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ABSTRACT 
 

Hyperspectral remote sensing by air platforms can passively generate over two hundred channels of images of 
terabyte data the ground surface reflectance/eminence simultaneously, with wavelength ranging from 0.4 to 2.5 µm and to 
include a full infrared spectrum. We have extended the hyperspectral to include RF spectral for both the foliage penetration 
(from L band 1 GHz to UHF band 0.5 GHz,) using the polarization RF features and the terrain location ID for automatic 
navigation registration.  These generalizations are possible because we have based our design of the foliage penetration 
(FOPEN) Interferometric Synthetic Aperture Radar (IFSAR) on all digital transceiver array and Field Programmable Gate 
Arrays (FPGA).  We are able to do that, since we have leveraged the ONR 100 dB Digital Array Radar (DAR) for shipboard 
volume search radar (VSR) using the matured & rugged GaAs cellular phone technology [1]. We study whether the high 
dynamic range DAR VSR approach can overcome the long baseline terran curvature (that might otherwise not be suited for 
the FOLPEN low frequency IFSAR).  We show the standard deviation of the phase digital resolution better then 1o might 
overcome the terrain curvature due to low frequency, and long time integration.  The applications of this technology include 
environmental monitoring and mineral exploration and mining, communication and Aided Target Recognition (ATR).  The 
hyperspectral imagery takes the advantage of more unique spectral signature in terms of the massively parallel artificial 
neural network computation using the unsupervised learning Independent Component Analyses (ICA) algorithm introduced 
to the Landsat by Szu [2, 3] The supervised classification is based on the library of spectral signals of known object material 
characteristics using various constrained versions of the orthogonal subspace projections (OSP) by [7, 8].   In this paper, we 
combine both the supervised OSP and the unsupervised ICA hyperspectral imaging algorithms.  Then, we present all digital 
version of FOPEN SAR, considered as one of RF channels in ultraspectral image processing.  Taking the advantage of the 
high dynamic range ONR DAR VSR technology, we can measure both RF signatures and 3D terrain by means of 
Interferometric (IF) FOPEN SAR.  We prefer a real-time one-path fly over using bi-static Interferometric SAR equipped with 
a Stokes polarization vector information that can provide us with not only the RF signatures but also terrain height for 
location ID (knowing terran contour map stored in the flight data basis). Such an ultraspectral imaging feature-fusion system 
can manage Forrest search and rescue when it is complement IFSAR FOPEN with high-resolution EO/IR signatures. 
Conclusion and discussion are given in the final section. 
 
 

1. INTRODUCTION 
 

As the amount of data associated with hyperspectral remotely sensing is growing exponentially, earth scientists 
require more efficient ways to search and analyze such data. In particular, extracting image content by both EO/IR and RF 
features is emerging as one of the most demanded tools to perform data mining. One of the most promising methods to 
extract image content is via ultraspectral feature classification, which provides a set of ranking labeling of each pixel in the 
image. Figure 1 briefs the early DARPA notion of Hyperspectral.  From Figure 1, it reveals the need of FOPEN & IF-SAR 
for mountain terrain masked by the forest. 

 
The traditional classification scheme that is based on the winner-take-all strategy of which only one majority class 

label is selected within each pixel may not be adequate in some resource management application.  Wherever there is 
uncertainty due to more equally probable classes, we can obviously take the advantage of neighborhood spectral consistency 
into consideration by enlarging the single pixel voting committee multi spectral bands to including four nearest neighborhood 
spectral bands and thus gain a few percentage to improve the result, as shown by Szu & Telfer [4,5]. On the other hand, a 
systematical check of all neighborhood spectral consistency can be done with the help of a local texture Fourier-like 
transform without a window, namely the so-called wavelet transform by Szu, et al. [3]. In our recent effort, we have 
addressed the necessity of unsupervised learning neural network technology for the surveillance of tropical rain forest 
deforestation, for which we need to know at the forest boundary pixel the unknown percentage of tree content of each pixel 
of a foot print of 30x30 squared meters, i.e. multiple labels with variable percentages [2, 3].  In the remote sensing, the light 
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reflected from the sun and the thermal energy emitted from the earth have broad spectra measured at the focal plan on a high 
altitude space satellite that help classify the large scale canopy on the ground. While the weather satellite, AVHRR of 
NOAA, has five spectral bands, the Landsat of NASA has seven spectral bands, ranging from the green light at 0.5µm 
wavelength to mid infrared 3 to 5µm to the long infrared light about 10 to 12µm wavelength.  Since the remote sensing is 
continuous on board of a geo-synchronous satellite rotation with the earth at a high altitude, each picture element (pixel) 
covers a large area on the earth by the Landsat (or 1.1 kilometers by the weather satellite AVHRR) of which multiple labels 
are desirable of each pixel.  
 

 
Figure 1. Hyperspectral data of EO/IR, it reveals the need of FOPEN & IFSAR for mountain terrain masked by the forest. 

 
Hyperspectral image sensors provide spectral images with several hundred channels per pixel that enable the 

information extraction about different materials within a pixel.  Previous approaches e.g. spectral mixture modeling of 
Adams and Smith [9, 10] demix spectrally different materials at a sub-pixel level by assuming that basic spectral knowledge 
of the main material of interest (called endmembers) is known and that the spectrum is mainly composed of these materials.  
These assumptions may not be true due to incomplete knowledge of spectral scene, leading to incorrect results [9, 11].  A 
more recent approach by Maselli, Pieri, and Conese [12] avoids this problem by using specially chosen pixels from the scene 
as endmembers.  After a cluster analysis of the scene, maximum likelihood classification is used to pick up the pixels, which 
are most representative of the typical spectral features of the clusters and therefore pixels are chosen as endmembers.  
Unfortunately, the pixels chosen as endmembers may consist of mixtures themselves.  Thus, it remains very difficult to 
determine the real endmembers in a scene without prior knowledge of the scene.  Recently, Orthogonal Subspace Projection 
(OSP) [7, 8] approach was developed, which have shown some success in hyperspectral image classification and subpixel 
detection.  OSP separates the undesired targets from the desired targets, and then uses an orthogonal subspace projector to 
eliminate the undesired targets prior to classifying the desired targets. An assumption made in the OSP approach is that the 
knowledge of both the desired and undesired target signatures must be known a priori. Such information is generally difficult 
to obtain in practice. 

 
In order to address this issue, we note that the determination of endmembers may be viewed as a specific case of the 

blind source separation (BSS) problem.  In this paradigm, the data consists of linearly mixed signals and the goal is to 
determine which minerals are being mixed without prior knowledge of what minerals are in a scene.   A relatively new 
unsupervised neural network, ICA introduced by Szu [2,3,5,6], approximates the solution to this problem by assuming 
independence of the spectral information for different materials in the limit of large number of spectral channels.  This strong 
assumption gives ICA the ability to use all of the statistics in the mixed signal rather than just first order (the mean), second 
order (the covariance), or fourth order (Kurtosis) statistics.  
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Image feature fusion is a way of combining the spectral information of a coarse-resolution image with the spatial 
resolution of a finer image.  The result is a product that synergistically combines the best features of each of its components.  
Good combinations of fused imagery include Landsat 7 ETM+ multispectral/panchromatic, Landsat TM/SPOT 
panchromatic, Landsat TM/IRS 1-C panchromatic and SPOT multispectral/SPOT panchromatic.  The color hue of Landsat 
determines the SPOT sat geometry. 
 

 
Figure 2. An example of image feature fusion using 7-Spectral ID and 3-spectral SPOT Geometry  

(Source: I-cubed Information, Integration & Imaging, Fort Collins, CO 80524) 
 

The paper will be organized as follows.  Introduction is presented in the first section.  Then, the hyperspectral 
imaging technologies are reviewed.  Some comparisons are included in the second section as well.  Next, the hardware 
implementation of FOPEN SAR is presented.  IFSAR is discussed conceptually and we analyze the phase difference of the 
focused images to provide an interferometric system for the higher elevation accuracy.  Finally, we conclude with the related 
processing: image registration, and Geocoding, which lead to the DEM in universal cartographic reference systems.  
 
 

2. HYPERSPECTRAL IMAGING PROCESSING 
 

Target detection and classification in an unknown environment is generally difficult. This is particularly true for 
hyperspectral surveillance airview imagery. Since hyperspectral sensors use as many as 200 contiguous bands to uncover 
diagnostic narrow-band spectral features of materials with very similar spectral signatures, it is expected that a good number 
of substances can be exploited for discrimination and quantification. In this case, finding desired target signatures present in 
an image could be very challenging. An early attempt was made to use vector quantization to group potential objects into 
different clusters.  This approach requires know the number of classes to be clustered [14]. A similar problem also arises in 
sensor array processing where An Information Theoretic Criterion (AIC) [15, 16] or Minimum Description Length (MDL) 
[21, 22] is generally used to determine the number of signals, but not signals themselves. These criteria may not be 
appropriate in determining the number of spectral components resident in multispectral or hyperspectral images. First the 
noise in remotely sensed imagery may not be stationary and may not even be independent identically distributed. Second, the 
data statistics may not be available or difficult to obtain, particularly for the likelihood functions used in these criteria. 
 

A multispectral/hyperspectral image pixel is generally mixed by different material substances resident in the pixel 
and spectral de-mixing is a method that estimates the percentage of each material within the pixel.  One widely used approach 
to subpixel detection and mixed pixel classification is linear spectral unmixing [9, 10, 18, 19].  It describes a mixed pixel as a 
linear mixture of all materials resident in the pixel and the spectrum of the mixed pixel vector is a linear combination of 
material signatures so that individual material in the pixel can be quantified and discriminated by inverting the material 
signature matrix.  Orthogonal Subspace Projection (OSP) was developed in [20] and shown some success in hyperspectral 
image classification and subpixel detection.  The OSP approach is primarily developed for hyperspectral image classification. 
It separates the undesired targets from the desired targets, and then uses an orthogonal subspace projector to eliminate the 
undesired targets prior to classifying the desired targets. A supervised assumption made in the OSP approach is that the 
knowledge of both the desired and undesired target signatures must be known a priori. Such information is generally difficult 
to obtain in practice. 
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Figure 3 : Landsat remote sensing application.  Reflectance matrix [A] changes daily, seasonally, and thus unkown in principle.  Percentage 

sj  varies from pixel to pixel. 
 

Recently Szu has applied the early vision feature extraction neural network with a truly unsupervised learning 
algorithm (without specification of either the number of classes and percentage value of each desired labels) to estimate the 
percentage of multiple-labels-per-pixel [2,3,5,6]. In [2,3,5,6], Szu extended the percentage composition study to all pixels in 
each region. This overcomes another source of errors due to the mismatch between the desired category and the supporting 
spectral signature, in the so-called “spectral-weak” category in case of grape vine in the winter season.   Nevertheless, the 
field has a relative strong spatial lattice texture as spatial signature if we sample it with wavelets over many pixels or if we 
use the vision neural net to find the percentage of multiple categories within each pixel.  Then, we need both macroscopically 
the spatial texture wavelet analyses and microscopically the sub-pixel percentage analyses.  There is another Landsat remote 
sensing application (shown in Figure 3) demonstrated by Szu et al. at SPIE Proceedings 3723 addressing the micro-remote 
sensing surveillance of deforestation in ICA mapping spectral ID to statistics ID in Figure 3. 
 
2.1 Independent Component Analysis (ICA) 
 

As introduced by Bell, Sejnowski, Amari, Oja, and Comon [20-24], ICA approximates the factor analysis of 
multiple linearly mixed source signals through assuming that the sources are statistically independent from one another.  This 
relationship can be explained as follows. When a newborn child faces the bustling and hustling world, the child may have 
difficulty to recognize the changing and independent signal si(t) ≡ si(t)ai, i=1,2,from the sensory inputs x1(t), x2(t). However, 
the child soon recognizes the noises (that are invariant and universal by the central limiting theorem) that have zero cross 
correlation <v1(t)v2(t)>G = 0 etc. of neuron outputs and then what have been sieved within the synaptic weight matrix [W] are 
related to the signals.  This is the intuition of being not-noise must be signals, so-called the negation of the converse logic. 
 
Given the 7-component data vector (x1(t),… x7(t))

T ≡ X(t) one assumes a linear and instantaneous model of signals,  
 

X(t) = s1(t) a1+ …+s7(t) a1 ≡ [A] S(t)        (1) 
 

(by matrix multiplication definition) where both the source intensity (s1(t), …,s7(t))
T≡ vector S(t) and the mixing vector 

directions [a1, …, a7] ≡ matrix [A] are unknowns. In other words, they may be less then seven.  Thus, the artificial neural 
networks (ANN) seeks a linearly weighted output vector: V(t) ≈ [W]X(t) that acts like linear whitening filters outputting 
nothing but the purely Gaussian noise:  
 

<V(t) V(t)T>G =  [I] ≈ [W][A]<S(t) ST(t)> [A]T[W]T      (2) 
 

which implies [W][A] ≈ [I] because <S(t) ST(t)> ≈ [I]       (3) 
 

Proc. SPIE Vol. 4391268

Downloaded From: http://spiedigitallibrary.org/ on 07/06/2015 Terms of Use: http://spiedl.org/terms



The concept of independence happens to behave like the noise only at the second moment, but has a nontrivial 
higher order statistics (HOS) (see examples later). Thus, from Eq(3), the internal knowledge representation [W] is discovered 
as the inverse of the external world matrix [A]-1. Mathematically speaking, this is called the Independent Component Analyses 
(ICA) among multiple inputs and multiple outputs.  Such an edge map that is orthogonal to one another has been reproduced 
by a truly unsupervised learning paradigm of artificial neural networks (ANN) by maximizing the output entropy of among 
102 input image samples. 
 

∂H(V)/∂[W] = ∂[W]/∂t          (4) 
 

with respect to the weight matrix [W] ≡ (w1,…wn) without the need of a teacher specifying the desired output noise V ≡ 
(v1,…,vn)

T. Algorithmically ANN adjusts the weight matrix [W] at the linear output range implying the maximum output 
entropy 
 

V(t) = tanh([W]X(t)) ≈ [W]X(t)         (5) 
 

and the "garbage" outputs defined by Gaussian covariance <V(t) V(t)T>G = [I].  The output means neither YES "1" nor NO "-
1" but at the linear MAY-BE range at the "origin 0" where no decision exists implying the maximal output entropy. 
Consequently, the input information will be kept within as the internal knowledge representation [W]. The fourth cumulant, 
the Kurtosis K(u),  is often used by Helsinki’s group to seek the statistical matrix inversion.  
 

 K(V) = <V4> - 3 (<V2>)2          (6) 
 
Because of the Gaussian reduction of all higher orders to the second order: 
 

<v1v2v3v4>G = <v1v2> G <v3v4> G + <v1v3> G <v2v4> G + <v2v3> G <v1v4> G  
 
which is further reduced for infinite identical distributive (iid) process to Eq(7). One considers a single weight vector update: 
 

dw/dt  = dK/dw           (7) 
 

The other weight vectors are found by the projection pursuits.  If each voice and image has its unique value of 
Kurtosis, then seeking a stationary Kurtosis yields the specific voice and image, without knowing what is the desired output. 
 

The lesson we learned from the classical ANN is that one must go beyond the LMS error energy, and apply HOS to 
ANN. One begins with the Auto-Regression (AR) which extrapolates from the past X(t) to the future ui(t+1) = wi

TX(t) by 
varying the weight vector in minimizing LMS error energy E = <[x(t+1) - ui(t+1)]2> at the fixed point ∂E/∂wi = 0 resulted in 
an exact Toplitz matrix inversion for a stationary covariance assumption. We generalize AR by a nonlinear output vi(t+1) = 
tanh(wi

TX(t)) within E = <[x(t+1) - vi(t+1)]2>, and the gradient descent ∂E/∂wi = - ∂wi/∂t. Further generalization is possible 
because of specific image/speech having a specific histogram whose gray scale statistics departs from that of Gaussian 
random variable and can be measured by the fourth order cumulant, Kurtosis K(vi) = < vi

4 > - 3 < vi
2 >2 (K≥0 super-G for 

speeches, K≤0 sub-G for images).  ANN has found the internal knowledge representation. 
 

[W] ≈ [A]-1;  [W] X(t)=[W][A] S(t) = [P][D]S(t)      (8) 
 
which may differ from the unknown IC matrix [A] within arbitrary permutation order matrix [P] and the diagonal magnitude 
[D]. Taking the advantage of such a natural relaxation of over-sampled millions of sensory neurons, such an information-
theoretical and interdisciplinary study has recently reproduced the early vision edge features without a teacher 
algorithmically. Although it seems to be the inverse requiring only the second order statistics, the search to determine the 
unknown weight matrix [W] do need the high orders of statistics. 
 
 
2.2 Orthogonal Subspace Projection [Ren & Chang] 
 

The OSP approach has been successfully applied in hyperspectral image processing. In order for the OSP to be 
effective, the number of bands must be no less than that of signatures to be classified. This ensures that there are sufficient 
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dimensions to accommodate orthogonal projections resulting from the individual signatures. Such inherent constraint is not 
an issue for hyperspectral images since they generally have hundreds of bands, which is more than the number of signatures 
resident within images. However, it is often the case that in multispectral images the number of signatures to be classified is 
greater than the number of bands, such as 3-band SPOT images and 7-band Landsat TM images.  In order for the OSP to be 
effective, the intrinsic dimensionality (or true dimensionality of data) must be no less than the number of signatures to be 
classified. This constraint, referred to as Intrinsic Dimensionality Constraint (IDC) requires that the data should have 
sufficient dimensions to perform orthogonal subspace projection. In this case, each individual signature can be classified in a 
separate dimension for discrimination.  It was found that the OSP performed poorly in discriminating four signatures using 3-
band SPOT data, particularly those with similar spectra [26]. More precisely, if we want to classify objects effectively using 
OSP, each object requires a separate dimension for orthogonal projection. If there is a dimension used to accommodate two 
or more objects, it is impossible to discriminate these objects using a single dimension through orthogonal projection.  
However, this problem does not seem to be an issue in hyperspectral data exploitation since hyperspectral images generally 
have more bands than signatures resident within images, such as 224 bands for AVIRIS data and 210 bands for HYDICE 
data. As a consequence, the significance of IDC has been overlooked in hyperspectral image processing. 
 

Let ir  be an l ×1 column vector and denote the i-th pixel vector in a multispectral or hyperspectral image where l is 

the number of spectral bands and the bold face is used for vectors. Assume that M is an l p×  signature matrix denoted by 
( pmmm ...21 ) where jm  is an l ×1 column vector represented by the j-th spectral signature resident in the pixel vector ir  and 

p is the number of signatures. Let i.  be a p ×1 abundance column vector associated with ir  given by ( ... )α α αi i ip
T

1 2  

where α ij  denotes the fraction of the j-th signature in pixel vector ir .  A linear spectral mixture model for ir  is described by  

 

iii M n.r +=           (9) 

 
where in  is an l ×1 column vector representing additive noise with zero mean and variance σ2I  and I is the l l×  identity 

matrix.  We rewrite Eq. (9) as  
 

ndr ++= γα Up           (10) 

 
where the subscript i is suppressed, U = )...( 121 −pmmm  is the undesired spectral signature matrix made up of a set of p-1 

undesired signatures and pmd =  is a desired signature. Here, we assume without loss of generality that the last signature is 

the desired signature d. It should be noted that Eq. (10) can be extended straightforwardly to more than one desired signature. 
The reason of separating U from M is to allow us to design an orthogonal subspace projector to annihilate U from an 
observed pixel prior to classification. One such a projector was an undesired signature annihilator given in [20] by 
 

P I UUU
⊥ = − #           (11) 

 
where U U U UT T# ( )= −1  is the pseudo-inverse of U and the notation ⊥

U
 in PU

⊥  indicates that the projector PU
⊥  maps the 

observed pixel r into the range < >⊥U , the orthogonal complement of  < >U .  Now, applying PU
⊥  to Eq. (10) results in a 

new spectral signature model 
 

ndr ⊥⊥⊥ += UpUU PPP α          (12) 

 
where the undesired signatures in U have been eliminated and the original noise has been suppressed to PU

⊥ n.  Eq. (12) 

represents a standard signal detection problem. If the optimal criterion for the signal detection specified by Eq. (12) is chosen 
to maximize the signal-to-noise ratio (SNR) given by 
 

xnnx

xddx
⊥⊥

⊥⊥

=
U

T
U

T

U
T

pU
T

PEP

PP
SNR

][

)()( 2α
  over x.        (13) 
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then the maximum SNR of Eq. (13) can be obtained by a matched filter, denoted by dM  with dx κ=  where κ is a constant 

and d is the designed matched signal.  Based on the approach outlined by Eqs. (12,13), a mixed pixel classification can be 
carried out by a two-stage process, i.e., an undesired signature annihilator PU

⊥  followed by a matched filter, dM . More 

precisely, if we want to classify a desired signature, say d in a mixed pixel based on Eq. (9), we first apply PU
⊥  to Eq. (10) to 

eliminate U, then use the matched filter dM  to extract d from the signal detection Eq. (12). The operator coupling PU
⊥  with 

dM  is called an orthogonal subspace classifier, POSP  the one derived in [20] and denoted by 

 
⊥⊥ == U

T
UOSP PPP ddM          (14) 

 
 

   
a. Playa      b. Vegetation                          c. Rhyolite 

 

   
d. Cinder           e. Shade                f. Ground Truth 

 
Figure 4.a-e. Results produced by the OSP successfully indicated by the bright pixels for five generated object signatures. Figure 4.f 
Ground truth in these images are read oxidized basaltic cinder, rhyolite, playa (dry lakebed), vegetation and shade. 
 
 
2.3 AVIRIS Image Results 
 

AVIRIS is an acronym for the Airborne Visible InfraRed Imaging Spectrometer. AVIRIS is a world-class 
instrument in the realm of Earth Remote Sensing. It is a unique optical sensor that delivers calibrated images of the upwelling 
spectral radiance in 224 contiguous spectral channels (also called bands) with wavelengths from 400 to 2500 nanometers 
(nm). The instrument flies aboard a NASA ER-2 airplane (a U2 plane modified for increased performance) at approximately 
20 km above sea level, at about 730 km/hr. AVIRIS has flown all across the US, plus Canada and Europe.  The science 
objectives of the AVIRIS project are broad. In a nutshell, the main objective is to identify, measure, and monitor constituents 
of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures. Research with 
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AVIRIS is dominantly directed towards understanding processes related to the global environment and climate change.  
AVIRIS research areas include: Ecology, Oceanography, Geology, Snow hydrology, Cloud and atmospheric studies. 
 

   
        (a)              (b)                  (c) 

 

   
                                    (d)                                                      (e)                                                     (f) 

 

 
(g) 

 
Figure 5. ICA reveals 3 kinds of sensor noise in (c), (d) and (e), creek shown in (b), edge maps, consistent with supervised constrained 

OSP.  (g) reveals the similar Rhyolite information in contrast reverse dark pixels to subplot Figure 4.c. 
 

 A set of image data is collected by the AVIRIS system in 158 spectral bands from 0.4 µm to 2.5 µm with nano 
meters spectral resolution and 20 meters GSD.   It is a scene of 200x200 pixels extracted the Lunar Crater Volcanic Field in 
Northern Nye County, Nevada where five signatures of interest in these images are read oxidized basaltic cinder, rhyolite, 
playa (dry lakebed), vegetation and shade shown in Figure 4.f.  Figure 4.a-e show some representative results produced by 
the OSP using only five generated target signatures.  It can be observed that in hyperspectral image classification using more 
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target signatures usually improves classification performance because there are hundred of bands to accommodate a large 
number of target signatures that also include natural background signatures, interfering signatures, and clutter.  However, 
since the interfering signature is unknown it is not simple to be classified using supervised OSP.  One potential solution to 
classify the unknown interfering signature is ICA algorithm due to the statistically unsupervised signal classification.  Figure 
5 shows the simulation results of ICA only using seven bands of signals.  It can be noticed that some interfering signatures 
are classified using ICA unsupervised signal classification.  From the experimental results learned, the unsupervised ICA can 
enhance the performance of the OSP.  To apply ICA as an enhancement processor becomes a significant assignment in the 
follow-up research and development. 
 
 

3. HIGH DYNAMIC RANGE FOPEN SAR SYSTEM 
 

Synthetic Aperture Radar (SAR) is an airborne or satellite-borne radar system that provides high-resolution maps of 
remote targets on a terrain or a planet. High dynamic range approach may overcome the long baseline terran curvature (that 
might otherwise not be suited for the low frequency FOPEN SAR).  This theory is also the foundation for many coherent 
imaging systems in such diverse fields as geophysical exploration and diagnostic medicine.  The utility of the wavefront 
reconstruction theory in SAR was recognized during the inception of these imaging systems in the 1950s and 1960s.  
However, the lack of fast computing machines and advanced digital signal processing algorithms at that time prevented the 
development of wavefront reconstruction-based SAR imaging methods.  The early SAR systems were based on measurement 
and optical (analog) processing of the echoed signal using the Fresnel approximation for image formation.  This SAR 
processing in the analog form, or its digital version in late 1970s, is known as range-Doppler imaging.  Another SAR imaging 
method known as polar format processing was introduced for the high-resolution spotlight SAR system in 1970s.  This 
method is based on plane wave approximation. 
 

 
Figure 6. A fully digital inexpensive FOPEN radar system based on COTS components 

 
Foliage Penetration (FOPEN) SAR is a synthetic radar application operated around 500M & 1G Hz that can detect 

man-made objects concealed by/in dense foliage. Low frequency FOPEN SAR may be used to penetrate foliage and, under 
certain conditions, even soil.  However to differentiate all digital array radar is recommended for high dynamic range A/D 
(70 dB) without the stage of intermediate frequency.  This provides the capability for imaging targets normally hidden by 
trees, bushes, or other ground cover. 
 

In [25], Trident and GWU plan to build a low cost, low power, high performance, compact, portable, and fully 
digital Foliage Penetrating Synthetic Aperture Radar (FOPEN SAR) system.  In order to make effective use of SAR imagery, 
an FOPEN SAR system needs to produce high-resolution data at or near real-time.  This requires a system that is capable of 
sustaining the processing rate (nearly 1 Gflop/s) and the data throughput (approximately 10 Mbytes/s). To reduce the cost of 
such a system, integration of an FPGA-based, digital FOPEN SAR Processor with Commercial-Off-The-Shelf (COTS) 
components is proposed in [25]. The re-programmability of the Field Programmable Gate Arrays (FPGA's) greatly reduces 
overall costs, while COTS components can reduce time spent in product development.  In the prototype development, the 
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FOPEN SAR was implemented using VHDL, a hardware description language used in industry to model hardware 
components, and compared to the FOPEN SAR prototype that was created and verified by using MATLAB.  The IEEE 
1076.2-1996 Standard VHDL Mathematical Packages were used to provide the necessary mathematical functions.  The 
results showed that the VHDL floating-point FOPEN SAR implementation achieves 290 dB of signal fidelity and processes a 
256 x 64 image. This high dynamic range of 290 dB should be able to overcome the long baseline terrain curvature (that 
might otherwise not be suited for the low frequency such as FOPEN SAR.)  The fully digital FOPEN SAR system is shown 
in Figure 5.  For cost efficiency, the FOPEN SAR processor will be integrated with COTS components shown as the blue 
blocks in Figure 6.  The specific required functions, which cannot be implemented using COTS components will be re-
designed and implemented in FPGA or DSP.  In addition, the control unit, memory, I/O data bus, and other communication 
interfaces will be designed and integrated within this digital FOPEN radar system. 
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Figure 7. The Block Diagram of A Full Digital Spotlight SAR Algorithm 
 

The purpose of beam steering in the spotlight SAR is to irradiate a finite target area centered around the point (Xc, 
Yc) in the spatial domain as the radar is moved along a straight line.  The block diagram of full aperture digital spotlight 
algorithm for spotlight SAR is in Figure 7 and can be summarized as follows.  The reference SAR signals is defined via: 
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0 +−+−=ω       (15) 

 
The addition of the phase term 2kRc to the reference signal ensures that the reference fast-time point Tc is 

unchanged.  The digital spotlight filter in the (t, ku) domain is defined via: 
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Polar format processed resolution with the digital spotlight filter is described as: 
 

[ ]),(),(),( ),( usFFTktWktf cuudud ωω=        (17) 

 
Then the digital-spotlighted slow-time compressed SAR signal in the (ω, ku) domain is obtained via: 
 

[ ]),(),( )( udtucd ktfFFTkS =ω         (18) 

 
At this point, if the user wishes to up-sample the SAR data within the synthetic aperture u domain (i.e., sample 

spacing conversion from ∆uc to ∆u), an appropriate number of zeros should be added to the samples Scd(ω, ku) in the slow-time 
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Doppler ku domain.  After the optional zero-padding in the ku domain, the digital-spotlight slow-time compressed signal in 
the (ω, ku) domain is formed via: 
 

[ ]),(),( 1
)( ucdkcd kSFus

u
ωω −=         (19) 

 
Finally, the digital-spotlighted SAR signal in the (ω, u) domain is constructed from the following slow-time 

decompression (mixing with the reference SAR signal) shown as follows: 
  

),(),(),( 0 ususus cdd ωωω =         (20) 

 

   
Figure 8.  FOPEN SAR using VHDL identical to MATLAB in 

Figure 9. 

 
      Figure 9.  FOPEN SAR using MATLAB 

 
Comparison of the FOPEN SAR results using VHDL implementation to MATLAB implementation was done.  

Figure 8 shows the FOPEN SAR processing using VHDL, and Figure 9 displays the results using MATLAB.  As we can see 
in Figures 8 and 9, using identical data for the initial input, the VHDL implementation provides a final output that differs 
from the MATLAB code by 290 dB of signal fidelity, which is directly related to the accuracy imposed upon the VHDL 
implementation of the algorithm by the use of the IEEE Standard Library.  Near real-time processing with 100 dB resolution 
is feasible by using fixed-point operation in the next development. 

 
In order to improve our FOPEN SAR Processor, we need to complete a number of tasks.  From the viewpoint of 

algorithm development, we need to optimize this FOPEN SAR algorithm in order to reduce the computation complexity.  
From the VHDL realization, it is also necessary to synthesize the developed FOPEN SAR Processor.  Additionally, from the 
concern of cost and applications, we need to study the trade-off of FPGA versus ASIC implementation.  Also, we need to 
consider a fixed-point processing implementation in terms of speed and accuracy. 

 
 

4. IFSAR EQUIPPED WITH STOKES POLARIZATION VECTOR 
 

In recent years, IFSAR-derived Detailed Elevation Models have been used in site reconstruction tasks.  There are 
several methods of generating IFSAR data.  IFSAR processor with two antennae in a single pass is one of the widely used 
models.  Technically speaking, it is composed of a single aircraft with two antennae, separated by some known displacement 
named baseline, collects all the data from the scene in a single pass.  The phase difference between the two returned (one per 
antenna) generated by a target on the ground is used to determine that target’s three-dimensional position. 

 
Stokes Vector is widely used to describe the polarization of the incident and scattered electromagnetic waves in 

terms of four matrix elements. The modern formulation of polarized light has its origins in the work of G. G. Stokes in 1852. 
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He introduced four quantities, which are functions only of observable of the electromagnetic wave. These quantities are now 
known as the Stokes parameters.  The elements are: I for total intensity, Q for vertical/horizontal linear polarization, U for 
45/135o linear polarization, and V for left/right circular polarization. These elements give a mathematical representation of 
what the electromagnetic wave looks like. In order to understand the parameters, image that we have a set of four filters, each 
of which, under natural illumination, will transmit half of the incident light, discarding the other half. The choice of filters is 
not a unique one, and a number of equivalent possibilities exist. IFSAR equipped with Stokes polarization vector can 
precisely provide height information with phase interference discriminate reflection from tree top to bottom end. 

 
 

P 

G 

 
Figure 10: Direct Geometry double ranging method for IF SAR 
produces Inaccurate Digital Elevation Model  (e.g. ZP + ZQ)/2 
reducing the height Zp of the building

 

 
Figure 11: Double Ranging Geometry Method produces Error of 
building top indicated by a rectangle. Thus, phase interferometer is 
needed. 

 
IFSAR-derived DEMS are inherently noise and 
often have a significant amount of data massing 
from them.  As an example of how inaccuracies 
arise in the elevation data, consider the effects 
of layover on the front edge of a building.  
Layover occurs whenever two or more points 
are at the same distance from the sensor.  Figure 
10 shows an example of a Global Hawk UAV.  
In this example, a point P along the front edge 
of a building has the same range of point G on 
the ground.  Thus, the elevation measured for P 
will be the average of the heights of point P and 
G.  The phenomenon gives the front edge of a 
building a crumbled appearance shown in 
Figure 11.  The building’s boundary is shown in 
while lines, and the darker value at the 
building’s front edge indicates that it is at lower 
elevation than the rest of the rooftop.  From 
Figure 11, it shows that double ranging 
geometry method produces error of building top 
indicated by a rectangle. Thus, phase 
interferometer is needed. 
 

In order to overcome the hurdles, we 
need to understand IFSAR principles with some 
preliminary considerations.  The paper will be 
organized as follows.  First, we will derive the 

 

Figure 12. Stereo imaging geometry in the vertical plane of UAV flight 
direction. The curvature of terrain is indicative, when the time of integration
increases due to low frequency IFSAR for FOPEN. Design indicates a high 
dynamic range may overcome using stereo imaging DAR system in the 
vertical plane of UAV flight direction.  Since the error 
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elevation using the stereometry method. Discussion is included to end the first section.  Then, we will analyze the phase 
difference of the focused images to provide an interferometric system for the higher elevation accuracy.  The next section 
will outline the IFSAR processing procedure and the intermediate simulation results are included.  Finally, we conclude with 
the related processing: image registration, phase unwrapping, and Geocoding, which lead to the DEM in universal 
cartographic reference systems. 
 

SAR is widely used to measure (with finite resolution) both azimuth and range of the target.  However, it is evident 
that knowledge of the target range, say r, is insufficient for uniquely determining location of the target and therefore its height 
above the reference plane (see Figure 10): all the targets within the range beam and located on an equidistance curve are 
imaged at the same range position.  The problem mention in section 1 can be overcome if we consider a second image 
obtained with a sensor that observes the same scene from different position shown in Figure 12.  The spacing between the 
two sensors is usually referred to as baseline; the angle β between the vector connecting the first sensor to the second one and 
the horizontal direction is referred to as tilt angle.  The two images can be either obtained by means of a single system with 
two imaging sensors, or with two repeat passes of a single imaging sensor system.  In the latter case, the properties of the 
scene relevant to the sensing system must remain unchanged with the time frame of the two passes. 

 
A stereometry method to uniquely locate image targets and therefore to determine their heights above the reference 

plane is easily derived.  The target height in Figure 3 is determined by equation (21, 22). 
 

Given r, δ r, and both l and b, we can evaluate θ, the target look angle 
from equation (1).  Then the height, z, can be derived using this information in 
equation (2), where H is the master system height above the reference plane, r is 
then range of the master image, and r + δ r is the range of the slave image.  The 
measurement accuracy is limited by the error involved in the evaluation of the 
path difference δ r.  This change is determined by searching the same target in the 
two images, and depends on the range system resolution.  It can be observed from 
the first derivation of equation (21, 22), the height resolution is dependent on the 
parameter r/l, which is very large in SAR system.  For instance, the typical values 
if ERS-1 SAR system at the scene center: r = 800m, θ = 23o, and the baseline 
length = 100m, the height accuracy is about 1.5 km.  As a conclusion that 
stereometric techniques are usually inapplicable or characterized by low height 
accuracy when implemented on SAR systems. 

 
An alternative way to measure δ r is carried out by analyzing the phase 

difference of the focused images.  In [27], the accuracy on the path difference, δ 
r, is improved from the meter to centimeter or even millimeter scale.  To correctly 
extract the path difference δ r. the images must be properly registered.  In other 
words, they should be correctly superposed to implement the complex conjugate 
product for each image pixel. The IFSAR processing chain can be summarized as 
depicted in Figure 13, by the following steps: 
 

(1) Generation of two SLC (Single Look Complex) images via 
SAR processing if raw data pair relative to the same scene. 
(2) Registration of the two SLC images, phase difference 
extraction. 
(3) Phase unwrapping of the wrapping interferometric phase. 
(4) Geocoding, the geolocalization of the image points and 
projection onto universal cartographic grid. 

 
Two SAR receivers image functions and coherent interference are 

described in Eqs (23-26) and illustrated in Figure 14.  Additionally, IF SAR phase 
function COS(4π/λ(R1(x,y)-R2 (x,y))) in Figure 15.a v.s. its argument in 
Figure.15.b for uniform amplitude is demonstrated. 

 
 

 

Figure 13. Block diagram of the 
IFSAR processor for DEM generation 
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(r + δ r)2 = r2 + l2 –2lr sin(θ − β)        (21) 
 

z = H – rcosθ          (22) 
 

 
Figure 14.  An example of 2 SAR receiver image functions and coherent interference
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We show the standard deviation of the phase digital resolution better then 1o might overcome the terrain curvature 

due to low frequency, and long time integration.  1o is out of 360 o about 10-bit dynamic range.
 

 
Figure 15 IF SAR phase function COS(4π/λ(R1(x,y)-R2 (x,y))) in Fig.a v.s. its argument in Fig. b for uniform amplitude
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5. CONCLUSION 
 

This paper presents a full discussion of Ultraspectral data cylinder of 200 Hyperspectral EO/IR & RF/IF-SAR.  We 
have extended the hyperspectral to include RF spectral for both the foliage penetration (from L band 1 GHz to UHF band 0.5 
GHz,) using the polarization RF features and the terrain location ID for navigation registration.  We also know that the 
implementation is feasible to use the matured, COTS components, and the rugged GaAs cellular phone technology due to the 
lesson learned from the ONR Digital Array Radar (DAR) program for shipboard volume search radar (VSR).    Additionally, 
we have demonstrated the hyperspectral imagery by using the unsupervised learning Independent Component Analyses 
(ICA) algorithm introduced to the Lansat by Szu [2, 3] since the hyperspectral imagery takes the advantage of more unique 
spectral signature in terms of the massively parallel artificial neural network computation.  We illustrate hyperspectral 
imagery using the supervised classification orthogonal subspace projections (OSP) with known spectral signatures.  Taking 
the advantage of the high dynamic range ONR DAR VSR technology, we can measure both RF signatures and 3D terrain by 
means of Interferometric (IF) FOPEN SAR.  We prefer a real-time one-path fly over using bi-static Interferometric SAR 
equipped with a Stokes polarization vector information that can provide us with not only the RF signatures but also terrain 
height for location ID (knowing terrain contour map stored in the flight data basis).  Such an ultraspectral imaging feature-
fusion system can manage Forrest search and rescue when it is complement IFSAR FOPEN with EO/IR signatures. 

 
We know that it is very difficult to get useful information from single polarization measurement of UHF SAR. We 

can obtain lots of bright points from SAR processing but it is hard to know whether they are from tree forks, the ground, or 
objects under the ground.  As an example, our understanding from the counter drug program office is that SOUTHCOM 
prefers Lynx SAR (Ku Band) for useful foliage penetration because they can tell when they are seeing through a gap in the 
trees and what they are seeing.  In order for UHF to be useful, we need full polarization so we have a clue to identify, which 
result has been concluded by the NASA Search and Rescue SAR program.  Additionally, L band gives very meaningful 
foliage penetration and is much easier to process, focus, and analyze. The shorter synthetic aperture pays off in a large 
number of ways. If we want to process IFSAR, differential layover is significantly less. UHF processing can be completed in 
real time in a quick look mode, but full resolution, phase pure processing and focusing required for interferometry will 
require a significant time delay.  Next, Single Pass UHF IFSAR will be difficult since the ERIM IFSAR uses a 1m baseline at 
X-Band, and scaling the baseline with wavelength with a bigger (>25m) baseline for UHF.  ERIM failed to put antennas on 
the wings of a U2 but it might work for P3 or other jumbo airplanes.  However, the multi-pass IFSAR has been proved 
successfully at L and UHF.  From our experimental results, we know that polarimetric SAR would be a nice signature 
complement to hyperspectral, much more so than single polarization.  For that matter the C-Band "reflective earth" surface 
may easily differ from the UHF "bare earth" surface by 30+ meters or more (and assuming everyone is accurate, JPL 
currently is working to a 16m vertical accuracy target.   The way to go for positioning would be the differential GPS/IMU 
Mike Hess is planning for SHARPs and combine that with what ever level DTED to position the hyperspectral image on the 
ground. If we don't want to use a super high grade IMU, we can get 1m/km range pointing accuracy with 10cm platform 
positioning accuracy using Al Evans PTT technology with a cheap IMU.  However we need the ultraspectral that have 
hyperspectral and polarization RF features. 

 
We understand that it is critical to have a high enough power aperture product for UHF.  SRI's Impulse UHF radar 

supposedly can't calibrate on an eight-foot corner reflector.  The trade off we have seen between UHF and L band in foliage 
is that more attenuation at L band than UHF, but that UHF suffers about a 20dB SNR drop relative to L band. The smaller the 
object, the worse it gets for UHF. 
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