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We report on ultrastrong coupling between a superconducting flux qubit and a resonant mode of a system

comprised of two superconducting coplanar stripline resonators coupled galvanically to the qubit. With a coupling

strength as high as 17.5% of the mode frequency, exceeding that of previous circuit quantum electrodynamics

experiments, we observe a pronounced Bloch-Siegert shift. The spectroscopic response of our multimode system

reveals a clear breakdown of the Jaynes-Cummings approximation. In contrast to earlier experiments, the high

coupling strength is achieved without making use of an additional inductance provided by a Josephson junction.

DOI: 10.1103/PhysRevB.93.214501

I. INTRODUCTION

Circuit quantum electrodynamics (QED) [1] has not only

become a versatile toolbox for quantum information process-

ing [2,3] and quantum simulation [4–6] but is also a powerful

platform for the study of light-matter interaction [7,8] and

fundamental aspects of quantum mechanics [9–12]. In contrast

to the field of cavity QED, where the interaction between a

natural atom and the light field confined in a three-dimensional

optical cavity is studied, the building blocks of the circuit

QED architecture are superconducting quantum bits acting as

artificial atoms and quasi-one-dimensional superconducting

transmission line resonators with resonant frequencies in the

microwave regime. Since the mode volumes of the latter are

small compared to those of three-dimensional optical cavities

and the dipole moments of the artificial atoms are orders of

magnitude larger than those of their natural counterparts, in

circuit QED setups the coupling strength between the artificial

atom and quantized resonator modes can reach a significant

fraction of the system energy. Remarkably, even the regime

of ultrastrong coupling can be reached in superconducting

circuits where the Jaynes-Cummings approximation breaks

down [7]. In this situation, the interaction between light and

matter can only be described correctly by the quantum Rabi

model [13,14] which also takes into account the counter-

rotating terms describing processes where the number of

excitations is no longer conserved. Reaching the regime of

ultrastrong coupling paves the way for various applications

and the study of interesting phenomena. For instance, it allows
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for the realization of ultrafast gates [15] and provides deeper

insight into Zeno physics [16] or photon transfer through cavity

arrays [17]. Furthermore, a protocol allowing one to simulate

the regime of ultrastrong coupling with a standard circuit QED

setup has been suggested [18]. Such simulations can be used

to interpret the results obtained in actual ultrastrong coupling

experiments.

In this work, we demonstrate physics beyond the Jaynes-

Cummings approximation in a circuit QED architecture

consisting of two coplanar stripline resonators and a super-

conducting flux qubit coupled galvanically to both of them.

We discuss the resonant mode structure of this system and

present a detailed analysis of the achieved high coupling

strength. The multimode structure of our system provides an

unambiguous spectroscopic proof for the breakdown of the

Jaynes-Cummings approximation. Furthermore, we find that

ultrastrong coupling of a qubit to a distributed resonator struc-

ture can be reached solely by the geometrical configuration of

the latter without making use of additional inductive elements

realized for example by Josephson junctions.

II. SAMPLE CONFIGURATION AND MEASUREMENT

SETUP

The sample is composed of two coplanar stripline res-

onators, A and B, fabricated in Nb technology on a thermally

oxidized Si substrate with fundamental mode frequencies

ωR/2π = 4.896 GHz; cf. Fig. 1(a) and Fig. 1(b). The detuning

between the two resonators is found to be small and therefore

disregarded. A superconducting persistent current flux qubit

[19] is coupled galvanically to the signal lines of both

resonators at the position of the current antinodes of the lowest

frequency modes as shown in Figs. 1(c)–1(e). The flux qubit
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FIG. 1. Sample and measurement setup. (a) False-color image

of the sample chip. Nb ground planes are shown in blue and feed

lines in orange. The resonator signal lines reside along the ground

plane edges. The green and red rectangles mark the areas shown on

an enlarged scale in (b) and (c), respectively. (b) Coupling capacitor

defining the resonators. (c) Resonator coupling area with signal lines

(green) and flux qubit (red). Light/dark green stripes highlight Nb-Al

overlap areas. The yellow rectangle marks the area shown in (d).

(d) Flux qubit galvanically coupled to both resonators. The black

rectangle marks the area shown in (e). (e) Al/AlOx/Al Josephson

junction fabricated using shadow evaporation. (f) Sketch of the

coupling mechanisms and measurement setup. The wiggly arrow

symbolizes the input microwave line connected to resonator A and

the black triangle denotes the corresponding output line featuring

microwave amplifiers. The crosses intersecting one qubit branch

symbolize the three Josephson junctions.

consists of a superconducting Al loop intersected by three

Josephson junctions. Two of them have the critical current Ic

and the phase drops across them are denoted by φ1 and φ2. The

third one has a junction area smaller by a factor α ≃ 0.7. We

mount the sample inside a gold-plated copper box attached to

the base temperature stage of a dilution refrigerator stabilized

at 45 mK. The magnetic flux �ext applied to the qubit can

be adjusted by means of a superconducting solenoid mounted

on top of the sample box. Further technical details on the

fabrication process and device parameters can be found in

Ref. [20] and Ref. [21]. Since some of the nomenclature used

in the present work was introduced in previous work on this

sample [21], we briefly reiterate the main findings here. As

discussed in Ref. [21], the qubit can be used to tune and

switch the coupling between the two resonators. In addition to

the geometric coupling gAB/2π = 8.4 MHz there is the qubit

mediated second-order dynamic coupling which depends on

the magnetic flux applied to the qubit loop and on the qubit

state. If the qubit is in the ground state, there exist certain flux

values which we refer to as switch setting conditions, where

the geometric coupling is (in the ideal case) fully compensated

by the dynamical coupling such that the total coupling between

the two resonators vanishes [22]. Conversely, when the qubit is

saturated by means of a strong excitation signal, the dynamical

coupling is zero regardless of the flux applied to the qubit loop

and the total coupling between the two resonators becomes

gAB. The dependence of the dynamical coupling on the qubit

state can be used to realize switchable coupling between the

two resonators. As demonstrated in Ref. [21], setting the flux

operation point to a switch setting condition and applying a

drive pulse to the qubit allows one to switch the coupling

between the resonators A and B to the desired value between

zero and gAB depending on the drive pulse amplitude. This

tunable coupler physics involves only two particular modes

of the device. However, as we discuss in the following, the

nature of the galvanic qubit-resonator coupling implies a more

complex mode structure.

III. MODE STRUCTURE

We first probe the coupled qubit-resonator system by

measuring the transmission through resonator A depending

on the magnetic flux applied to the qubit loop; cf. Fig. 1(f).

For the measurement, the qubit is kept in the ground state

and the input power is chosen such that the mean resonator

population is approximately one photon on average. For

coupled microwave resonators, we expect to observe two

resonant modes corresponding to out-of-phase and in-phase

oscillating currents in the two resonators; cf. Fig. 2(a) and

Fig. 2(b). Following the nomenclature in Ref. [21], we refer to
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FIG. 2. Resonant modes of the galvanically coupled qubit-

resonator system. The arrows indicate in-phase and out-of-phase

oscillating currents. (a) Antiparallel mode. (b) Parallel mode.

(c) Transverse mode.
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FIG. 3. (a) Transmission measured through resonator A as a function of the applied magnetic flux with the qubit in the ground state. Green

line: fit using the Hamiltonian of Eq. (1). The area shown in panel (b) is marked by the black rectangle. (b) Detail of (a). Solid green line: fit

using the Hamiltonian of Eq. (1). Dashed black line: Jaynes-Cumming approximation obtained using the parameters producing the green line

but neglecting the counter-rotating terms in the Hamiltonian of Eq. (1).

these modes as the antiparallel and parallel mode and assign

to them the annihilation operators ĉ+ and ĉ−, respectively.

They can be identified in the spectroscopy data presented in

Fig. 3(a). Far away from the qubit degeneracy point δ�ext ≡
�ext − �0/2 = 0, where �ext is the external magnetic flux and

�0 is the flux quantum, the dynamical coupling is negligible

and the resonant frequencies of the antiparallel and parallel

mode are given by ω+/2π = (ωR + gAB)/2π = 4.904 GHz

and ω−/2π = (ωR − gAB)/2π = 4.888 GHz.

However, the galvanic coupling of the qubit to both

resonators gives rise to a third mode ĉt which we refer to

as the “transverse mode.” It is identified as a parallel mode

across the qubit as shown in Fig. 2(c). Far away from the

qubit degeneracy point, its resonant frequency is found to be

ωt/2π = 4.508 GHz. To explain the large frequency detuning

between the transverse and the (anti)parallel mode, we assume

that the inductance of the qubit has to be taken into account

in order to correctly describe the frequency of the transverse

mode. Following Ref. [23] and Ref. [24], we calculate the

resonant frequency of the transverse mode to ωt = ωR/(1 +
LQ/LR), where LQ is the inductance of the flux qubit and LR

is the inductance of a single resonator. The latter is given by

LR = Z/2ωR = 8.2 nH, where Z = 80� is the characteristic

impedance of the resonator [25]. The inductance of the

flux qubit is given by LQ = (∂2UQ/∂�2
ext)

−1, where UQ =
EJ[2 + α − cos φ1 − cos φ2 − α cos(2πf + φ1 − φ2)] is the

flux qubit potential [26], f = �ext/�0 is the frustration

and EJ = �0Ic/2π is the Josephson energy. Introducing

φ− ≡ (φ1 − φ2)/2, the inductance of the flux qubit reads as

LQ = �0/[2παIc cos(2πf + 2φ−)] with a minimum value

of LQ(f = 0,φ− = 0) = �0/2παIc = 719 pH, yielding a

resonant frequency of ωt,theo/2π = 4.501 GHz. This value

is in excellent agreement with the experimental value

ωt/2π = 4.508 GHz measured far away from the degeneracy

point.

Based on the above discussion, our circuit is naturally rep-

resented by the Hamiltonian describing a dipolar interaction

of the qubit with the relevant resonant modes,

Ĥ = ĤQ +
∑

n =
{t,+,3t,3+}

Ĥn + �g
√

2 σ̂z(ĉ
†
+ + ĉ+)

+ �gt σ̂z(ĉ
†
t + ĉt) + �g3t σ̂z(ĉ

†
3t + ĉ3t)

+ �g3+ σ̂z(ĉ
†
3+ + ĉ3+). (1)

Here, we are allowed to omit the ĉ− mode because it

does not generate a net magnetic field in the qubit loop and,

hence, does not couple to the qubit. The term ĤQ ≡ (ε/2)σ̂z +
(�/2)σ̂x is the qubit Hamiltonian and Ĥn ≡ �ωnĉ

†
nĉn is the

Hamiltonian describing the resonant mode ĉn. The quantity �

is the qubit energy gap, ǫ(�ext) = 2Ipδ�ext denotes the qubit

energy bias, and Ip = Ic

√

1 − (2α)−2 the qubit persistent cur-

rent. σ̂x and σ̂z are the Pauli operators. As shown in Ref. [21],

the coupling of the qubit to the antiparallel mode is given by

g+ =
√

2g. To increase precision of our description, we also

take into account the third harmonic of the ĉt mode (denoted by

ĉ3t, located at ω3t/2π = 13.1 GHz) and the third harmonic of

the ĉ+ mode (denoted by ĉ3+, at ω3+/2π = 14.3 GHz). We do

not consider the second harmonics since they exhibit current

nodes at the qubit position and therefore do not couple to the

qubit. The coupling strengths g3t and g3+ are not considered

as independent parameters, but are calculated via g3t/2π =
(gt/2π )

√
ω3t/ωt and g3+/2π = (g+/2π )

√
ω3+/ω+, taking

into account the current distribution in the resonator. To

determine the qubit parameters and the qubit-mode coupling

strengths, we diagonalize the Hamiltonian of Eq. (1) numer-

ically and fit the resulting energy levels to the data shown in

Fig. 3(a) and Fig. 3(b) (see the Appendix for fit details). In

this way, we obtain a qubit energy gap �/h = 3.51 GHz and

a persistent current Ip = 469 nA. We find that the coupling

strength between the qubit and each resonator is given by

g/2π = 96.7 MHz and the coupling strength of the mode ĉt

to the qubit is gt/2π = (787 ± 51) MHz, which is as high
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as 17.5% of the respective mode frequency. Remarkably, this

coupling strength even exceeds the relative coupling strengths

observed in Ref. [7] although the coupling is determined solely

by the geometrical properties of the qubit arm and not by

an additional inductive element such as a Josephson junction

introduced in Ref. [7] to enhance the coupling strength. To un-

derstand the origin of the exceptionally large coupling strength,

we assume that the coupling strength of the qubit to resonator A

and B, respectively, is determined by the shared arms between

the qubit and the resonators A and B, respectively. We further

assume that the transverse mode current is flowing predomi-

nantly through the qubit arm without Josephson junctions as

shown in Fig. 2(c). This assumption is well justified since the

geometrical inductance of the qubit arm without Josephson

junctions is much smaller than the total inductance of the

branch containing the three Josephson junctions. Following

Ref. [27], we can estimate the geometric inductance of the

qubit branch connecting the two resonators A and B (length

30 μm, width 0.5 μm, and thickness 0.1 μm) at 31 pH, which

adds to the kinetic inductance [28,29] of ∼27 pH, yielding

a total inductance of the qubit branch Lt = 58 pH. We can

further estimate the inductance of the shared arms (length

20 μm) between the resonators (total length 11.55 mm) A and

B and the qubit at Lr = LR × 20 μm/11.55 mm = 14.2 pH.

The coupling strength between the antiparallel mode ĉ3+ and

the flux qubit is g+ =
√

2g. The total coupling strength gt

of the transverse mode ĉt to the qubit has two contributions.

The first one is the coupling mediated by the shared branches

between qubit and resonator and the second one is the coupling

mediated by the qubit branch connecting the two resonators.

Therefore, we can calculate the ratio gt/g+ = (2LrIpIR +√
2LtIpIR)/(LrIpIR) =

√
2 + Lt/Lr ≃ 5.5, where IR is the

vacuum current of each resonator. This value is in good

agreement with the experimentally found ratio gt/g+ ≃ 5.8.

IV. ULTRASTRONG COUPLING

In what follows, we discuss the theoretical framework

needed to describe the interaction between the qubit and the

multimode structure arising from the two-resonator circuit

QED architecture. First, we rotate the Hamiltonian of Eq. (1)

into the qubit eigenbasis using the transformations σ̂z →
cos θσ̂z − sin θσ̂x and σ̂x → sin θσ̂z + cos θσ̂x, where sin θ ≡
�/�ωq and cos θ ≡ ǫ/�ωq and �ωq =

√
�2 + ǫ2 is the flux-

dependent qubit transition energy. In the qubit eigenbasis, the

Hamiltonian reads

Ĥ ∗ = Ĥ ∗
Q +

∑

n =
{t,+,3t,3+}

[Ĥn + �gn(ĉ†n + ĉn)(cos θσ̂z − sin θσ̂x)],

(2)

with Ĥ ∗
Q = �ωq

2
σ̂z. We note that this Hamiltonian is equivalent

to the Hamiltonian of Eq. (1). At �ext = �0/2, the Hamilto-

nian of Eq. (2) represents a multimode quantum Rabi model.

Defining the qubit state raising and lowering operators σ̂± ≡
(σ̂x ± iσ̂y)/2, we find that the Hamiltonian of Eq. (2) explicitly

contains counter-rotating terms of the form ĉ
†
nσ̂+ and ĉnσ̂−. For

gn ≪ ωn, a rotating wave approximation reduces the Hamilto-

nian of Eq. (2) to the well known multimode Jaynes-Cummings

Hamiltonian for arbitrary �ext. We emphasize that the quantum

Rabi model correctly describes the dipolar interaction of the

qubit circuit with the resonant modes. The question arising in

this context is whether the approximation of the quantum Rabi

model by the Jaynes-Cumming Hamiltonian is valid for a given

experiment. Only if our best effort to describe the interaction

between qubit and light fields with a Jaynes-Cummings

approximation yields clear deviations from the experimental

data, one can claim to have reached the ultrastrong coupling

regime [7]. Typically, g/ω ≃ 10%–20% is required for this

task. Despite the breakdown of the Jaynes-Cummings approx-

imation, the system dynamics may still reflect the intuition of

several distinct, but coupled systems exchanging excitations.

This intuition breaks down completely in the deep strong

coupling regime [30], where g � ω and the dynamics of the

system is characterized by the emergence of two parity chains.

V. BREAKDOWN OF THE JAYNES-CUMMINGS

APPROXIMATION

In this section, we discuss that our multipartite circuit QED

setup comprised of a flux qubit galvanically coupled to two

resonators cannot be described within a Jaynes-Cummings

approximation. Instead, it has to be treated within the more

general quantum Rabi model.

To this end, we first revisit our fit of the Hamiltonian

of Eq. (1) to the single-tone transmission spectroscopy data

used to characterize our device in Sec. III. Always using the

same set of parameters obtained from this fit, we compare

the energy levels from the quantum Rabi model represented

by the Hamiltonian of Eq. (1) to the Jaynes-Cummings

approximation obtained by dropping the counter-rotating

terms from this Hamiltonian. For the transverse mode ĉt, we

see in Fig. 3(b) that there is only a relatively small quantitative

difference in the form of a quantum Bloch-Siegert shift [8]

between the two scenarios. Such a Bloch-Siegert shift is

proportional to g2 sin2 θ/(ωq + ωr) and, hence, produces a

pronounced effect on the measured spectra only very close

to the qubit degeneracy point for |δ�x| � 1 m�0. In contrast

to the ĉt mode, a significant qualitative difference between

quantum Rabi model and Jaynes-Cummings approximation

can be observed for the ĉ+ mode as shown in Fig. 4(a). Here,

quantum Rabi model (green line) and experimental data agree

very well, while neglecting the counter-rotating terms (dashed

black line) in the Hamiltonian of Eq. (1) produces a clear

qualitative deviation with respect to the data.

So far, our analysis is based on the structure of our

circuit, which naturally suggests that the transverse mode

occurs because of the galvanic coupling. However, one may

simply ignore all supportive evidence presented so far for this

argument and claim otherwise. In other words, one may simply

postulate that the source of ultrastrong coupling in the circuit,

the transverse mode ĉt, should be treated as an independent

phenomenon and, thus, omitted from the Hamiltonian of

Eq. (1). Under this assumption, one could fit only the coupler

modes to the Hamiltonian

Ĥ = Ĥ ∗
Q +

∑

n={+,3+}

Ĥn + �g+(ĉ
†
+σ̂− + ĉ+σ̂+)

+�g3+(ĉ
†
3+σ̂− + ĉ3+σ̂+), (3)
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FIG. 4. Breakdown of the Jaynes-Cummings approximation. (a) Transmission measured through resonator A as a function of the magnetic

flux applied to the flux qubit with the qubit in the ground state. Data: detail from Fig. 3(a). Green line: fit using the quantum Rabi Hamiltonian of

Eq. (1). Dashed black line: Jaynes-Cumming approximation using the parameters producing the green line but neglecting the counter-rotating

terms in the Hamiltonian of Eq. (1). Dashed blue line: fit using the Jaynes-Cummings Hamiltonian of Eq. (3), where the transverse mode is

treated as an independent phenomenon. Dashed white line: probe frequency ωprobe used for two-tone spectroscopy. (b) Same as (a), but with the

qubit driven by a strong microwave tone. (c) Two-tone spectroscopy. Green and dashed blue lines as in panel (a). ωs is the variable spectroscopy

tone. Color code: transmission magnitude measured at ωprobe. (d),(e) Details from (c).

which contains no counter-rotating terms anymore. As shown

in Fig. 4(a), the ĉ+ transmission data are described well by

this ansatz. However, the resulting qubit parameters deviate

strongly from those obtained in Sec. III by fitting the Hamil-

tonian of Eq. (1) to the data. In order to verify which of the

two parameter sets (and thus Hamiltonians) is appropriate, we

employ an additional, independent measurement technique:

two-tone spectroscopy of the qubit. To this end, we record

the transmission through resonator A at the frequency of

ωprobe/2π = 4.904 GHz. When the qubit is far detuned, ωprobe

corresponds to the resonant frequency of the ĉ+ mode. In

addition, a second microwave tone, the spectroscopy tone with

variable frequency ωs is applied to the coupled qubit-resonator

system via the input port of resonator B. When the qubit is

in the ground state, the measured transmission as a function

of the magnetic flux applied to the qubit loop corresponds

to a cut through Fig. 4(a) along ω+/2π as highlighted by

the dashed white line. When the qubit is saturated by means

of the spectroscopy tone, the qubit state is described by the

density matrix ρM = 1
2
(|g〉〈g| + |e〉〈e|) and the transmission

spectrum turns into the one shown in Fig. 4(b). Evidently, the

transmission magnitude at ωprobe increases near the degeneracy

point when the qubit is driven.

Using this protocol, we record the change in resonator

transmission as a function of the spectroscopy tone frequency

ωs and the applied magnetic flux. The results are displayed

in Figs. 4(c)–4(e). We first compare the measured data to

the energy level spectrum of the Hamiltonian of Eq. (2) by

calculating the energy differences between the ground state

and the 15 lowest energy levels. As it can be seen, there is

214501-5
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very good agreement between the two-tone spectroscopy data

and their description within the full Hamiltonian of Eq. (2).

The absence of spectroscopic response for the energy levels

near 2ω+ and 2ωt in Fig. 4(c) is due to the fact that the second

harmonics of the ĉ+ and ĉt modes exhibit current nodes at the

position of the qubit and therefore do not couple to it.

Next, we analyze the energy level spectrum calculated from

the qubit parameters found by a fit using only the ĉ+ mode in

the Jaynes-Cummings approximation, i.e., Eq. (3). Here, we

find clear deviations from the qubit two-tone spectroscopy

data. This effect becomes most apparent in Fig. 4(c) and

Fig. 4(d), where the dashed blue line produced by Eq. (3)

fails to explain the dips of the qubit hyperbola. In contrast,

these dips are captured by the upper green line produced by

the quantum Rabi model including the transverse mode. The

slope of this upper green line for δ�ext � −1.3 m�0 is, up

to fundamental constants, proportional to the qubit critical

current Ip. In other words, the two-tone experiments provide

an independent mean to confirm the interpretation of the

transverse mode derived from the circuit geometry in Fig. 2.

As discussed before and shown in Fig. 4(a), in this situation

the Jaynes-Cummings approximation is not compatible with

the single-tone transmission data. Hence we have successfully

demonstrated the ultrastrong coupling regime because our data

can only be explained when taking the counter-rotating terms

of the transverse mode into account.

Finally, we compare our findings to previous work on

ultrastrong coupling in superconducting circuits. In the present

sample, the access to both resonator and qubit spectroscopy

data allows us to rigorously rule out the validity of the

Jaynes-Cummings approximation without having to assume

the validity of the quantum Rabi model. Hence our analysis

goes beyond the treatment presented in Ref. [8]. In addition,

the present work is markedly different from the approach used

in Ref. [7]. There, it was shown that in a multimode system the

number of excitations is no longer preserved in the ultrastrong

coupling regime. Despite this difference, it appears that physics

beyond the Jaynes-Cummings approximation in circuit QED

is favorably demonstrated by analyzing the complex mode

structure of multipartite setups.

VI. CONCLUSIONS

In conclusion, we demonstrate the breakdown of the

Jaynes-Cummings approximation in a system comprised of

two coplanar stripline resonators and a persistent current flux

qubit coupled galvanically to both of them. We analyze the

complex mode structure and find that the coupling of one

resonant mode to the qubit reaches 17% of the mode frequency,

exceeding that of previous circuit QED experiments [7,8]. We

show that both the mode frequency and the coupling strength

are in good agreement with theoretical calculations based on

the quantum Rabi model. Analyzing the resonator and qubit

spectroscopy data clearly shows that the Jaynes-Cummings

approximation no longer provides an appropriate description

of the observed behavior, confirming that our circuit QED

setup is in the regime of ultrastrong coupling. In the sample, a

remarkably large coupling strength is reached without utilizing

the inductance of an additional Josephson junction. As a

future perspective, combining different methods for enhancing

the coupling strength may provide access to the regime of

deep strong coupling [30], giving experimental insight into a

completely novel regime of light-matter interaction.
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APPENDIX

In this section, we first provide technical details on how

we obtain the fit lines in Fig. 3(a) and Fig. 3(b). We employ

FIG. 5. Panels from Fig. 3(a) and Fig. 3(b) including the data points (black dots) used for the fit.
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a simplex algorithm. The mode frequencies ωn are not used

as fit parameters, but are determined from the transmission

spectrum at δ�ext = �0/2. We use 118 data points of the ĉ+
mode and 35 data points of the ĉt mode. These data points are

shown in Fig. 5(a) and Fig. 5(b). They correspond to peaks

in the transmission spectra. As the ĉ+ mode extends over a

considerably smaller frequency span than the ĉt mode, we

consider a larger number of data points for the ĉ+ mode. As

a consequence, both modes contribute approximately equally

to the statistical fit error. In order to ensure robustness of the

fitting algorithm, we repeat the fit 100 times based on random

subsets of 30 data points. In this way, we find a standard

deviation of 51 MHz for gt.

Next, we discuss resonant structures in our data not directly

relevant for the ultrastrong coupling discussion in the main

text. First, we briefly discuss the origin of the resonant structure

which is visible near the degeneracy point at the frequency of

4.904 GHz; cf. Fig. 6. We find good agreement between this

resonant structure and the transition between the eigenstates

corresponding to the second and the sixth lowest eigenenergies

of the Hamiltonian of Eq. (1). Compared to the antiparallel

mode, the additional resonant structure is suppressed by

∼14 dB. Hence this structure might arise from a small finite

population of the second energy level due to the finite sample

temperature of 45 mK and the very large coupling strength of

the qubit to the transverse mode. This interpretation is also

in agreement with a similar resonant structure observed in

Ref. [8].

In contrast to this feature, the faint resonance with weak flux

dependence visible at a frequency of approximately 4.44 GHz

in Fig. 3 is not captured by our analysis. However, preliminary

FIG. 6. Transmission measured through resonator A depending

on the magnetic flux applied to the flux qubit. Dashed white line:

transition between eigenstates of the Hamiltonian of Eq. (1) as

described in the main text.

numerical simulations suggest that this resonance might be

caused by thermally excited multiphoton transitions similar to

the ones observed in Refs. [31–33] and, hence, has no impact

on the main conclusions of this work.
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