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In-Ho Lee1, Daniel A. Mohr1, Markus B. Raschke5,
Joshua D. Caldwell6, Luis Martı́n-Moreno3,*, and Sang-Hyun Oh1,*

1Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St. S.E., Minneapolis,

MN, USA
2Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, Zaragoza, Spain
3Instituto de Nanociencia y Materiales de Aragón (INMA) and Departamento de Fı́sica de la Materia Condensada,

CSIC-Universidad de Zaragoza, Zaragoza, Spain
4Department of Physics, University of Maryland, Baltimore County, Baltimore, MD, USA
5Department of Physics and JILA, University of Colorado, Boulder, CO, USA
6Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
*E-mail: lmm@unizar.es and sang@umn.edu
+these authors contributed equally to this work

ABSTRACT

Vibrational ultrastrong coupling (USC), where the light-matter coupling strength is comparable to the vibrational frequency

of molecules, presents new opportunities to probe the interactions of molecules with zero-point fluctuations, harness cavity-

modified chemical reactions, and develop novel devices in the mid-infrared spectral range. Here we use epsilon-near-zero

nanocavities filled with a model polar medium (SiO2) to demonstrate USC between phonons and gap plasmons. We present

classical and quantum mechanical models to quantitatively describe the observed plasmon-phonon USC phenomena and

demonstrate a modal splitting of up to 50% of the resonant frequency (normalized coupling strength η > 0.25). Our wafer-scale

nanocavity platform will enable a broad range of vibrational transitions to be harnessed for USC applications.

The field of cavity quantum electrodynamics (QED) has generally divided light-matter interactions into two regimes: weak
coupling (WC), when losses exceed the light-matter coupling strength, and strong coupling (SC), when the coupling strength
dominates1, 2. For weak-coupling phenomena such as the Purcell effect3, Fano interference4, and surface-enhanced infrared
absorption5, the coupled systems exchange energy on a time scale slower than the decay rates. In contrast, within the SC
regime, the oscillators exchange their energy reversibly and coherently over an extended time frame that is longer than the
decay rates6–14, enabling applications such as quantum information processing15. Furthermore, strong coupling leads to the
formation of hybridized energy states that are different from those of the bare constituents, leading to novel phenomena such as
the modification of chemical reaction rates2, 16, 17 and of ground-state reactivity18.

Even more exotic phenomena can occur when the normalized coupling strength, η , of the system exceeds ∼ 0.1, where η
is defined as the ratio of the light-matter coupling strength, g, to the mid-gap frequency, ω . In this ultrastrong coupling (USC)
regime1, 2, 19, 20, some of the standard approximations that are valid for WC and SC, such as the rotating-wave approximation,
are expected to break down. Furthermore, transitioning from SC to USC implies that the hybrid mode exhibits substantially
more oscillations between light and matter states prior to decay, and such fast and efficient interactions can enable novel
ultrafast devices19, 21. Another striking phenomenon predicted in the USC regime, resulting from the antiresonant term in the
light-matter coupling equation, is the possibility to extract virtual photons from the modified ground state via a dynamic Casimir
effect22, 23. Finally, USC between light and molecules has the potential to modify or enhance chemical reactions beyond what is
possible in the SC regime19.

USC has been demonstrated using photochromic molecules24, circuit QED systems25, intersubband polaritons26, molecular
liquids27, and two-dimensional electron gases28. SC to vibrational modes at mid-infrared (MIR) frequencies has been
demonstrated in various systems18, 29–32, enabling applications such as surface-enhanced vibrational spectroscopy5, 33, thermal
emission and signature control, and modified heat transfer. It has been challenging, however, to achieve USC at MIR frequencies,
particularly in solid-state systems, because of the relatively weak oscillator strengths for vibrational modes originating from
lattice ionic motions. Previous demonstrations have involved extended microcavity structures2, 18, 27, opening up a new physical
regime at these technologically important frequencies, but with limited possibilities for novel nonlinear effects.



Here we demonstrate vibrational USC within nanocavities, drastically reducing the size of the system and thus the amount
of material involved in achieving MIR USC. Specifically, we use coaxial nanocavities, which exhibit strong transmission
resonances and field enhancements close to the cutoff frequency of the TE11-like mode; these can be understood as resulting
from excitation of the zeroth-order Fabry-Perot resonance34 or, alternatively, as arising from an effective epsilon-near-zero
(ENZ) effect35–37. We couple this nano-coax ENZ mode to the lattice vibrations of SiO2 and demonstrate MIR USC with a
mode splitting exceeding 50% of the vibrational transition frequency (η > 0.25) within a solid-state system.
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Figure 1. Wafer-scale resonant ENZ nanocavity platform for USC. (a) Geometrical parameters and illustration of SiO2

phonons interacting with the ENZ mode of the nanocavity. Inset: scanning electron micrograph of coaxial nanocavities with 21
nm gap, 790 nm diameter, 1190 nm period, and 80 nm Au thickness. (b) Computed field profiles (for fields polarized in the
lateral direction) of a coaxial nanocavity (diameter 1120 nm and gap width 21 nm) showing a lateral section (upper) and a
vertical section (lower) of the ENZ transmission resonance. (c) Process flow based on ALD and wafer-scale glancing-angle ion
milling. The dashed red arrow represents the direction of the glancing-angle ion beam.

Results

Design and fabrication of ENZ nanocavities. In our USC platform, SiO2-filled coaxial nanoapertures fabricated into a
metal (Au) film of thickness T are hexagonally arranged with varied gap size (G), diameter (D), and lattice periodicity (P)
(Fig. 1a). Unlike conventional approaches of selectively etching annular gaps in metal films, we adopt a novel fabrication
approach called atomic layer lithography36, 38 to create dielectric-filled nanogaps in metal films (Fig. 1c and Methods). After
employing standard photolithography to define Au disk arrays on a silicon wafer, SiO2 films are conformally grown via atomic
layer deposition38 (ALD) on the exposed surfaces and sidewalls, followed by subsequent metal cladding layer deposition and
planarization via glancing-angle ion milling. This batch process can produce wafer-sized arrays of coaxial apertures with a gap
size down to 1 nm, limited only by the ALD growth.

For very narrow gaps, TE11 coaxial modes have a strong plasmonic character. Such modes are characterized by an effective
dielectric constant that is approximately zero at cutoff. The resonance frequency of the cavities can be shifted toward longer
wavelengths without sacrificing modal confinement by increasing the coax diameter without changing the gap width. In
addition, the very long wavelength associated with near-zero permittivity produces a spatially uniform optical field (Fig. 1b
lower panel), which in turn provides efficient coupling to the material within the gaps.

We note that the ENZ resonance is a single-aperture effect; in other words, the existence of an array is not required for
the transmission resonance we utilize (Supplementaty Section 2). We also note that the resonant optical properties of the
nanocavities are robust against process variations and inhomogeneous broadening for two reasons. First, the critical dimension
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(i.e. the width of the nanogap) is lithography-independent and precisely defined by the thickness of the SiO2 film grown by
ALD. Second, the ENZ mode (i.e., the zeroth-order Fabry-Perot resonance) is independent of the cavity length, and is thus
insensitive to variations in the Au film thickness.

We designed a series of cavities with diameters ranging from 430 nm to 1120 nm in 30 nm steps, in order to tune the bare
ENZ resonance from approximately 1000 to 2500 cm−1. This range is chosen to cover the Reststrahlen band of SiO2, which is
defined by the transverse optical (TO) and longitudinal optical (LO) phonon frequencies (Fig. 2a). Coaxial nanocavities at
the ENZ condition show extraordinary optical transmission (EOT)39, since incident light with wavelengths 4-10 µm can pass
through annular gaps that are over thousand times narrower than the wavelength, with the absolute transmittance as high as
60%.

Transmission spectra through the nanocavity arrays were measured by far-field Fourier transform infrared (FTIR) spec-
troscopy over a large-area (5 mm × 5 mm) chip containing arrays of coaxial nanocavities. The normalized transmission
spectra for coaxial nanocavities filled with 21 nm-thick SiO2 are plotted in Fig. 2b. The observed transmission features a clear
anticrossing behaviour characteristic of SC.
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Figure 2. Normal mode splittings due to ultrastrong plasmon-phonon coupling. (a) Dielectric function50 of SiO2

(upper) and epsilon-near-zero transmission resonances (lower) of coaxial nanocavities (gap width of 21 nm, diameter from 700
nm to 1120 nm), simulated with a frequency-independent dielectric constant ε∞ inside the aperture. This calculation shows that
the bare cavity resonance sweeps through the entire Reststrahlen band (gray region, upper panel) for the considered diameters
(Supplementary Section 1). (b) Normalized experimental transmission spectra of SiO2-filled coaxial Au nanocavities, for gap
width of 21 nm and diameter from 550 to 1120 nm. Black dashed guidelines indicate the lower and upper polariton branches.

Although these results suggest that the SiO2 phonons and cavity photons are strongly coupled, the split transmission peaks
could potentially be interpreted as the result of a single broad transmission resonance being quenched in a central frequency
range by the strong vibrational absorption close to ωTO. To clarify the origin of the split transmission peaks, we perform a
theoretical analysis of the coupled system to be compared to our experimental results.

Theoretical analysis of ultrastrong plasmon-phonon coupling

Classical description. Electromagnetic propagation in waveguides is usually based on a description where the phononic degrees
of freedom have been integrated out, providing a frequency-dependent dielectric function ε(ω) for the propagation of the photon
(Supplementary Section 3). However, in order to determine whether the system is in the strong-coupling regime, it is essential
to retain both phononic and photonic degrees of freedom. We therefore consider a given waveguide mode M, characterized by a
wavevector k along the waveguide axis (in this case, M=TE11, the fundamental mode of the coaxial waveguide). When the
aperture is filled with a uniform dielectric constant ε∞ (originating from coupling to electronic degrees of freedom), the electric
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field, E(r) = E EM(r,k), where r is the vector position, satisfies the wave equation

∇×∇×EEM − ε∞

ω2
k

c2 EEM = 0, (1)

where E is the field amplitude, EM is a normalized transverse solution of Maxwell’s equations (Supplementary Section S4), and
c is the vacuum speed of light in vacuum. When the phononic material fills the waveguide, we assume a local relation (valid for
non-dispersive vibrational modes) between E and the relative displacement of ions, x, following Ref. 40. Then, for a given
mode profile, x(r) = x EM(r,k), with

ẍ = γ11x+ γ12E, (2)

P = γ12x+ γ22E, (3)

where P is the amplitude of polarization vector P = P EM and ẍ is the second derivative of x with respect to time. The
phenomenological parameters γi j can be written in terms of measurable quantities: γ2

12 = ω2
pε∞/4π with ω2

p = ω2
LO −ω2

TO,
γ11 = −ω2

TO, and γ22 = (ε∞ − 1)/4π (Supplementary Section 3). Note that γ22 incorporates the effect of the electronic
resonances excited at higher frequencies. The wave equation becomes, in this case,

∇×∇×EEM −
ω2

c2 (E +4πP)EM = 0. (4)

By inspection, we find that EM(r,k) satisfies Eq. (4) if ω2(E +4πP) = ε∞ω2
k E (strictly speaking, we are neglecting the

variation between ω and ωk in the impedance of the metal surrounding the waveguide; for a deeper analysis of how this affects
the above condition, see Supplementary Sections 2 and 5). This condition, together with Eqs. (2) and (3), can be expressed in a
matrix form, stating that EM(r,k) is still a solution of Maxwell equations but at a frequency ω satisfying

(

ω2 −ω2
TO ω ωp

ω ωp ω2 −ω2
k

) (

ω x
√

ε∞/4πE

)

= 0. (5)

(See Supplementary Section 6 for a detailed derivation and a discussion of the effects of losses) Note that the simpler coupled-
harmonic-oscillator model that is commonly used for fitting experimental data (Supplementary Section 7) does not show
the ω-dependence of the off-diagonal terms and therefore cannot describe the polaritonic branches correctly (Fig. 3a and
Supplementary Fig. 6).
Quantum-mechanical description. We have used a classical approach above. For future work, especially the investigation of
nonlinear optical effects, a full quantum mechanical description will be required, wherein off-resonant terms may be important
and the rotating-wave approximation cannot necessarily be applied41–45. We therefore apply the canonical procedure of second
quantization to the classical Hamiltonian (see Supplementary Section 9 for details). For the sake of convenience, absorption is
neglected and the walls of the coaxial cavity are assumed to be perfectly conducting. We obtain a Hopfield-like Hamiltonian41

for interacting photons and phonons: H = Hphoton +Hphonon +Hint , with

Hphoton = ∑
m

ℏωm

(

a+mam +
1
2

)

, (6)

Hphonon = ∑
m

ℏωTO

(

b+mbm +
1
2

)

, (7)

Hint = ∑
m

ℏ
[

iCm

(

a+mbm −amb+m
)

+Dm

(

2a+k am +1
)

+iCm

(

ambm −a+mb+m
)

+Dm

(

amam +a+ma+m
)]

. (8)

where a+ (a) and b+ (b) are the creation (annihilation) operators for photons and phonons, respectively, the sum is over modes
m, and

Cm =
ωp

2

√

ωTO

ωm

, Dm =
ω2

p

4ωm

. (9)

As expected, given that the system comprises two coupled harmonic oscillators, diagonalizing the full Hamiltonian gives
eigenfrequencies identical to those obtained from Eq. 5. In other words, the classical approach can be used to compute the
polaritonic branches exactly when the system enters into the USC regime. The same behaviour is valid for an arbitrary number
of vibrational modes in the polar material (Supplementary Sections 8 and 10).
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Experimental verification of dispersion and USC. We can therefore analyse the dependence of the ENZ resonant frequencies
on the coax inner diameter using Eq. 5 (Fig. 3 c-f). As ωp is independent of the hole shape and size, the ENZ resonances in this
strong-coupling condition depend only on the bare ENZ frequency, ωENZ(D). This bare ENZ frequency, in turn, is obtained
from the upper polariton branch (see Sec. S12). This procedure is followed because the lower polariton is more affected by
additional vibrational resonances that have not been considered in this simple analysis.
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Figure 3. Dispersion mapping and validation of theoretical model. (a) The dispersion relation of bulk phonon polaritons
supported in SiO2 as calculated by Eq. 5 under the assumption that a single vibrational mode is excited. (b) The measured
normalized coupling strength, η , and normalized mode splitting, (2g/γavg), as a function of gap size. (c-f) Dispersion maps of
experimentally measured transmission (T ) spectra for coaxial apertures filled with SiO2 with gap thicknesses of 21 nm (c), 14
nm (d), 7 nm (e), and 2 nm (f). Polaritonic resonances analytically fit using Eq. S14 (purple (upper) and yellow (lower) circle
dots and solid line). ωENZ (blue circles with a solid line) is used as a fitting parameter and indicates the resonance of the ENZ
mode uncoupled from the polar phonons of SiO2. The coupling strength, g, is measured at the intersection between the
uncoupled ENZ resonance and ωTO (when the detuning is zero). (g) Transmission spectra measured when the bare ENZ mode
crosses through the Reststrahlen band, showing distinct modal splitting and sharp resonance peaks (60% transmittance for the
21 nm-gap coax). Curves are shifted along the vertical axis for clarity.

For each gap size, we estimate the coupling strength g as half the frequency difference between the upper and lower
polariton branches when ωENZ(D) = ωTO. Results are summarized in Figure 3b and Table 1. Since the SiO2 layer is added to
our coaxial nanocavity during the fabrication process, it is not trivial to experimentally measure the bare ENZ resonance (i.e.,
to measure the transmission of the cavity with an empty gap). Instead, we measure the linewidth of a bare ENZ resonance at a
higher frequency, where it is uncoupled from the SiO2 phonons. As shown in Table 1, all cavities exhibit modal splittings that
are larger than the average of the linewidths of the bare cavity resonances and of the TO phonon (2g/γavg > 1). This indicates
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that the system is in the strong-coupling regime.
Moreover, the normalized coupling strength η = g/ωTO > 0.25, regardless of gap width, indicating that the systems are

also in the USC regime19. For a single dipole emitter in a cavity of volume V , g ∝ 1/
√

V . However, for collective coupling, as
in our system, g ∝

√

N/V , where N is the number of dipoles coherently coupled to the cavity mode. Thus, g depends only on
the density of molecules, N/V , and is independent of the coaxial gap width (Supplementary Section 3).

SiO2 gap width (nm) 2 7 14 21
Bare ENZ mode linewidth (FWHM) (cm−1) 453 619 844 990

Average of bare ENZ and TO phonon linewidths, γavg (cm−1) 265 348 481 534
Normal mode splitting, 2g (cm−1) 534 546 549 537

Normalized mode splitting, 2g/γavg 2.02 1.57 1.14 1.01
Normalized coupling strength, η = g/ωTO 0.254 0.26 0.261 0.255

FWHM, full-width at half-maximum.

Table 1. Mode splitting and normalized coupling strength.

Conclusions

We have constructed wafer-scale resonant coaxial nanocavities and achieved USC between the ENZ mode of the cavities and
SiO2 phonons with a normalized coupling strength greater than 0.25. The large magnitude of the splitting we observe – wider
than the Reststrahlen band – shows that the coupling strength is truly within the USC regime, and is not the manifestation of
absorption induced within the forbidden band. To further elucidate this point, we also presented a theoretical framework (both
classical and quantum mechanical) that quantitatively explains the data, and which can be applied to similar USC involving
homogeneous materials, waveguides, and resonant cavities.

The ENZ nanocavities can be filled with a variety of vibrationally-active materials, thus enabling USC to be realized
throughout the MIR, far-IR, and terahertz spectral ranges. Furthermore, since single-nanometre-thick phononic films separate
the core and cladding electrodes in each coax, the platform provides a route to combine electron tunnelling with vibrational USC
and EOT, which should enable observation of ground-state electroluminescence46 and the dynamic Casimir effect22, 23. The
ability to reach the USC regime in mass-produced ENZ cavities with ultrasmall gap volumes (≈ λ 3/107) can also open up new
avenues to explore quantum nonlinear optical processes47, multiphoton effects, higher-order nonlinear effects, and single-photon
excitation of multiple atoms48, which may lead to novel applications in quantum sensing, spectroscopy, optoelectronic devices,
and frequency conversion49.

Methods

Device fabrication
After pre-cleaning and pre-baking steps (200 ◦C for 3 min), an undoped, double-side-polished 4-inch (100) Si wafer (University
wafer) is spin-coated with AZ MIR701 photoresist for 45 s at 5,000 r.p.m., followed by baking at 90 ◦C for 90 s. The patterns of
hexagonal hole arrays with 24 different diameters from 430 nm to 1120 nm are transferred onto the Si wafer by photolithography
(Canon 2500 i3 stepper) with a dose of 150 mJ/cm2, followed by post-exposure bake at 110 ◦C and development with AZ 3000
MIF for 60 s. Hexagonal Au disk arrays are created on the Si wafer via directional evaporation of 3-nm Ti and 150-nm Au
films (CHA, SEC 600), followed by liftoff using AZ Kwik Strip. After oxygen plasma cleaning (STS, 320PC) at 100 W for 30
s to remove photoresist residue, the Au disk arrays are coated conformally with a thin SiO2 film using ALD (Cambridge Nano
Tech Inc., Savannah) at a typical deposition rate of 1.2 Å/cycle. ALD was performed using ozone precursor and water vapor at
180 ◦C. After conformal sputtering of 3 nm Ti and 400 nm Au (AJA, ATC 2200), the top surface of 400 nm-thick Au-deposited
disk patterns is planarized by glancing-angle ion milling using a 240 mA Ar+ ion beam incident at 5 ◦ from the horizontal
plane (Intlvac, Nanoquest) until the top entrance of the coaxial nanocavities is exposed.

Data Availability: The data that support the plots within this paper and other findings of this study are available from the
corresponding author upon reasonable request.
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S1 Comparison of simulations and experiments

To further investigate the coupling between epsilon-near-zero (ENZ) and SiO2 phonon

modes, we compare finite-element method (FEM) numerical modelling (dispersion

map) and experimental results (white dots) in Fig. S1. The FEM-modelled disper-

sion agrees well with the measured data, and we observe a splitting on resonance that is

about two times wider than the Reststrahlen band.

We plot in Figs. S2 and S3 the transmission spectra used for measuring the linewidth

of bare and dressed ENZ resonances, respectively. Linewidths and quality factors, Q,

for both bare and dressed modes and mode splitting of dressed modes, extracted from

Figs. S2 and S3, are summarized in Table S1. Interestingly, linewidth narrowing of

the coupled modes is observed in the SiO2-filled coaxial cavities, compared to the bare

cavity resonances. The hybridized modes exhibit plasmon- and phonon-like properties

simultaneously, resulting in linewidths that are the average of the plasmon and phonon

modes. While uncoupled ENZ modes usually exhibit a Q-factor of 2 ∼ 3, the hybrid

modes generated in the vicinity of the asymptotic limits of the LO phonon exhibits

Q > 5 for 2 nm-gap coaxial cavities, where the coupling strength is maximum.
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Figure S1. Colour map shows simulated transmission spectra of coaxial nanocavities (21 nm SiO2 gap) in a gold film as a

function of the coaxial diameter. White circular (square) dots indicate the upper (lower) branch spectral peak positions

measured from FTIR spectra in Fig. 2b.

1000 2000 3000 4000
0

5

10

15

20

Wavenumber (1/cm)

T
ra

n
s

m
it

ta
n

c
e

 (
%

)

Gap = 2 nm
Diameter = 520 nm
FWHM = 445 1/cm

1000 2000 3000 4000
0

10

20

30

40

50

Wavenumber (1/cm)

T
ra

n
s

m
it

ta
n

c
e

 (
%

)

1000 2000 3000 4000
0

20

40

60

80

Wavenumber (1/cm)

T
ra

n
s

m
it

ta
n

c
e

 (
%

)

1000 2000 3000 4000
0

20

40

60

80

Wavenumber (1/cm)

T
ra

n
s

m
it

ta
n

c
e

 (
%

)

Gap = 7 nm
Diameter = 550 nm
FWHM = 609 1/cm

Gap = 14 nm
Diameter = 550 nm
FWHM = 840 1/cm

Gap = 21 nm
Diameter = 550 nm
FWHM = 974 1/cm

Figure S2. Transmission spectra used for measuring the linewidth of the bare epsilon-near-zero resonance.
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Figure S3. Transmission spectra used for measuring both the linewidth of the coupled epsilon-near-zero resonance and the

resulting mode splitting.

Gap (nm) 2 7 14 21

Bare ENZ mode
Diameter (nm) 520 520 550 550

Linewidth (cm−1) (Q factor) 453 (3.8) 619 (3.6) 844 (2.9) 990 (2.7)

At zero-detuned
Diameter (nm) 580 790 940 940

Linewidth (cm−1) (Q factor) 245 (5.4) 312 (4.5) 438 (3.3) 483 (3.0)

Mode splitting (cm−1) 534 546 549 537

Table S1. Measured linewidths and quality factors of resonances shown in Figs. S2 and S3 for bare and dressed modes,

respectively; mode splittings of dressed modes.
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S2 Transmission resonances of a hole array

Waveguide modes are the most natural choice of basis for the expansion of the elec-

tromagnetic (EM) fields inside the coaxial holes1. In numerical simulations, fast con-

vergence is achieved with a small number of such modes. In fact, considering just

the fundamental mode is an excellent approximation for deeply subwavelength holes.

Reflection of these modes at the ends of the coaxial waveguide leads to Fabry-Perot

(FP)-like transmission resonances. These resonances appear spectrally close to the cut-

off frequency of the fundamental waveguide mode inside the hole1, when it acts as

an ENZ medium.2 When holes are arranged periodically, additional transmission reso-

nances develop at wavelengths slightly red-shifted with respect to the array periodicity

(P), due to the excitation of surface modes. A strong hybridization of these two kinds of

transmission resonances occurs when the cutoff wavelength of a FP resonance is near P.

However, our coaxial aperture arrays are designed such that FP transmission resonances

appear in the mid-infrared (MIR) while surface resonances are in the near-infrared, thus,

FP and surface modes do not hybridize.

Fig. S4 compares the transmittance of the hole array with the square of the effective

index, q2
z = c2k2

z/ω2. We note that Im[k2
z ] does not vanish at cutoff due to the absorption

losses. Even for uncoupled cavity modes, when the hole is filled with a lossless medium

with dielectric constant ε∞, losses in the metal give Im[k2
z ] 6= 0; see the magenta line in

Fig. S4.

Finally, it is worth noting that in the structures we consider, the gap sizes (between

G = 2 nm and G = 21 nm) are smaller than the skin depth (∼ 30 nm). This means

the metal cannot be approximated as a perfect electrical conductor (PEC), and both the

field profile and the dispersion relation strongly depend on the penetration inside the

metal. This field penetration must therefore be taken into account in the calculation.

This is illustrated by comparing the cutoff wavelengths for waveguides with gold or

PEC sidewalls in Fig. S4(c). The result is that the fundamental waveguide mode no

longer has a pure TM or TE character (as it would for a PEC), but is instead a linear

combination of the two polarizations. However, for the process of transmission and the

range of frequencies considered, we find that the TE component couples to the external

illumination much more efficiently than the TM one, so the mode behaves effectively

as a quasi-TE mode.

S3 Lattice model for a homogeneous medium

For completeness, this section summarizes the theory developed by Born and Huang3

for the optical phonons in a diatomic crystal. In this case, there are three optical phonon

branches (one longitudinal and two transverse). Unit cells with a larger number of
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Figure S4. (a) Real and (b) imaginary parts of the square of the effective index, q2
z (red line),as a function of a frequency for

the fundamental TE11 mode of an SiO2-filled coaxial waveguide with diameter D = 900 nm and gap size G = 21 nm. This

quantity is compared with q2
z for a ε∞ filled gap (magenta line) and with the dielectric constant of SiO2 (green line). The cutoff

frequencies (red dash-dotted vertical lines) of the SiO2-filled gap are computed with Eq. (S9). The transmittance of a

hexagonal hole array with 1190 nm period and 80 nm Au thickness (black line) shows peaks when the holes are at cutoff; i.e.,

for Re[q2
z ] = 0. The coupled-mode method was employed for computing the transmission spectrum1. (c) The cutoff wavelength

for a waveguide with Au sidewalls, λc, is compared with the cutoff wavelength for a waveguide with

perfect-electrical-conductor sidewalls, λ PEC
c = π(D+G), as a function of the inner diameter of the hole, D.

atoms (s), and correspondingly 3(s−1) optical branches, will be discussed in Sec. S8.

For polarizable (nonrigid) ions in the diatomic cell, the equation of motion and the

polarization are given by

ẍ = γ11x− γ13ẋ+ γ12E, (S1)

P = γ12x+ γ22E, (S2)

where the normalized coordinate x = (u+−u−)/
√

µn depends on the relative displace-

ment of the positive and negative ions, u+ − u−, the number of cells per unit vol-

ume, n, and the reduced mass, µ = m+m−/(m+ +m−). P and E are the dielectric

polarization and electric field, respectively. By considering harmonic solutions, where

the time dependence of all fields has the form x = x0 exp(−iωt), we can eliminate
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x =−γ12E/(ω2+γ11+ iγ13ω) from these equations, and relate P and E by the equation

P = [γ22−γ2
12/(ω

2+γ11+ iγ13ω)]E. From the definition of the dielectric displacement,

D = E+4πP = εE, we obtain the dielectric function,

ε(ω) = 1+4πγ22 −4πγ2
12/(ω

2 + γ11 + iγ13ω).

If ε(ω) is written in terms of measurable quantities,

ε(ω) = ε∞

(

1+
ω2

p

ω2
TO −ω2 − iγω

)

,

the γ-coefficients can be expressed as γ22 = (ε∞−1)/4π , γ12 = (ε∞/4π)1/2ωp, γ13 = γ ,

and γ11 =−ω2
TO.

If we neglect the induced internal polarization in the ions (i.e., if we consider them

as rigid), the vibrational coupling constant ωp can be estimated to be3

ωp =

√

4πne2

M
. (S3)

S4 Wave equation

The wave equation may be derived from Maxwell’s equations (using the Gaussian con-

vention):

∇×H =
1

c

∂D

∂ t
, (S4)

∇×E = −1

c

∂H

∂ t
, (S5)

in the following way. After assuming harmonic solutions (∼ exp(−iωt)), we can apply

the operator ∇× on (S5) and replace (S4) into the resulting equation to give

∇×∇×E− ω2

c2
D = 0. (S6)

Using the constitutive relation for the displacement current D = E+ 4πP = εE, we

obtain Eqs.(1) and (4) of the main text.

S5 Scaling relation

At a given frequency ω and for a general dielectric constant ε(r), the wave equation for

the electric field becomes

∇×∇×E(r)− ε(r)
ω2

c2
E(r) = 0. (S7)
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The field thus depends only on the combination κ2(r)≡ ε(r)(ω/c)2. For a waveguide

defined by an internal dielectric region (characterized by εd) and an external metallic

region (with εm), the field depends only on the values of the corresponding κ2
d and κ2

m.

The scaling relation

εd,εm,ω → εdζ ,εmζ ,ω/
√

ζ

leaves κ2
d and κ2

m unchanged for any ζ . However, for a waveguide made from a given

metal, if the material inside the waveguide is replaced by a different dielectric, the

scaling relation will not be fulfilled, as the spectral dependence of εm will generally

not follow the scaling imposed by the change in εd. Nevertheless, we find two relevant

exceptions: a perfect electrical conductor and a Drude metal at low frequencies.

For a PEC, εm =−∞. In that case, the dependence on εm disappears from the scaling

relation (as εmζ = −∞, independent of ζ ). If Eq. (S7) holds and the waveguide is

filled with a material with dielectric function ε ′d(ω), the electromagnetic fields satisfy

the same Maxwell’s equation with κ ′2
d = ε ′d(ω)(ω/c)2. The solution E for εd at a given

frequency ω is thus the same as for ε ′d(ω
′) at a different ω ′ given by

ε ′d(ω
′)ω ′2 = εdω2. (S8)

A similar behaviour is found for a Drude metal with dielectric function εm(ω) = 1−
ω2

pm/ω2. At frequencies much smaller than the plasma frequency ωpm (i.e., at mid-

infrared and smaller frequencies) κ2
m ≈−ω2

pm/c2 and does not depend on ω . Therefore,

field patterns depend only on ωpm and κ2
d . This limit holds for the spectral range covered

by the experiments.

In particular, Eq. (S8) is fulfilled when the field pattern corresponds to the cutoff

condition k2
z = 0, where kz is the component of the wavevector along the waveguide

(z) axis. Thus, if we know the cutoff frequency ωc∞
when a waveguide is filled with

a material characterized by ε∞, we can obtain the cutoff frequency when the material

filling the waveguide is characterized by a dielectric constant ε(ω):

ε(ωc)ω2
c = ε∞ ω2

c∞
. (S9)

We note that, in the region of anomalous dispersion, this equation may (and in the case

of SC does) have more than one solution.

Eq. (S9) remains an excellent approximation even for the experimental case of an

array of annular holes drilled in a gold film, where the holes are filled with SiO2. Despite

absorption losses in both Au and SiO2, the correct cutoff frequencies, ω+ and ω−, are

predicted by Eq. (S9). These cutoff frequencies are represented with vertical dash-

dotted lines in Fig. S4. Eq. (S9) works well in this case for the lossy response of the

metal is already included in ωc∞
, which is used as an input parameter.
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S6 Phonon polariton branches in a coaxial waveguide, for a single vibrational mode

The interaction of optical vibrational modes and the electromagnetic field is particularly

important when frequencies and wavevectors of phonon and photon fields coincide near

the crossover of the corresponding dispersion relations. The resulting phonon-polariton

fields are the simultaneous solutions of Maxwell’s equations (S4, S5) and lattice equa-

tions (S1, S2). These solutions are obtained from the Lagrangian density,

L =
1

8π

(

ε∞E2 −H2
)

+
1

2

(

ẋ2 −ω2
TOx2

)

+

√

ε∞

4π
ωp x ·E, (S10)

using the Lagrangian equations. In this section, we compute the polaritonic branches

of an infinite coaxial waveguide assuming that light interacts with a single vibrational

mode with frequency ωTO and coupling constant ωp. The electronic background of the

ions is characterized by the high-frequency dielectric constant ε∞.

For the sake of convenience, the magnetic field is eliminated from Maxwell’s equa-

tions (S4, S5) and the resulting wave equation (S6) is employed in the following. As

dispersive terms of vibrational modes (proportional to the second derivative of the dis-

placement field) are not included in Eq. (S10), the dynamical lattice equations derived

with the Lagrangian equations coincide with those for the bulk (Eqs. S1, S2). The rel-

ative displacement field of the ions, x, and the polarization field, P, resulting from the

lattice equations have the same symmetry as the electric field, E, inside the waveguide

and are parallel to it. This local relation between x, P, and E will be valid as long as the

dispersion relation of the phonons is neglected, which is a good approximation because

the k dependence of the uncoupled optical phonons is negligible compared to that of

photons.

Let us consider a given waveguide mode, M, characterized by a wavevector k along

the waveguide axis (for instance M = T E11, the fundamental mode of the coaxial waveg-

uide described in Sec. S2). When the aperture is filled with a material with a uniform

dielectric constant ε∞, the electric field satisfies the wave equation (S6),

∇×∇×EEM − ε∞

ω2
k

c2
EEM = 0,

where E = EEM is the electric-field vector with amplitude E, and EM is the normalized

transverse solution of Maxwell’s equations for mode M at frequency ωk. The wave

equation transforms to

∇×∇×EEM − ω2

c2
(E +4πP)EM = 0.

in order to accommodate the polarization field, P = PEM, of the oscillating ions when

the waveguide is filled with the phononic material. EM satisfies both wave equations if
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the scaling relation (S8) is fulfilled; i.e., if

ω2(E +4πP) = ε∞ω2
k E. (S11)

Sec. S5 shows that this is a good approximation for the coaxial hole array studied

experimentally.

Both the relative displacement field and the polarization field for vibrational modes

without spatial dispersion are determined by the mode profile of the electric field: x(r)=
xEM(r) and P(r) = PEM(r). Therefore, the lattice equations (S1, S2) may by written

in terms of the field amplitudes x, P, and E:

−ω2x = −ω2
TOx+ iγωx+

√

ε∞

4π
ωpE, (S12)

P =

√

ε∞

4π
ωpx+

ε∞ −1

4π
E, (S13)

where a phenomenological damping force, −γ ẋ , has been added. Eliminating P from

equations (S11-S13), the system of equations can be expressed in a matrix form, stating

that EM(r,k) is still a solution of Maxwell equations but at a frequency ω satisfying
(

ω2 −ω2
TO + iγ ω ω ωp

ω ωp ω2 −ω2
k + iδ ωk

)

·
(

ω x
√

ε∞/4πE

)

= 0.

We have included a finite linewidth in the photon mode by making the substitution

ωk → ωk − iδ/2.

In the strong-coupling regime, one can assume that ωTO ≫ ωp ≫ γ,δ at the crossing

point of the photon and TO phonon frequencies (ωk = ωTO). We find from the secu-

lar equation (setting the determinant of the matrix equal to zero) that the degeneracy

between the two modes is lifted:

ω± = ωTO ± ωp

2
− i

γFP + γ

4
,

and the frequency splitting, ∆ω = ω+−ω− = ωp, coincides with ωp in this simple

case of one phonon mode. Moreover, the width of each dressed state is the average of

the photon (δ/2) and phonon (γ/2) linewidths. The splitting can be resolved only if

∆ω > (γ +δ )/2.

In the USC regime, however, ωp is no longer a small parameter, and we need to

compute the exact values of the polaritonic frequencies at resonance,

ω± =

√

ω2
TO +

ω2
p

4
± ωp

2
,
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Figure S5. (a) Experimental transmission peak positions (black) for a coaxial nanocavity with a gap width of 21 nm filled

with SiO2, and fitted values for 1 (green) and 3 (red) vibrational modes as well as bare ENZ modes (blue). (b) Blue shift,

∆ωcen = (ωcen −ωTO1
)/ωTO1

[×100%], of the central frequency, ωcen = (ω++ω−)/2 at resonance (ωENZ = ωTO1
).

where absorption has been neglected for the sake of simplicity. We obtain the same

splitting though the central frequency is blue-shifted from ωTO to
√

ω2
TO +ω2

p/4. An

appreciable blue shifting of the central frequency is thus a signature of the USC regime.

The experimental results reported in Fig. S5(b) show the expected blue shift of up to

11% of ωTO. This behaviour cannot be explained by the constant and smaller value

of 3% predicted by the model that takes into account a single vibrational model of

SiO2 (see Fig. S5(b)). Rather, experimental trends are reproduced only when several

vibrational modes are taken into account (see Sec. S8).

Additional remarks:

• The frequency dependence of the off-diagonal coupling term is related to the long-

range nature of the Coulomb forces (i.e. the dipole-dipole infraction induced via

an electric field), and does not appear in the text-book example of two harmonic

oscillators (Sec. S7), due to the short-range nature of the oscillator restoring forces.

• The Reststrahlen band is smaller than the splitting:

ωL0 −ωTO = (ωp/2ωTO)ωp < ∆ω,

and thus, the splitting is not simply the manifestation of absorption induced within

the Reststrahlen band.
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• The asymptotic limits of the general solution are

lim
ω ′

k→0
ω− = ωk

√

ε∞/ε0, photon-like

lim
ω ′

k→0
ω+ = ωLO, phonon-like

lim
ω ′

k→∞
ω− = ωTO, phonon-like

lim
ω ′

k→∞
ω+ = ωk. photon-like

The existence of 4 different asymptotes is a clear difference with respect to the case

of two harmonic oscillators coupled with short-range interactions, which present

only three asymptotic values (as the asymptotes represented by ωTO and ωLO would

coincide in this case).

• The vibrational coupling constant is a function of the molecular concentration n,

according to ωp =
√

4πne2/M (Eq. S3). The dependence ωp ∼ √
n is shared

by classical, semi-classical and quantum descriptions4. This behaviour has been

confirmed experimentally for a classical Fabry-Perot resonator5.

S7 Coupled harmonic oscillators

We consider two mechanical oscillators with eigenfrequencies
√

kA/mA and
√

kB/mB

coupled by a spring with constant κ as a canonical model for strong coupling6. The

differential equations

mAẍA + kAxA +κ (xA − xB) = 0,

mBẍB + kBxB −κ (xA − xB) = 0,

describe the motion of the system. The harmonic solutions of these equations can be

written in the matrix form
(

ω2 −ω2
A Γ

Γ ω2 −ω2
B

)

·
( √

mAxA√
mBxB

)

= 0,

where ω2
A = (kA+κ)/mA, ω2

B = (kB+κ)/mB, and Γ = κ/
√

mAmB. The diagonal terms

contain the eigenfrequencies of the uncoupled oscillators, modified by their interaction,

while the off-diagonal terms are proportional to the coupling strength. The secular

equation yields the dressed frequencies of the system.

ω2
± =

ω2
A +ω2

B ±
√

(ω2
A −ω2

B)
2 +4Γ2

2
.

The frequency splitting, ω+−ω− ≈ Γ, increases with the coupling constant. A numeri-

cal example is presented in Fig. S6.
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Figure S6. Bare (dashed lines) and dressed (solid lines) frequencies for a pair of coupled harmonic oscillators with

ωA = ω0

√

1+κ/k0, ωB = ω0

√

1+∆k/k0 +κ/k0, and κ = 0.1 k0.

S8 Multiple vibrational degrees of freedom

Sec. S6 discusses polaritonic branches in a coaxial waveguide filled with a material

with a single vibrational optical mode. We consider now the influence of additional

vibrational modes, with damping, in the optical response of the filled coaxial aperture.

The lattice equations of motion for a unit cell with N oscillator normal modes are

ẍ1 = −ω2
TO1

x1 − γ1ẋ1 +

√

ε∞

4π
ωp1

E,

ẍ2 = −ω2
TO2

x2 − γ2ẋ2 +

√

ε∞

4π
ωp2

E,

...

ẍN = −ω2
TON

xN − γN ẋN +

√

ε∞

4π
ωpN

E,

P =

√

ε∞

4π

N

∑
i=1

ωpi
xi +

ε∞ −1

4π
E.
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Simultaneous solution of the lattice and Maxwell’s equations for transverse modes can

be expressed as a matrix equation of order N +1:














ω2 −ω2
TO1

+ iγ1ω 0 . . . 0 ωωp1

0 ω2 −ω2
TO2

+ iγ2ω . . . 0 ωωp2

...
...

...
...

...

0 0 . . . ω2 −ω2
TON

+ iγNω ωωpN

ωωp1
ωωp2

· · · ωωpN
ω2 −ω ′2

k















·F = 0,

(S14)

where F = (ωx1,ωx2, . . . ,ωxN,
√

ε∞/4πE)t . The secular equation for this matrix can

be written as

ε(ω)ω2 = ε∞ω2
k ,

provided that the effective dielectric function is generalized to include all vibrational

modes:

ε(ω) = ε∞

(

1+
N

∑
j=1

ω2
p j

ω2
TO j

−ω2 − iγ jω

)

. (S15)

In Fig. S5(a), the experimental spectral position of transmission resonances for an array

of coaxial holes filled with SiO2 are compared with those calculated with the formalism

described above. Calculations were done for two models for the dielectric constant

of SiO2: in one of them we assumed that only one vibrational mode contributed to

εSiO2
, while in the other we considered 3 vibrational modes (the contribution from each

vibrational mode to εSiO2
is described by a Lorentzian function using Palik’s data7). For

a single vibrational mode, we find a good agreement with the upper band, but the lower

band is poorly described. The agreement with both bands is improved when two lower-

frequency vibrational modes are added. Note that the size of the main gap is reduced in

this case.

Fig. S5(b) shows the blue shifting, ∆ωcen = (ωcen −ωTO1
)/ωTO1

[×100%], of the

central frequency, ωcen = (ω+ + ω−)/2, computed from the experimental values of

the upper (ω+) and lower (ω−) polaritonic frequencies at resonance as a function of

the experimental gap sizes, G = 2, 7, 14, and 21 nm. ∆ωcen increases from 6% at

G = 2 nm to 11% at G = 21 nm. This behaviour cannot be explained by the constant

value of 3% predicted by our model if we assume that a single vibrational model of

SiO2 is interacting with the cavity photons. A better agreement is obtained when 3

vibrational modes are taken into account, see Fig. S5(b). Therefore, we conclude that

the interaction with several vibrational modes reduces the gap size of the main gap but

increases the blue shifting of its central frequency.

13/22



S9 Quantum theory of phonon polaritons

In this section, we present the quantum-mechanical treatment of the coupled photon

and phonon modes in a coaxial cavity of length L with ideal PEC walls. Such simpli-

fied boundary conditions cannot provide a good quantitative agreement with the polari-

tonic frequencies experimentally measured for gap sizes smaller than the skin depth.

However, the qualitative results derived here validate the classical approach of Sec. S6.

We follow the canonical procedure for second quantization and write a Hopfield-like

Hamiltonian in the representation of the number operators for photons and phonons. We

start from the classical Lagrangian of the system under study, which is the integral of

the Lagrangian density (Eq. S10) previously used for computing the classical equations

of motion:

L =
∫

[

1

8π

(ε∞

c2
Ȧ2 − (∇×A)2

)

+
1

2

(

ẋ2 −ω2
TOx2

)

− γ12

c
x · Ȧ

]

d3r,

where, for the sake of convenience, electric and magnetic fields have been expressed

as a function of the vector potential A (in the Coulomb gauge, ∇ ·A = 0); i.e., E =
Ȧ/c, H = ∇×A. A = AAm(r) is a solution of Maxwell’s wave equations with the

appropriate boundary conditions for a given mode m, A is the field amplitude, and Am(r)

the mode profile. The mode is defined as m = {M,kz}, where M takes into account both

polarization and field profile in the XY plane and, along the direction perpendicular

to the plane, kz = πℓ/L, with ℓ = 1,2,3,. . . . In the numerical calculations below, we

will consider only the fundamental M =TE11 mode for a given kz. As we assume a

non-dispersive vibrational mode with frequency ωTO, the relative displacement field is

proportional to the vector potential inside the cavity, x = xAm(r). γ2
12 = ε∞ω2

p/4π is the

classical coupling constant.

Following Hopfield8, the Lagrangian L can be transformed to

L′ = L+
∫

γ12

c

∂ (x ·A)

∂ t
d3r.

The Hamiltonian of the system is derived from the Lagrangian function with help of the

canonical momentum fields, B= ∂L /∂ Ȧ= ε∞Ȧ/4πc2 and Y= ∂L /∂ ẋ= ẋ+γ12A/c,
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and the canonically conjugate operators,

Â = ∑
m

√

2 πℏ c2

Vm ωm ε∞

Am(r)
(

am +a+m
)

,

B̂ = i∑
m

√

ℏ ωm ε∞

8 πc2Vm
Am(r)

(

a+m −am

)

,

x̂ = ∑
m

√

ℏ

2 Vm ωTO

Am(r)
(

bm +b+m
)

,

Ŷ = i∑
m

√

ℏ ωTO

2 Vm
Am(r)

(

b+m −bm

)

,

where ωm is the photon frequency, a+ (a) and b+ (b) are the creation (annihilation)

operators for phonons and photons, respectively, and Vm is the mode volume for both

fields. These operators produce the Hamiltonian in the new representation

H = Hphoton +Hphonon +Hint ,

with

Hphoton = ∑
m

ℏωm

(

a+mam +
1

2

)

,

Hphonon = ∑
m

ℏωTO

(

b+mbm +
1

2

)

,

Hint = ∑
m

ℏ
[

iCm

(

a+mbm −amb+m
)

+Dm

(

2a+k am +1
)

+iCm

(

ambm −a+mb+m
)

+Dm

(

amam +a+ma+m
)]

.

Hphoton and Hphonon describe the energy of bare cavity photons and phonons in terms of

their respective number operators a+mam and b+mbm. Several terms contribute to Hint that

depend on the coupling constants

Cm =
ωp

2

√

ωTO

ωm
, Dm =

ω2
p

4ωm
.

Terms in the first line constitute the resonant part of the light-matter interaction9. The

term proportional to Cm describes the creation (annihilation) of one photon and the an-

nihilation (creation) of a phonon with the same wave number m. The term proportional

to Dm comes from the A2 term in the original Hamiltonian. It contains the photon

number operator that produces a blue shifting (as Dm > 0) of the bare cavity phonon

frequency. In the second line of Hint , we find the antiresonant terms that are frequently
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neglected when the Hamiltonian is diagonalized. These terms produce the simultaneous

destruction or creation of two excitations.

We will diagonalize the full Hamiltonian (including the antiresonant terms) using the

Bogoliubov transformation,

pmi = wmiam + xmibm + ymia
+
m + zmib

+
m.

The Bose commutation rule
[

pmi, p+
m′i′
]

= δi,i′δm,m′, where i, i′ are two solutions of the

secular equation, imposes the normalization condition,

w∗
miwmi′ + x∗mixmi′ − y∗miymi′ − z∗mizmi′ = δi,i′,

to the Hopfield coefficients. From the equation of motion for operators in the Heisen-

berg picture,
[

pmi, Ĥ
]

= ℏω pmi,

the eigenvalue problem may be written in a matrix form:








ωm +2Dm −ω −iCm −2Dm −iCm

iCm ωTO −ω −iCm 0

2Dm −iCm −ωm −2Dm −ω −iCm

−iCm 0 iCm −ωTO −ω

















wmi

xmi

ymi

zmi









= 0.

The determinant of the matrix, ω4 −
(

ω2
m +ω2

TO +ω2
p

)

ω2 +ω2
mω2

TO = 0, is identical

to the one obtained with the classical approach above (if absorption is neglected). In

other words, quantum and classical descriptions provide the same polaritonic branches.

This equation may therefore be rewritten in the form ε(ω)ω2 = ε∞ω2
m, where ε(ω) =

ε∞

[

1+ω2
p/(ω

2
TO −ω2)

]

.

In Fig. S7(a) the measured polaritonic frequencies are fitted with our model assuming

that the fundamental cavity photon is interacting with the TO phonon. The correspond-

ing Hopfield coefficients |w−y|2 and |x−z|2, which are solutions of the matrix equation

for a given eigenvalue, are depicted in Fig. S7(b). The Hopfield coefficients evaluate

the relative contribution of photon and phonon modes to the polaritonic states.

The quantum approach accounts for the content of bare modes in the ground state

energy. The ground state of polariton excitations, |G〉, contains a finite number of

virtual cavity photons and phonons per mode9,
〈

G|a+mam|G
〉

= ∑
i=±

|yim|2,
〈

G|b+mbm|G
〉

= ∑
i=±

|zim|2,
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Figure S7. (Colour online). (a) Measured phonon polariton branches and the calculated zero-point differential frequency,

∆ωZP[x10]. Experimental points are fitted with the eigenfrequencies calculated assuming that cavity photons interact with a

single vibrational mode of SiO2. The bare ENZ frequency is the single fitting parameter. (b) Hopfield coefficients

corresponding to the measured frequencies.

where i =± for the two polaritonic branches. The difference between the ground state

energy of the polaritons, EG, and ground state energy of the uncoupled system, E0 , per

mode

EG −E0 = ℏ∆ωZP = ℏDm − ∑
i=±

ℏωi(|yim|2,+|zim|2),

is a function of the number of virtual modes10. We find in the first term of this ex-

pression the positive coupling constant, Dm, and in the second term the negative cor-

relation contribution for a given mode, ℏ∆ωcor
ZP , for the two polaritonic frequencies

ω±9. These quantities can be written as a function of the normalized coupling strength

η = ωp/2ωTO at resonance (ωm = ωTO) if we use the exact value of the polaritonic fre-

quencies, ω±/ωTO =
√

1+η2±η , and retain the leading terms in the series expansion

for both the positive coupling constant Dm and the Hopfield coefficients:

Dm

ωTO

= η2,

∆ωcor
ZP

ωTO

= −η2

2

√

1+η2.

Calculated values of these quantities and the resulting zero-point differential frequency,

∆ωZP = Dm −∆ωcor
ZP , are reported in Table S2 for measured values of η . We find that

∆ωZP is about 3% of the resonance frequency, ωTO. Moreover, Fig. S7 (a) compares

the polaritonic branches with the exact differential zero point frequency ∆ωZP, which

increases from 2% of ωTO at diameter D = 460 nm to 5% of ωTO at D = 1120 nm.
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SiO2 gap (nm) 2 7 14 21

η 0.254 0.26 0.261 0.255

Dm/ωTO (%) 6.45 6.73 6.81 6.50

∆ωcor
ZP /ωTO (%) -3.33 -3.48 -3.52 -3.35

∆ωZP/ωTO (%) 3.12 3.25 3.29 3.15

Table S2. Differential zero-point frequency, ∆ωZP = Dm +∆ωcor
ZP , at resonance, ωk = ωTO, for the measured normalized

coupling strength, η . The negative correlation contribution, ∆ωcor
ZP , and the positive coupling coefficient, Dm, are also reported.

These quantities are normalized by the resonance frequency ωTO.

S10 Hopfield-like Hamiltonian for multiple vibrational degrees of freedom

The Hopfield Hamiltonian can be easily generalized to include N vibrational modes:

Hphoton = ∑
m

ℏωm

(

a+mam +
1

2

)

,

Hphonon = ∑
jm

ℏωTO j

(

b+jmb jm +
1

2

)

,

Hint = ∑
jm

ℏ

[

iC jm

(

a+mb jm −amb+jm

)

+D jm

(

2a+k am +1
)

+iC jm

(

amb jm −a+mb+jm

)

+D jm

(

amam +a+ma+m
)

]

,

with j = 1, . . . ,N. A new Bogoliubov transformation,

pmi = wmiam +∑
j

x jmib jm + ymia
+
m +∑

j

z jmib
+
jm,

is used to diagonalize the Hamiltonian. The eigenvalue problem may be expressed as a
2(N +1)×2(N +1) matrix,























ωm +2Dm −ω −2Dm −iC1m −iC1m · · · −iCNm −iCNm

2Dm −ωm −2Dm −ω −iC1m −iC1m · · · −iCNm −iCNm

iC1m −iC1m ωTO1
−ω 0 · · · 0 0

−iC1m iC1m 0 −ωTO1
−ω · · · 0 0

...
...

...
...

...
...

...

iCNm −iCNm 0 0 · · · ωTON
−ω 0

−iCNm iCNm 0 0 · · · 0 −ωTON
−ω























·F = 0.

where F = (wmi,ymi,x1mi,z1mi, . . . ,xNmi,zNmi)
t is a column vector, and

Dm =
N

∑
i=1

Dim =
1

4ωm

N

∑
i=1

ω2
pi
,

Cim =
ωpi

2

√

ωTOi

ωm
,

are the coupling constants. The secular equation may be also written as in the classi-

cal approach, ω2ε(ω) = ε∞ω2
k , where the dielectric constant ε(ω) is a sum of several

Lorentzian functions (Eq. S15).
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Figure S8. (Colour online). (a) Measured phonon polariton branches fitted with the eigenfrequencies calculated assuming

that cavity photons interact with two vibrational modes of SiO2. The bare ENZ frequency is the single fitting parameter. (b)

Hopfield coefficients corresponding to the measured frequencies.

Employing the normalization condition,

w∗
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j

z∗jmiz jmi′ = δi,i′

we find the final expression for the normalized Hopfield coefficients for the eigenvalue
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We have highlighted the relevance of the first vibrational mode for the experiments. All

frequencies are normalized by ωTO1
. In Fig. S8(a) the measured polaritonic frequencies

are fitted with our model assuming that two vibrational modes interact with the cavity

photon. The corresponding Hopfield coefficients |w− y|2 and |x− z|2, depicted in Fig.

S8(b), evaluate the relative contribution of photon and phonon modes to the polaritonic

states.
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Figure S9. Dispersion relation of phonon polaritons for the vibrational modes of bulk SiO2.
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S11 Bulk phonon polaritons

Transverse waves in a homogeneous material also satisfy the propagation condition

ε(ω)ω2 = ω2
k , where ωk = ck, c is the speed of light and k the wavenumber of the plain

wave. Following the approach outlined in Sec. S6, it is straightforward to show that

bulk polaritonic modes are solution of the matrix equation (S14). Fig. S9 shows the

polaritonics bands in bulk SiO2 for three vibrational modes.

S12 Fitting experimental data to the cavity model

For a given coaxial array filled with a phononic material, let us consider we have the

spectral positions of the transmission resonances, ωi, for the N+1 polaritonic branches

corresponding to the N vibrational modes and the fundamental waveguide mode. The

fitting to the polaritonic dispersion relation, ω2ε(ω) = ε∞ω2
k , consists in the following

two steps:

1. Extract the dispersion relation of the unfilled hole from the spectral positions, ωk =
ωi0

√

ε(ωi0)/ε∞. Notice that a single branch i0 is needed.

2. Solve the polynomial equation ω2ε(ω) = ε∞ωk for the remaining values of i in

order to obtain the fitting frequencies.

Fig. S5(a) shows the results of the fitting for a coaxial gap of 21 nm filled with SiO2.

Fitting with one and three vibrational modes are compared with experimental results.
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