuracy 

score for MRI/US guidance and MRI guidance alone were 9.6 and 7.4, the average needle 

correction measured for all MRI/US guidance trail was calculated to be 3.7mm, and then the 

hybrid system were completely extended to clinic for two patients in the prone position. The 

limit is for the tissue near the chest wall. In 2008, their team (Causer, et al. 2008) 

subsequently presented the accuracy of the same MRI–sonography coregistration system in 

vivo: the mean lesion size correlated well on MRI (11.4 mm; range, 6–28 mm) compared 

with that of sonography (10.3 mm; range, 6–28 mm). All three masses were determined to 

be invasive ductal carcinoma on histopathology. The mean error measurements in the three 

planes were as follows: 2.5 mm for the x-plane, 1.1 mm for the y-plane, and 2.6 mm for the 

z-plane. This system is currently being developed and is not yet commercially available. 

Other novel phantoms of the hybrid breast biopsy system combining both modalities with 

negligible broadband noise and minimal periodic RF noise have been studied (Tang, et al. 

2008).

PET, PET-CT, PEM and CT for breast cancer biopsy and navigating ultrasound-guided 

biopsy

Positron Emission Mammography (PEM) has a high PPV of 0.88 and depicts some breast 

malignancies not seen on mammograms and/or US images (Berg, et al. 2006). High-

resolution, PEM-guided biopsy has been performed for the sampling of PET-depicted breast 

lesions in several, published studies (Argus and Mahoney 2014, Kalinyak, et al. 2011). 

Recent studies attempted to develop methods with low level of activities of 18 F-FDG, and 

nearly real-time visualization showed that PEM could detect a low level of activity of 18 F-

FDG in order to decrease the radiation dose (Argus and Mahoney 2014, Choudhery and 

Seiler 2015). A system of nearly real-time visualization of lesion displacement simulation 

during the procedure of PEM–guided, breast biopsy has been developed (Lu, et al. 2008).

Combining 18F-FDG PET/CT with US or MRI could improve the diagnostic performance 

for the detection of axillary-node metastasis compared to 18F-FDG PET/CT alone (An, et al. 

2014). One study has reported the fusion of US-guided navigation with PET/CT to facilitate 

identification and excision of suspicious axillary lymph node (Futamura, et al. 2013).

In addition, a pilot study (Kousaka, et al. 2014) that detected breast lesions with computed 

tomography (CT) coordinated real-time sonography images suggested that targeted 

sonography using real-time virtual sonography is a useful technique for identifying 
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incidentally detected breast lesions on chest CT. Yamamoto (Yamamoto, et al. 2010) showed 

that US guided by RVS was able to detect all of the same sentinel lymph nodes visualized by 

CT in seven of the 60 patients.

Ultrasound/mammography combining guided biopsy

Surry (Surry, et al. 2007) proposed an alternative dual modality system that combines 

stereotactic mammography (SM) imaging for position information with real-time 3D US 

imaging for guidance information. The breast probe of the 3D US-guided biopsy system is 

mounted on an upright stereotactic mammography unit and with stereotactic mammography 

for pre-procedural imaging, real-time 2D and near real-time 3D US imaging for 

intraprocedural targeting and guidance, and 3D US imaging for verification of the needle 

penetrating the target immediately post-biopsy.

Summary

Integrated imaging modalities can potentially compensate the weakness of each other. First, 

ultrasound can reduce the interference of gas, calcification, and a variety of artifacts, 

together with the strength of flexible and realtime ultrasound imaging. Real-time image 

fusion with ultrasound can be accurately carried out to assess target lesions previously 

identified by another imaging modality, which may lead to many clinical applications. 

Second, ultrasound fusion imaging can guide biopsies to the lesions only visible by other 

modalities and can also avoid the disadvantage of other modalities that the needle and the 

lesion relationship cannot be tracked in real time. Third, an ultrasound fusion volume 

navigation technique can be used to scan the breast nodules requiring follow-up. The 

limitation of real-time image fusion of ultrasound with other modalities can include the 

registration accuracy. This error could be due to the dislocation or deformation of breast 

tissue and the registration algorithm. New algorithms have been developed for assessing 

organ motion induced by breathing and movement. More landmarks or a precise 

electromagnetic tracking system might improve the accuracy. In the following section, we 

will compare the accuracy of ultrasound with other imaging modalities for breast cancer 

diagnosis.

ACCURACY OF OTHER MODALITIES FOR BREAST CANCER DIAGNOSIS

Mammography and ultrasound for breast screening

Digital Mammography is an effective universal technique used to decrease the breast cancer 

mortality. Mammographic screening results in a highly significant decrease in breast cancer-

specific mortality (Hofvind, et al. 2013). Long-term outcomes in 2,305,427, screened 

asymptomatic women (Cutler, et al. 2015) showed that the average cumulative incidence rate 

of the first case of invasive breast cancer increased by 0.20% each year; With 25 years of 

follow-up, 94.55% of the patients remained disease-free; and average of 0.23% of the 

postmenopausal women were diagnosed with a first case of invasive breast cancer each year. 

The specificity of a single mammographic examination was 94% to 97% (Humphrey, et al. 

2002).
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It was accepted that the relative risk (RR) for women older than 50 screened by 

mammography was dropped, although the sensitivity of mammography was substantially 

lower for women in their 40s than for older women. There was the greatest reduction of 

breast cancer deaths in the age group 60–69 years (33%), statistically significant effects in 

the age groups 55–59, 60–64, and 65–69 years, and a small effect in women 50–54 years 

(Nystrom, et al. 2002). Mammography could harms that over 10 years of biennial screening 

among 40-year-old women invited to be screened, approximately 400 women would have 

false-positive results on mammography and 100 women would undergo biopsy or fine-

needle aspiration for each death from breast cancer prevented(Humphrey, et al. 2002). For a 

40- or 50-year-old woman undergoing 10 years of annual mammograms, the cumulative risk 

of a false-positive result is about 61%(Pace and Keating 2014). We list relative risk of 

breast-cancer mortality with Mammography screening in Table 2. There have different 

suggestions about the starting age of screening. In November 2009 U.S. Preventive Services 

Task Force (USPSTF) recommended biennial screening mammography for women 50–74 

years. For the women before the age of 50 years USPSTF recommended the decision to start 

regular, biennial screening mammography should be an individual one and take patient 

context into account, including the patient's values regarding specific benefits and harms. 

But both the American Cancer Society (ACS, Smith, Cokkinides, Brooks, Saslow, & 

Brawley, 2010) and the American College of Obstetricians and Gynecologists (ACOG,2011) 

recommend that mammography be initiated at age 40 and continued annually (Corbelli, et 

al. 2014).

Mammographic sensitivity for breast cancer declines significantly with increasing breast 

density (Kerlikowske, et al. 1996, Kolb, et al. 2002, Saarenmaa, et al. 2001). More than 40% 

of women between 25– 55 years have more than 50% parenchymal density (Stomper, et al. 

1996), which partly explain the reason why sensitivity of mammogram was lower for 40s 

than older. In 577 new breast cancer patients breast parenchyma density in total breast was 

dense in 52% among women aged 26–49, 28% among women aged 50–59, and 9% among 

women age 60–92 (Saarenmaa, et al. 2001). The sensitivity of mammography is just 30% in 

women with extremely dense breasts (Mandelson, et al. 2000). The sensitivity and 

specificity of screening mammography examinations would increase with age, based the on 

BCSC data through 2009(Consortium 2014). Moreover, increased mammographic breast 

density is a moderately independent risk factor for breast cancer in older women. The odds 

ratio for developing breast cancer for the most dense compared with the least dense breast 

tissue categories ranges from 1.8 to 6.0 (Harvey and Bovbjerg 2004).

Ultrasound is an extensively used breast imaging modality in the clinical setting and it is 

relatively inexpensive and with a high degree of patient acceptability. Although in women 

over age 50, mammography was more sensitive for detecting breast cancer than US 

(Sensitivity of mammography 0.95, Sensitivity of US 0.85) (Saarenmaa, et al. 2001), in 

women 45 years old or younger the sensitivity of sonography was 13.2% greater than that of 

mammography (Houssami, et al. 2003). US has been shown to have great value as a 

complementary examination to mammography, especially in younger age patients groups, 

and with mammography-negative and dense breast parenchyma (Corsetti, et al. 2008, 

Crystal, et al. 2003) (Saarenmaa, et al. 2001) and with tumors larger than 2 cm (Skaane, et 

al. 1999). The combined use of mammography and US has been reported to be an effective 
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tool in the detection of breast cancer. For example, the combination resulted in a sensitivity 

and specificity of 92.0% and 97.7%, respectively, in an observational follow-up study 

(Duijm, et al. 1997). The diagnostic accuracy for mammography was reported to increase 

from 0.78 to 0.91 for mammography plus US (Berg, et al. 2008). The addition of US for 

screening significantly increased the detection of small tumors and improved the breast 

cancer detection at a lower stage (Kolb, et al. 2002).

MRI for breast cancer diagnosis

MRI has a number of morphological sequences to evaluate breast tissue density and 

morphological changes and to assess the condition of the skin, armpits, and the edge of the 

pectoral muscle. Breast MRI has the ability to detect malignancy that is clinically and 

mammographically occult and to provide a high negative predictive value (NPV) that may 

help to safely exclude a diagnosis of malignancy (Moy, et al. 2009). Table 3 shows a 

comparison of the diagnostic performance of multimodality for breast cancer diagnosis. 

MRI might find a new lesion in breast cancer patients who have been diagnosed. It was 

reported that MRI made 69 additional findings in 99 patients of breast cancer, among them 

51 findings were true-positives, including 16 larger single lesions, 18 cases of multifocality, 

seven cases of multicentricity, three cases of contralateral lesions, and five cases of lymph-

node involvement(Mameri, et al. 2008). An additional detection for MRI was estimated at 

16% in meta-analysis (Houssami and Hayes 2009).

Many studies have reported that breast MRI is a promising method for screening young 

women at high riskfor breast cancer (Kuhl, et al. 2000) (Kriege, et al. 2004) (Tilanus-

Linthorst, et al. 2000) (Warner, et al. 2001) (Kuhl, et al. 2005, Sardanelli, et al. 2007, 

Warner, et al. 2004). Kuhl et al. (Kuhl, et al. 2005) reported that the SE of MRI (90.7%) 

significantly higher than that of mammography (39.5%) and ultrasound (36.2%) in the 

carriers of a breast cancer susceptibility gene, while the SP was equivalent. Diagnosis of 

intraductal and invasive breast cancer in familial or hereditary cancer is achieved with a 

significantly higher SE and at a more favorable stage using MRI surveillance than another 

modality (Kuhl, et al. 2005). In 2007, MRI was recommended by the American Cancer 

Society Guidelines for breast screening in patients with an approximately 20–25% or greater 

lifetime risk of breast cancer, including women with a strong family history of breast or 

ovarian cancer and women who were treated for Hodgkin’s disease (Saslow, et al. 2007). 

However, the SP of MRI is not stable as 0.37–0.92 (Harms, et al. 1993, Leach, et al. 2005, 

Moy, et al. 2009) results in the need of further follow-up MRI and biopsy and as overall 

screening increased the costs, MRI is not the best choice as a breast cancer screening 

method. Annual screening with MRI and mammography improves metastasis-free survival 

in women with BRCA1 mutation or a familial predisposition (Saadatmand, et al. 2015). 

Contrast-enhanced MRI might be more a cost-effective screening modality than 

mammography as well as both strategies combined for women at high risk, particularly for 

the BRCA1 and BRCA2 subgroups (Griebsch, et al. 2006). MRI could help to improve the 

ability to diagnose ductal carcinoma in situ (DCIS) (Morris, et al. 2003). MR showed a 

higher SE than mammography for all tumor types and a higher SE than US for DCIS (Berg, 

et al. 2004), especially DCIS with a high nuclear grade (Kuhl, et al. 2007). Therefore, the 

indications for MRI are to diagnose tumor recurrence, screen high-risk patients, detect 
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primary tumors in patients with nodal metastases of unknown character, evaluate the 

response in patients treated with chemotherapy, and to analyze breast implants in order to 

rule out rupture (Tejerina Bernal, et al. 2012).

MRI does not currently seem to be effective in ruling out the need for biopsy in the 

assessment of sonographic BI-RADS 4 lesions (Sarica and Uluc 2014). When only 

ultrasonographic BI-RADS 4 lesions are considered, the SP of MRI was 56.7% (Sarica and 

Uluc 2014). In meta-analysis, the SP of contrast-enhanced MRI in patients with breast 

lesions is 0.72 (Peters, et al. 2008), and the pooled weighted SP of quantitative, diffusion- 

weighted (DW) MR imaging in patients with breast lesions was 0.84 (Chen, et al. 2010). 

Biopsy is still required in order to identify true positive lesions according to the results of 

breast MRI.

CT for breast cancer diagnosis

The value of CT for breast diseases has not yet been fully evaluated. In fact during routine 

chest CT examinations, the prevalence of breast cancers among incidental lesions detected 

varied from 24% to even 70%, therefore radiologists should pay attention to the breast (Son, 

et al. 2016). Furthermore, many scholars have been devoted to the study for dedicated breast 

CT (DBCT). In 2002, feasibility of cone-beam volume CT breast imaging technique was 

analyzed based on cone-beam X-ray projection volume imaging (Chen and Ning 2002). 

Since 2004, researchers have started to develop DBCT system capable of cone-beam CT and 

conducted clinical studies, contrastenhanced Breast CT (CEBCT) and DBCT comfort 

questionnaire (Lindfors, et al. 2008).

Prototype breast CT systems make use of flat panel detectors, which give rise to the half 

cone beam geometry (Lindfors, et al. 2010).The average glandular dose (AGD) from breast 

CT varied from 5 to 15 mGy (O'Connell, et al. 2014). The mean glandular dose from breast 

CT corresponds to the mean glandular dose from 4–5 mammography views and the mean 

number of views per breast during diagnostic mammography were 4.53 (Vedantham, et al. 

2013). There was no statistical significance between the glandular dose from cone-beam CT 

and that from mammography (O'Connell, et al. 2010). Breast tissue coverage of CBCT was 

better in the lateral, medial and posterior, but inferior in the axilla and axillary tail compared 

with mammography (O'Connell, et al. 2010). Vedantham has investigated the system 

geometry with prone and upright breast CT positioning and achieved equivalent posterior 

breast coverage as mammograms (Vedantham, et al. 2013). The comparison between DBCT 

and other breast modalities are reported in a review paper (O'Connell, et al. 2014). In digital 

breast tomosynthesis the ability of separating the slices varies depending on object diameter 

and the arc span, while in DBCT it is stable. The scan time of DBCT is 10 seconds and a 

bilateral CEBCT can be done within a few minutes. Single injection of contrast media can 

complete bilateral CEBCT (O'Connell, et al. 2014). DBCT usually scans one breast at a 

time, and needs patient reposition for bilateral exam. DBCT can detect all masses detected 

by mammography (O'Connell, et al. 2010) and significantly improve visualization in shape 

and margin of suspicious masses (Kuzmiak, et al. 2016), especially in patients with dense 

breast tissue (Wienbeck, et al. 2017), but detection of calcifications is controversial. 

Kuzmiak has shown the reader confidence for calcification with CBCT was reduced 
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(Kuzmiak, et al. 2016). In another study cone-beam breast computed tomography (CBBCT) 

accurately distinguished DCIS from benign causes of microcalcifications when compared 

with mammography (Wienbeck, et al. 2017)

A prospective study of pathologically confirmed 110 lesions showed that DBCT provided 

high-quality images of the breast and could help radiologists to diagnose malignant breast 

lesions, as compared with ultrasound and digital mammography (He, et al. 2016). In a recent 

study, DBCT was used to identify breast lesion and was compared with BI-RADS 

Mammography Atlas, the estimated overall sensitivity of the readers was 0.969, and the 

specificity was 0.529 (Jung, et al. 2017).

CEBCT could increase conspicuity of benign and malignant mass and it has potential for 

evaluating extent of disease and for monitoring chemotherapy (O'Connell, et al. 2014). As 

for the molecular and pathological type, Ki-67, ER, PR, and HER2 did not correlate with CT 

density of breast cancer. Tubular carcinoma tended to have a higher CT density in 

comparison to other subtypes of breast carcinomas (Wienbeck, et al. 2017).

PET, PET-CT, and PEM for breast cancer diagnosis

PET, one of the most frequently utilized tumor imaging modalities, quantitatively presents 

metabolic activity to reflect lesion characterization and to contribute to treatment planning. 

FDG PET imaging screens the entire patient for local recurrence, lymph-node metastases, 

and distant metastases, and at a relatively low detection rate of bone metastases (Lind, et al. 

2004). PET scans provide a high positive-predictive value (96.6%) for patients suggestive of 

primary breast cancer (Avril, et al. 2000). Partial volume effects and varying metabolic 

activity, depending on the tumor type, seem to represent the most significant limitations for 

the routine diagnostic application of PET (Avril, et al. 2000). Breast cancers with higher 

SUV can be overestimated due to the overflow effect, while small cancers with lower SUV 

can be underestimated due to the partial volume effect. According to the breast tumor size, 

the accuracy of FDG PET (43.5%) was significantly lower than that of MRI (91%) 

(Uematsu, et al. 2009). Tumor histology may influence the usefulness of 18F-FDG PET/CT 

for systemic staging of patients with breast cancer. For instance, invasive lobular carcinoma 

would have a greater possibility of non-FDG-avid sclerotic osseous metastases than invasive 

ductal carcinoma (Dashevsky, et al. 2015). FDG-PET had a very low SE (33.33%) for 

invasive breast cancers even though it had high SP (93.42 %)

Positron emission tomography–computed tomography (PET-CT) allows the merging of 

morphological and functional images. The rather low SP of FDG PET for breast cancer can 

be improved by utilizing combined anatomical-molecular imaging techniques, such as 

PET/CT tomography(Lind, et al. 2004). Whole-body PET-CT is extremely useful in tumor 

staging at a distance; especially in advanced stage breast cancer cases and also has a role in 

locoregional lymph-node staging. Distant metastases were detected with 18F-FDG PET/CT 

in 100% (Heusner, et al. 2008). Riedl (Riedl, et al. 2014) suggested that PET/CT might be 

valuable in younger patients with stage IIB and III disease. The patient-based SE and SP of 

FDG PET/CT were 96% and 89%, respectively (Lind, et al. 2004).While the SE was similar 

to that in their previous study using FDG PET alone, the SP was significantly higher for 

PET/CT (Lind, et al. 2004). The other research studies report that the SE of PET/CT and US 
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for the diagnosis of breast cancer were 86% and 91%, respectively (He, et al. 2015). As 

PET/CT is very expensive and not superior to US for detecting primary breast cancer, 

therefore it cannot be recommended as the primary diagnostic procedure for early breast 

cancer (He, et al. 2015).

Positron emission mammography (PEM) is a high spatial resolution tomographic method for 

molecular imaging of positron-emitting isotopes. PEM was approved by the US Food and 

Drug Administration and has been introduced into clinical use as a diagnostic adjunct to 

mammography and breast ultrasonography. PEM detected more newly diagnosed breast 

tumors (92 %) than whole-body PET (56 %) or PET/CT (87%). (Kalinyak, et al. 2014) PEM 

and MR imaging had comparable breast-level SE (Kalles, et al. 2013), i.e. 80.5% and 80.7%, 

for all of breast malignancies, 51% and 60% for additional foci of tumor, respectively, (Berg, 

et al. 2011), in addition to the SP of PEM (91.2%), is higher than that for MR imaging 

86.3% (Berg, et al. 2011).

Summary

Imaging modalities for detection of breast cancers have been continuously improved and 

upgraded with new techniques, leading to improved diagnostic performance and reduced 

false negative rate. In the era of personalized medicine, doctors' knowledge regarding 

various imaging technologies will help to select the most accurate diagnostic method 

suitable for breast cancer diagnosis. In addition to breast cancer biopsy and diagnosis, 

ultrasound has also been utilized for detecting lymph node metastasis as discussed in the 

following section.

ULTRASOUND AND OTHER MODALITIES FOR LYMPH-NODE DIAGNOSIS

Axillary lymph-node metastasis is closely related to the prognosis of breast cancer. 

However, determination of the status of lymph nodes cannot rely on clinical examination as 

many lymph-node metastases are not palpable. Ultrasonography is used to detect axillary 

lymph nodes, depending on their size, shape, cortical thickness, and echo in order to 

determine their status [7–9]. A node is confirmed to be abnormal based on the following 

ultrasound features: oval to rounded shape; hypoechoic appearance with the absence of fatty 

hilum; eccentric cortical hypertrophy; lobulation; and a diameter larger than 4–5mm. Pre-

operative, axillary ultrasound is crucial for the staging and management of breast cancer in 

many clinical institutions (Gentilini and Veronesi 2012), and it can detect some of the 

metastases and reduce the number of false–negatives biopsies. In addition, MRI and FDG 

PET CT can act as selected candidates for predicting SLNB. We present the major published 

results regarding the diagnostic performance of difference imaging modalities for detecting 

breast lymph nodes (Table 4). FDG PET imaging screens patients with breast cancer for 

lymph-node metastases with a reported average SE (47.7%-92.2%) and SP (81.6%-92%), 

respectively. The diagnostic accuracy of PET/CT is correlated with the ALN size (Zhang, et 

al. 2014). Some studies have shown that the presence of internal mammary (IM) lymph-node 

metastasis is a useful prognostic indicator and that IM metastasis has been associated with 

higher rates of distant disease and lower overall patient survival rates (Cody and Urban 
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1995, Sugg, et al. 2000). PET has excellent performance for evaluating internal mammary 

lymph-node metastasis (SE = 0.85, SP =0.90, Accuracy =0.88) (Eubank, et al. 2001).

Sentinel lymph nodes (SLN) can be an accurate predictor of the status of the axillary nodes. 

Currently, sentinel lymph-node biopsy (SLNB) has become the standard alternative for 

axillary lymph-node dissection (ALND) for assessing axillary lymph-node stages and 

reducing postoperative complications in breast cancer patients (Naik, et al. 2004) (Mansel, et 

al. 2006). The National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-32 

showed that overall patient survival, disease-free survival, and regional control were 

statistically equivalent between the SLN resection plus ALND group and the SLN resection 

alone group, and which explained that when the SLN is negative, SLN surgery alone with no 

further ALND is an appropriate, safe, and effective therapy for breast cancer patients with 

clinically negative lymph nodes (Krag, et al. 2010), even in small breast cancers with a 

diameter ≤2 cm (Veronesi, et al. 2003). For comparison of the axillary lymph-node extent 

between patients with positive nodes determined using ultrasound-guided needle biopsy 

(USNB) and positive nodes in SLNB, Boone (Boone, et al. 2015) demonstrated that breast 

cancer patients with a positive node detected on ultrasound-guided biopsy have a 

significantly greater possibility of axillary disease than patients with a positive sentinel 

lymph node. In any case, ultrasound-detected abnormal lymph nodes can be histologically 

confirmed by ultrasound-guided biopsy in order to reduce unnecessary sentinel lymph-node 

biopsy (SLNB) or even axillary lymph-node dissection (ALND) and maximally invasive 

radical resection (Moorman, et al. 2014).

As reported in the literature, 3D multi-detector-row CT–lymphography using iopamidol is a 

reliable method for the preoperative detection of SLNs and the prediction of SLN metastasis 

in breast cancer patients (Suga, et al. 2005). Yamamoto (Yamamoto, et al. 2010) use a 3D 

CT lymphography system-guided US to identify SLNs in breast cancer patients. All of the 

seven SLNs visualized by 3D CT-LG can be detected using the RVS system and four of 

seven were confirmed as metastasis. The virtual multiplanar reconstruction image of the 

SLN was displayed in synchronization with the US image. SLN metastases were assessed by 

the shape and visibility of the hilum. Yamamoto also reported that if the cortical thickness of 

the SLN is great than 2.5 mm, the detection accuracy of the real-time, virtual sonography 

systems could increase (Yamamoto, et al. 2012).

In several other studies (Mi Cheng-rong 2010, Wang, et al. 2009, Zhong Li-yao 2007), 

ultrasound contrast agents were injected subcutaneously surrounding breast lesion, and then 

SLN enhancement degree and enhancement pattern were observed before methylene blue 

staining and resection. Because of hypoperfusion of pathological identified metastatic, SLN 

have showed asymmetrical enhanced and a few are low degree enhanced. A large validation 

and quantitative method needs to be developed in order to differential metastases SLN 

confidently.

CONCLUSION AND FUTURE DIRECTIONS

In this review we provide a broad overview of ultrasound imaging techniques for breast 

cancer detection and ultrasound-guided biopsy and fusion with other modalities. These 
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techniques are of great importance in diagnosing breast lesions as benign or malignant and 

can further improve early breast-cancer detection. This review could serve as a tutorial for 

medical residents, junior radiologists, and researchers who are interested in breast- cancer 

imaging and detection. The limitation of this review is that we haven’t addressed every 

aspect of ultrasound imaging for breast cancer in detail.

For breast cancer screening, ultrasound has been applied as an adjunct imaging tool for 

mammography. Handheld ultrasound for the whole breast is time-consuming. A large 

pendulous breast increases the difficulties of ultrasound exams. Although more breast 

lesions could be found, most of them are benign (Lashkari, et al. 2016), which increases the 

false-positive rate of breast cancer screening and increases biopsy recommendations in 

screening (Health Quality Ontario 2016). For breast cancer detection and diagnosis, among 

many new techniques, breast ultrasound presents quite useful and comprehensive 

information, including lymph node in the axilla, between the pectoral muscle, the subclavian 

region, the neck, and the medial thoracic chain. The flexibility of ultrasound is superior to 

other modalities and this advantage is prominent on biopsy, follow-up and fusion with other 

modalities. Techniques for detecting breast tumor morphology and metabolic activities are 

constantly improving. Therefore, it is necessary to integrate new technologies for breast-

cancer diagnosis and treatment services. CAD makes ultrasonic quantitative analysis 

possible and provides reliable and operator-independent technique for breast ultrasound 

diagnosis. In the future, effective CAD algorithms need to be validated widely in clinical 

practice. With the knowledge about the correlation between the sonographic features and 

pathological molecular markers and with the development of targeted contrast agents, breast 

ultrasound may provide molecular diagnosis in the future.
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Figure 1. 

Elastography could help to define the biopsy location and characterize a complex lesion. The 

two, left Figures, i.e. the SE image (A) and B-mode USG image (B), show a hypoechoic 

circumscribed lesion that is predominantly elastic and displays a mosaic pattern of green and 

blue. This was a fibroadenoma with a Tsukuba elasticity score of 2 and an SR of 1.76. The 

two, right figures, i.e. SE image (A) and B-mode USG image (B) -- the lesion (arrows), and 

the surrounding tissue (arrowhead) were colored blue and had an elasticity score of 5. 

Pathology revealed an invasive ductal carcinoma. Reprinted from (Gheonea, et al. 2011).

Guo et al. Page 41

Ultrasound Med Biol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 

Shear-Wave Stiffness of Breast Masses. The box-and-whisker plot of the median, maximum 

stiffness (termed “Emax”) on shear-wave elastography (horizontal lines in bars) as the 

function of the histopathologic diagnosis for 1562, sonographically visible breast masses. 

The boxes represent the interquartile ranges (IQRs [25th–75th percentiles]), and the 

whiskers represent the 1.5-times IQR. Values outside whiskers are plotted as individual dots. 

ADH = atypical ductal hyperplasia, LCIS = lobular carcinoma in situ, DCIS = ductal 

carcinoma in situ. Reprinted from (Berg, et al. 2015).
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Figure 3. 

Shear-wave elastography in the diagnosis of symptomatic, invasive, lobular breast cancer. A 

47-year-old woman who had undergone a previous left mastectomy for ductal carcinoma in 

situ (DCIS), presented with a new lump in her right breast. (a) Ultrasound demonstrates 

benign cysts. (b) A well-defined, round lesion with posterior enhancement and mildly 

echogenic contents was thought to represent a thick cyst on grayscale ultrasound, but (c) 

SWE shows increased stiffness at and around the lesion (mean elasticity of 147 kPa). 

Subsequent biopsy and surgery confirmed a grade 2 ILC. Reprinted from (Sim, et al. 2015).
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Figure 4. 

Close evaluation of the elasticity patterns of a lesion can be helpful in their characterization 

and helpful in biopsy planning. A: Invasive ductal carcinoma with an area (red circle) that is 

“soft” on the elastogram. On pathologic examination from surgical resection, the soft area 

was a benign fibroadenoma, and which was not distinguishable from the invasive ductal 

carcinoma (yellow arrow) diagnosed in a 53 -year-old patient from the B-mode image. A 

spicule (green arrow) of the tumor is better seen on the elastogram. B: Images from an 85 -

year-old patient who presented with a bloody nipple discharge. On the B-mode image, there 

is a large, complex lesion. On the elastogram, it is possible to identify a hard component 

(yellow arrow) and a soft component (red arrow). On pathologic examination, the solid 

component was a papillary carcinoma and the soft area was old blood. Reprinted from (Barr 

2012).
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Figure 5. 

Contrast US before and after contrast medium injection in a 66-year-old woman with 23–

mm, ductal, infiltrative carcinoma. (a) B mode sonography. (b) In the contrast mode 

(SonoVue ®) with Coherence Pulse Sequencing and B mode, the tumor is strongly enhanced 

after injection. Vessels are located in the peripheral area of the lesion. (c) In the contrast 

mode with Coherence Pulse Sequencing only, the tumoral-feeding artery is visible outside of 

the lesion (arrows). (d) Dynamic curve of enhancement after injection. Enhancement is fast, 

i.e. the delay of peak enhancement = 10 s, and with a wash-out phase (total time: two min). 

Guo et al. Page 45

Ultrasound Med Biol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(e) Region of interest (ROI) on the tumor to obtain enhancing curves. (f) Mammogram. 

Cranio-caudal view of the right breast. Reprinted from (Balleyguier, et al. 2009)
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Figure 6. 

Contrast-enhanced ultrasound of a 22-year-old woman with adenofibroma. (a) Color 

Doppler. Smooth contours, homogeneous content, and posterior enhancement are criteria for 

benignity. (b) Contrast US (SonoVue ®) with Coherence Pulse Sequencing as well as thin 

and multiple arterial vessels are visible in the center of the lesion. Global enhancement is 

moderate and homogeneous. These enhancement parameters are suggestive of a benign 

lesion. (c) Enhancement curve. Enhancement is delayed compared with that of malignant 

tumors (>20 s). The enhancement value is also moderate compared with that of malignant 

carcinoma. The wash-out phase is longer. Reprinted from (Balleyguier, et al. 2009).
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Figure 7. 

Comparison of conventional ultrasound and contrast-enhanced ultrasound in a 47-year-old 

woman with a mass pathologically verified as low-grade DCIS. (a) Conventional US: a mass 

of 17 × 12 mm surrounded by a hyperechoic halo. (b) MVI: the mass shows diffuse 

enhancement (arrow head) and its size increases to 22 × 16 mm. Large, enhancing blood 

vessels were not included in the measurement. (c) Photography of the histopathological 

specimen (hematoxylin-eosin stain, original magnification ×20): the difference in size 

corresponds to the extent of intraductal carcinoma. Reprinted from (Jiang, et al. 2007).
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Figure 8. 

(a) Automated breast volume scanning image of infiltrating ductal carcinoma. Note the 

heterogeneous echogenicity, spiculated border, indistinct margin, and “taller than wide” 

appearance. (b) Histopathology image of the same mass. Note the infiltration of ill-defined 

glands into the surrounding collagenous stroma. Reprinted from (Wang, et al. 2012).
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Figure 9. 

Automated breast volume scanner: (A) Acuson S2000 ABVS (Siemens Medical Solutions). 

The transducer plate (B) is positioned over the breast and an automated scan is performed in 

order to obtain a series of two-dimensional images. Depending on the breast size, more than 

three scans per breast may be required. Reprinted from (Shin, et al. 2015).
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Figure 10. 

(a) Automated breast volume scanner images of an invasive ductal carcinoma of the breast in 

a multislice view from the skin down to the thoracic wall in the coronal plane (the slices are 

0.5 mm). (b) Handheld B- mode ultrasound. The typical retraction phenomenon of the mass 

is observed in several, consecutive coronal planes (arrowhead on the right).This indicates the 

conditions of the masses at different depths. Reprinted from (Chen, et al. 2013).
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Figure 11. 

Automatically generated breast volume scan of diffuse, multiple, invasive ductal carcinomas 

in a 29-year-old woman. (a) HHUS showed a diffuse, hypoechoic area in almost the entire 

right breast and that was misinterpreted as adenosis. (b) Three-dimensional, ABVS 

multiplanar images showing the same area. This lesion was extensive (the diameter was 6.5 

cm), although the margin between the tumor and the surrounding, normal parenchyma could 

be revealed with ABVS because of the wide scanning area. Reprinted from (Wang, et al. 

2012).
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Figure 12. 

Automatically generated breast volume scan of an 11-year-old girl with a palpable mass 

(intraductal papilloma) in the left breast. These showed three orthogonal planes of the 

anterior–posterior left breast, i.e. coronal reconstruction (left image), axial original plane 

(upper right image), and sagittal reconstruction (lower right image). In the coronal plane, 

dilated lactiferous ducts can be detected and the intraluminal echoes can be demonstrated. 

Reprinted from (Wang, et al. 2012).
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Figure 13. 

US and the RtMR-US system. (a) Electromagnetic sensors on the tip of the probe (white 

arrows). (b) Electromagnetic transmitter (black arrow). (c) Connection unit between the 

lector magnetic transmitter, sensors, and the navigation system. (d) RtMR-US examination 

after co-registration. Reprinted from (Pons, et al. 2014).
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Figure 14. 

Glandular tissue and a Cooper’s ligament are shown at the confluence of the upper quadrant 

of the right breast. Live US (white arrow) using the volume navigation technique using a late 

phase of contrast-enhanced MR (white arrowhead) are both able to image the morphology 

with sharp anatomical detail. Due to the smaller magnification of the MR image, a green box 

is electronically displayed on the MR image, showing the US scan area. Reprinted from 

(Fausto, et al. 2012).
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Figure 15. 

A 43-year-old patient with architectural distortion and a mass in the right breast. (A) 

Mammography shows architectural distortion (arrow) and a well-circumscribed mass 

(arrowhead) on the mediolateral oblique films. (B) Coronal T1-weighted, contrast-enhanced 

MRI. (C) Transverse images show an irregularly shaped, margined, 12-mm mass diagnosed 

as invasive ductal carcinoma (arrow:c-1) as well as an oval-shaped, smooth-margined, 8-mm 

mass that had not been identified on conventional B-mode (arrowhead:c-2). (D) RVS shows 

the 12-mm, irregularly shaped mass that is taller than it is wide (a), and corresponding to the 

MRI lesion (b–d) (arrow). The precontrast MRI image (b) used to identify lesions in the 

absence of T1-weighted signals before enhancement is necessarily in the image plane 

displayed by the RVS system. Histopathological analysis of the sonographically guided, core 

biopsy samples was consistent with invasive ductal carcinoma. (E) RVS shows the 8-mm, 

oval mass that is wider than it is tall (a), and corresponding to the MRI lesion (b–d) 

(arrowhead). A histopathological analysis of sonographically guided core biopsy samples 

indicated that this tumor was a fibroadenoma. Reprinted from (Nakano, et al. 2012).
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