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Abstract Analysis of brain ultrastructure using electron microscopy typically relies on chemical

fixation. However, this is known to cause significant tissue distortion including a reduction in the

extracellular space. Cryo fixation is thought to give a truer representation of biological structures,

and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to

which these two fixation methods differ in terms of their preservation of the different cellular

compartments, and the arrangement of membranes at the synapse and around blood vessels.

As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of

docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and

blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs

significantly comparing cryo and chemical fixation conditions.

DOI: 10.7554/eLife.05793.001

Introduction
The renewed interest in electron microscopy and the emergence of serial imaging approaches

to capture volumes of biological tissues at an unprecedented scale (Briggman et al., 2011;

Helmstaedter et al., 2013; Bock et al., 2011; reviewed by Briggman and Bock, 2012) have

driven the re-examination of commonly used preparation methods (Mikula et al., 2012; Tapia

et al., 2012). This has not only been necessary to help increase image contrast and improve

imaging speed on a larger scale, but also to help computer vision research produce assisted

segmentation approaches for reconstructing different features. However, with this re-invigoration of

electron microscope technology, and the need for automation to reconstruct complex structures, it

is important to understand how chemical fixation alters brain ultrastructure.

The distortion of cell morphology by immersing samples in fixative was apparent in the earliest

electron microscopy investigations of the brain, leading to experiments that made detailed

comparisons between preparation methods (Schultz et al., 1957). These paid careful attention to

how different fixatives affected cell volume and preserved the ultrastructure. However, the need to

consistently preserve entire organs soon led to cardiac perfusion of aldehydes, and staining with

buffered osmium, which became the accepted approach for electron microscopy studies (Karlsson

and Schultz, 1965, 1966), despite the tissue shrinkage it caused. The degree of shrinkage depends

on differences in fixative composition, concentration (Hillman and Deutsch, 1978), and region

(Kalimo, 1976). Shrinkage has significant implications for the measurement of parameters such as the

density of structures; for example, synaptic contacts. Few studies have incorporated a shrinkage

factor. Kalimo et al., adjusted for a 16% linear reduction (Kalimo, 1976), and Kinney et al. 15%

shrinkage along each orthogonal axis (Kinney et al., 2013). Any correction is typically calculated
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on the basis of the changes that occur during the embedding process, with the assumption that

no alterations occur during the initial tissue fixation. Using rudimentary indicators such as the

position of lesion sites (Schüz and Palm, 1989), or observations of how the brain filled the skull

(O’Kusky and Colonnier, 1982), gave no precise value for how any brain region changed in

volume during the preservation process. In the current study, we made quantitative analyses of

fresh and chemically fixed brain tissue using discrete landmarks that allow us to assess the extent

of volume changes that occur in the somatosensory cortex.

A persistent concern of using chemical fixation has also been the discrepancy between what

electron microscopy sees and physiological experiments measure, particularly in terms of extracellular

space. Even prior to ultrastructural brain imaging, a measurement of ionic concentrations showed that

around a fifth of the tissue volume was extracellular space (Allen, 1955). This was subsequently

verified by various in vivo experiments, using techniques such as resistivity measurements and

diffusion analysis. The amount of extracellular space varies between brain regions and the stage

of development (Syková and Nicholson, 2008). In the neocortex of the adult rat, for example, it is

18–22%, and at postnatal day 4–7, 30% and 43%, depending on the cortical layer (Lehmenkühler

et al., 1993). Yet standard electron microscopy of this tissue using chemical fixation shows con-

siderably less. This mismatch led Anton Van Harreveld to explore this phenomenon, along with

alternative methods of brain fixation.

To circumvent any reaction to the chemical fixatives, Van Harreveld introduced a method of rapid

freezing of exposed live brain, followed by resin embedding at low temperatures, known as freeze

eLife digest For many years, scientists have used chemicals to preserve brain tissue to observe

its fine structure using high power microscopes. Korogod et al. now show that these chemicals, or

fixatives, cause the tissue to shrink, giving the false impression that the cells are tightly packed

together. This has led to misinterpretations of how the brain is structured. For example, components

such as the synapse, used by neurons to communicate with each other, are bathed in a watery

environment, rather than being tightly enclosed by neighbouring cells as previously thought.

Electron microscopy is the only imaging method that is able to see the detailed structure of the

nervous system, including synaptic connections. The technique fires a beam of electrons through

a sample held in a vacuum and creates images at a higher magnification than light microscopes.

However, the electron beam and the vacuum damages live cells and tissues. Therefore, samples must

be ‘fixed’ to preserve them before they are imaged with these methods. However, the standard

method for fixing brain tissue uses chemical ‘fixatives’, even though these cause shrinkage, and

distort the cells.

Korogod et al. used an alternative method of fixation—freezing—to better preserve tiny pieces of

mouse brain in their natural state. This was achieved with a technique called ‘high pressure freezing’

that combines jets of liquid nitrogen with very high pressures to instantaneously preserve small

samples without causing damage through the formation of ice crystals, or any shrinkage and

distortion. Once frozen, the samples of mouse brain are encased in resin, and then imaged with the

electron microscope. A comparison between the two preservation techniques showed that chemical

fixatives remove the watery environment, or extracellular fluid, that surrounds the cells in the brain,

squashing them together.

The synapses were surrounded by large amounts of extracellular fluid, but cryo fixation also

revealed that these sites of communication between neurons also contained many more

vesicles—the packets containing the chemicals that pass signals across the synapse. Another type of

cell, the glial cell, that supports and helps to maintain neurons, was also strongly distorted by the

chemical fixation. These were understood to tightly wrap around synapses, as well as blood vessels,

but cryo fixation showed this to be less prominent.

This study illustrates that our understanding of how brain’s cells are arranged has ignored the

effects of the chemicals used to preserve them. Although cryo fixation is only able to preserve tiny

samples, it reveals a truer picture of their natural structure, giving scientists a better understanding

of how the brain works.

DOI: 10.7554/eLife.05793.002

Korogod et al. eLife 2015;4:e05793. DOI: 10.7554/eLife.05793 2 of 17

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.05793.002
http://dx.doi.org/10.7554/eLife.05793


substitution (Van Harreveld et al., 1965). This technique revealed the physiological levels of

extracellular space. Here, we have revisited this method, using high-pressure freezing to preserve

tissue volumes, and comparing how the different cellular compartments are affected with chemical

fixation. Ultrastructural analysis using serial section electron microscopy showed that chemically

fixed tissue has a reduced volume: a significant loss of extracellular space and a decrease in the

volume of neurites. However, the volume fraction of astrocytic elements increased following

chemical fixation. In cryo-fixed tissue astrocytes showed a less intimate association with synapses,

and their endfeet have a reduced coverage of blood vessels. Differences in membrane arrangements

were also apparent at the synapse with a lower density of vesicles along the presynaptic

membrane in chemically fixed synapses.

Results
We first analysed how chemical fixation altered the volume of the neocortex by comparing fresh

and chemically fixed brain sections cut through mouse primary somatosensory barrel cortex

(Figure 1A, Figure 1—figure supplement 1). Coronal and tangential sections show the

distinctive barrel pattern in layer IV, corresponding to the arrangement of whiskers on the mouse’s

muzzle, enabling us to estimate the total volume change. The chemical fixation protocol was

a standard cardiac perfusion with buffered paraformaldehyde and glutaraldehyde, used widely as

a preparation method for electron microscopy of brain tissue. Fresh sections were prepared

from brains that had been removed rapidly from the skulls of decapitated mice and harvested in

the same manner as for electrophysiological experiments.

Chemically fixed coronal sections showed enlarged ventricles and a clear reduction in total

area compared to the fresh sections (Figure 1A). The cortical thickness was reduced by 16%, as

measured from the pial surface to the start of the white matter (fresh 1.13 ± 0.02 mm, N = 6 mice;

chemically fixed 0.95 ± 0.07 mm, N = 14 mice; p = 0.00004, unpaired two-tailed Student’s t-test).

Tangentially cut sections showed 18% shrinkage along the rostrocaudal axis, measured along

the barrel rows: A1–A4, B1–B4, C1–C4 and D1–D4 (fresh 0.90 ± 0.01 mm, N = 3 mice; chemically

fixed 0.74 ± 0.03 mm, N = 3 mice; p = 0.006, one way ANOVA). However, no shrinkage was

found along the barrel arcs, on the mediolateral axis: A1–D1, A2–D2, A3–D3, A4–D4, A1–D4,

A4–D1 (fresh 1.18 ± 0.13 mm, N = 3 mice; chemically fixed 1.19 ± 0.11 mm, N = 3 mice; p = 0.942,

one way ANOVA). Taken together, these changes indicate that chemical fixation induced total

volume shrinkage in the somatosensory neocortex of 30%.

Using serial section electron microscopy, we compared the neuropil from the chemically fixed

brains with tissue samples that had been rapidly excised and cryo fixed using high-pressure freezing

(McDonald and Auer, 2006) and resin embedded by freeze substitution (Sosinsky et al., 2008).

The chemically and cryo-fixed tissue samples were similarly stained with heavy metals giving

a suitable contrast to identify all the membranes and large macromolecular structures (Figure 1C).

Cryo-fixed neuropil appeared qualitatively different from the chemically fixed tissue. Neuronal and

glial processes were smooth and round, appearing to float in extracellular space. With chemical

fixation, the neuropil showed markedly less extracellular space with membranes tightly apposed to

each other, often with complex concave and convex shapes. Quantification of serial section electron

micrographs revealed that the volume fraction of extracellular space in cryo-fixed neuropil was six

times more than chemically fixed samples (Figure 1D; cryo fixation, 15.4 ± 5.4%, N = 4 mice;

chemical fixation, 2.47 ± 1.5%, N = 4 mice; p = 0.003, one way ANOVA).

Further analysis of these volumes measured the contribution of the different cellular compartments.

This showed that the astrocytic volume fraction in the cryofixed neuropil was half of the value for chemical

fixation (Figure 1E, Figure 1—figure supplement 1; cryo fixed, 7.4 ± 1.8%, N = 4 mice; chemical fixation,

14.4 ± 3.3%, N = 4 mice; p = 0.01, one way ANOVA). In contrast, the volume fraction occupied by axons

and dendrites was similar between the fixation conditions (Figure 1—figure supplement 1; cryo fixed

76.7 ± 5.5%, N = 4 mice, chemically fixed 84.1 ± 4.1%, N = 4 mice; p = 0.074, one way ANOVA). Chemical

fixation therefore appears to induce an increase in the astrocytic volume fraction.

We next compared the structure of synapses under the two fixation conditions (Figure 2). Synapses

were clearly visible in all material (Figure 2A), and measurements from serial images showed that

chemically fixed neuropil had significantly higher synapse density than cryo fixed (Figure 2B; cryo

fixed = 0.63 ± 0.11 μm−3; chemically fixed = 0.87 ± 0.15 μm−3, p = 0.042, one way ANOVA, N = 4 mice

each group). The increased synapse density after chemical fixation is consistent with the overall
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Figure 1. Chemical fixation reduces cortical volume and extracellular space. (A) Coronal sections of fresh (left) and

chemically fixed (right) adult mouse brains. Double-headed arrows overlaying the somatosensory cortex of each

section show the position at which the cortical thickness was measured. (B) Measurements of cortical thickness show

a 16% reduction after chemical fixation (p = 0.00004, unpaired Student’s t-test, left). Measurements across tangential

sections show 18% shrinkage in the rostrocaudal axis (p = 0.006, one way ANOVA), but not in the mediolateral axis

(p = 0.942, one way ANOVA, right). (C) TEM of cryo fixed (left) and chemically fixed (right) neuropil from the adult

mouse cerebral cortex show reduction in the extracellular space (pseudo-coloured in blue) after chemical fixation.

(D) Measurements of the volume fraction of extracellular space from serial section analysis showed a six-fold

difference between the two fixation techniques (p = 0.003, one way ANOVA). (E) Measurements of volumes

occupied by extracellular space, neurites, and glia, from serial section transmission electron microscopy sections

Figure 1. continued on next page
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volume shrinkage of the neocortex (Figure 1). Measuring the distance from the edge of spine

synapses to the nearest cell membrane, showed a three times larger gap after cryo fixation compared

to chemical fixation (Figure 2B; cryo fixation, 166 ± 18 nm, N = 3 mice; chemical fixation, 53 ± 5 nm,

N = 3 mice; p = 2.7 × 10−8, unpaired two-tailed Student’s t-test). As astrocytes are present at many

synapses, where they play a role in glutamate uptake, extracellular space homeostasis, and contribute

to the regulation of synaptic transmission (Ventura and Harris, 1999; Oliet et al., 2001), we counted

the proportion of spine synapses enveloped, or partially enveloped, by their processes (Figure 2B).

Astrocytic processes at these types of synapses were significantly fewer in cryo-fixed cortex (cryo

fixation, 34.0 ± 11.0%, N = 4 mice; chemical fixation, 62.4 ± 1.9%, N = 3 mice; p = 0.008, one way

ANOVA). The numbers found in the chemically fixed neuropil are in good agreement with previous

measurements (somatosensory cortex [Genoud et al., 2006]; hippocampus [Harris and Stevens,

1989]). Cryo-fixed tissue, in which there is a greater preservation of the extracellular space, therefore,

reveals larger volumes around synaptic clefts suggesting that neurotransmitters can diffuse into large

volumes of extracellular fluid before encountering other cell membranes.

The astrocytic elements in chemically fixed neuropil typically show less stained material in their

cytoplasm compared to neurons. Their membranes appear to lie against the membranes of the

surrounding axons and dendrites, giving them concave shapes, with a space-filling appearance, and

large numbers of small processes squeezed between the neurites (Figure 2C). Reconstructions

showed that cryo-fixed astrocytic processes stained similarly to axons and dendrites and were more

rounded in appearance compared to astrocytes after chemical fixation (Figure 2D).

The apparent difference in appearance and arrangement of the astrocytic processes between the

two fixation conditions was also investigated at the level of the blood capillaries (Figure 3), where

their close association is suggested to play an important role in the regulation of solutes entering

through the blood–brain barrier by almost completely surrounding the endothelial cells that form the

vessel lumen (Mathiisen et al., 2010). By measuring the proportion of vessels that were surrounded

by astrocytic endfeet (Figure 3A,B), we found significantly less coverage in cryo-fixed tissue

(Figure 3C; percentage astrocytic coverage: cryo fixed 62.9 ± 15.0%, n = 11; chemical fixation

94.4 ± 6.0%, n = 69; p < 0.0001, unpaired two-tailed Student’s t-test). Cryo-fixed tissue

therefore reveals reduced astrocytic coverage of blood vessels suggesting that the abluminal

surface of the endothelial cell has far greater direct access via the extracellular space to the neural

elements within the brain than previously thought.

Synapses in chemically fixed tissue can be classified according to their morphology, and in the

CNS they are typically categorized as either type 1 or type 2 (Gray, 1959). Type 2 synapses, later

characterized as GABAergic, are distinguishable by their pre- and post-synaptic densities showing

equal thickness (Uchizono, 1965; Colonnier, 1968), and their vesicles appearing flattened with

darkened centres (Figure 4A, Figure 4—figure supplement 1). Measurements of the long and

short diameters of synaptic vesicles at type 2 synapses in chemically fixed tissue indicate their ovoid

Figure 1. Continued

showed how the different compartments are altered by chemical fixation. Volume occupied by astrocytic processes

was significantly increased after chemical fixation (p = 0.01, one way ANOVA). However, there was no change in the

volume occupied by axons and dendrites (p = 0.074, one way ANOVA). As the volume of the cortex is reduced by

31% after chemical fixation, these percentages are shown in the bar chart in which the total volume of chemically

fixed neuropil is 69% of the cryo-fixed value (100%).

DOI: 10.7554/eLife.05793.003

The following source data and figure supplements are available for figure 1:

Source data 1. Data values and statistics underlying Figure 1B, D, E.

DOI: 10.7554/eLife.05793.004

Figure supplement 1. Schematic scale model (upper image) representing the fresh somatosensory cortex (outer

cube) and chemically fixed cortex (inner cube), showing the extent to which the two fixations change the volume of

this brain region.

DOI: 10.7554/eLife.05793.005

Figure supplement 2. Comparison between chemical fixation (left hand images; A and C) and cryo fixation (right

hand images; B and D) of acute brain slices shows that both fixation conditions are able to reveal significant amounts

of extracellular space.

DOI: 10.7554/eLife.05793.006

Korogod et al. eLife 2015;4:e05793. DOI: 10.7554/eLife.05793 5 of 17

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.05793.003
http://dx.doi.org/10.7554/eLife.05793.004
http://dx.doi.org/10.7554/eLife.05793.005
http://dx.doi.org/10.7554/eLife.05793.006
http://dx.doi.org/10.7554/eLife.05793


Figure 2. Cryo fixation reveals a larger peri-synaptic space and reduced astrocytic coverage. (A) Cryo-fixed neuropil

shows synaptic contacts with large amounts of surrounding extracellular space. (B) Synaptic density measurements

show the chemically fixed neuropil to have 38% more synapses (left graph, p < 0.05, one way ANOVA). Dendritic

spine synapses (presumed glutamatergic) show greater distances between the edge of the contact zone and the

Figure 2. continued on next page
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shape (Figure 4B; long diameter ‘y’, 41.0 ± 5.4 nm; short diameter ‘x’, 28.2 ± 3.7 nm). The glutamatergic

type 1 synapses in chemically fixed tissue, in contrast, have an obvious asymmetry with larger

postsynaptic densities, and round vesicles with clear centres (Figure 4—figure supplement 1;

diameter y, 40.0 ± 3.8 nm; diameter x, 39.1 ± 3.7 nm). In cryo-fixed neocortex all synapses, on

spines and dendritic shafts showed similar symmetry, and vesicle diameters indicated them all as

spherical (Figure 4A,B; diameter y, 38.7 ± 4.3 nm; diameter x, 38.5 ± 4.1 nm). This suggests that the

chemical fixation causes the structural changes that allow this morphological distinction to be made.

To check this, and verify that it was not an effect of the dehydration and embedding process,

chemically fixed samples were high-pressure frozen and embedded at low temperature, by freeze

substitution (Sosinsky et al., 2008). This material contained both asymmetric synapses (vesicle

diameter y, 39.2 ± 4.0 nm; diameter x, 38.9 ± 4.8 nm) and synapses with symmetric pre- and post-synaptic

densities, and flattened vesicles (Figure 4; diameter y, 41.6 ± 5.3 nm; diameter x, 27.7 ± 3.4 nm).

The hallmarks differentiating glutamatergic and GABAergic synapses would therefore appear to be

induced by chemical fixation.

We next compared the arrangement of synaptic vesicles in the two fixation conditions, measuring

the distance of all vesicles within 150 nm of the presynaptic membrane, for synapses found on

dendritic spines, larger than 0.2 microns and cut perpendicularly to the synaptic cleft (Figure 5).

The average size of the synapses was the same in each group (Figure 5—figure supplement 1).

The overall density of vesicles, within 150 nm of the presynaptic membrane, was the same in each

group (cryo fixed, 37.9 ± 2.4 μm−1, N = 3 mice; chemical fixed, 38.0 ± 2.6 μm−1; N = 3 mice, p = 0.85;

one way ANOVA). There were, however, clear differences in their spatial distribution (Figure 5B).

The synaptic vesicle density within 30 nm of the presynaptic membrane was significantly increased in

the cryo-fixed samples (Figure 5B; cryo fixed, 10.46 ± 0.88 μm−1; chemical fixed, 2.99 ± 0.53 μm−1;

p < 0.001, unpaired Student’s t-test). Between 30 and 60 nm this had decreased in cryo-fixed samples

(Figure 5B; cryo fixed, 4.01 ± 0.56 μm−1; chemical fixed, 8.02 ± 0.87 μm−1; p < 0.001, unpaired Student’s

t-test). Beyond 60 nm there were no differences comparing cryo-fixed and chemically fixed

synapses. This suggests that cryo fixation exposes two groups of vesicles; a group lying along

the presynaptic membrane, and a second lying further back, away from the site of release.

Discussion
In this study, we quantified differences in the ultrastructure of the adult mouse neocortex comparing

standard chemical fixation with cryo fixation. Although chemical fixation is used widely and gives good

ultrastructural preservation, it is also known to reduce the extracellular space and cause tissue shrinkage.

Cryo-fixed tissue is likely to more closely resemble the native structure of the neocortex, and it is therefore

of interest to compare cellular compartments and synaptic structures after cryo vs chemical fixation.

Changes in the cellular compartments
The analysis of coronal slices at the level of the somatosensory cortex shows that chemical fixation

reduced the tissue volume by 30%. This volume decrease would show an increase in synapse density

of 43% (1/0.7). Our synaptic density measurements showed a 38% increase between the cryo-fixed

Figure 2. Continued

nearest membrane compared with chemical fixation (middle graph, p < 0.001, unpaired Student’s t-test). Cryo-fixed

synapses show less astrocytic coverage (right graph, p < 0.01; one way ANOVA). (C) Reconstructions from serial electron

microscope images, of axonal boutons (blue) synapsing with dendritic spines (grey), show the astrocytic processes in the

near vicinity (red). In the cryo-fixed synapse (left), the astrocytic process is not squeezed close to the synaptic contact

(indicated with vesicles in yellow). In the chemically fixed example (right), the astrocyte tightly surrounds the synapse,

where the vesicle-filled axonal bouton contacts the spine behind it. (D) Astrocytic processes reconstructed from serial

FIBSEM images using the ilastik software (www.ilastik.org) show that chemically fixed astrocytic processes (right) have

a more elaborate morphology with small processes extending from the flattened lamellae compared with the less

complex structure of cryo-fixed astrocytes (left).

DOI: 10.7554/eLife.05793.007

The following source data is available for figure 2:

Source data 1. Data values and statistics underlying Figure 2B.

DOI: 10.7554/eLife.05793.008
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and chemically fixed tissue. The difference between these two values (43% vs 38%) might be

accounted for by the fact that synapses were only counted in the neuropil, whereas the cortical

volume measurements are from the whole tissue that includes cell bodies and blood vessels. We also

cannot rule out changes to the tissue that may occur during the freeze substitution procedure as the

acetone replaces the water at low temperature prior to any fixation with the osmium.

The fact that the chemical fixation process is relatively slow, involving the diffusion of aldehydes

from blood vessels into the surrounding tissue, may also raise questions as to whether the short

period of ischemia may cause a rapid assembly or disassembly of synaptic contacts. Sustained

occlusion of cerebral vessels eventually leads to cell death and removal of synapses (Kovalenko

et al., 2006). However, correlative in vivo light and electron microscopy studies would argue

against this as they show that any anoxic changes initiated by the chemical fixation procedure

do not result in the appearances or disappearances of any synaptic features such as dendritic

spines or axonal boutons (Trachtenberg et al., 2002; De Paola et al., 2006; Holtmaat et al.,

2006; Knott et al., 2006). Additionally, imaging the protein PSD95 in vivo also pinpoints all

ultrastructurally identified synaptic connections, imaged with retrospective 3D electron microscopy

(Cane et al., 2014), suggesting that it is unlikely that any synaptic formation or removal is initiated

by the chemical fixation process.

Figure 3. Cryo-fixed capillaries show less astrocytic coverage. (A) Electron micrographs of transversely sectioned

capillaries show the astrocytic endfeet pseudo-coloured in orange. Cryo-fixed example shows a darkly stained erythrocyte

within the vessel lumen. (B) Schematic diagram indicates the coverage measured. (C) Chemically fixed tissue contains

capillaries with more glial coverage (p < 0.0001, n = 11 vessels cryo, n = 69 vessels perfused, unpaired Student’s t-test).

DOI: 10.7554/eLife.05793.009

The following source data is available for figure 3:

Source data 1. Data values and statistics underlying Figure 3C.

DOI: 10.7554/eLife.05793.010
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To check that the high-pressure freezing itself does not cause a significant alteration of the tissue

morphology, we fixed acute slices, prepared in the same manner as for electrophysiological

recording, with the cryo fixation or by immersion in the chemical fixative. Both groups showed similar

Figure 4. Vesicles of symmetric synapses are distorted by chemical fixation. (A) Cryo-fixed synapses on a dendritic

shaft (left image) and on a dendritic spine (middle image) show similar rounded vesicles. A chemically fixed, high-

pressure frozen and cryo-substituted (right hand image) synapse on a dendritic shaft, however, shows typical features

of a symmetric (presumed GABAergic) synapse with ovoid vesicles. (B) Measurements of the short (x) and long (y)

diameters of synaptic vesicles. Synapses in cryo-fixed tissue cannot be classified according to the symmetry of pre- and

post-synaptic densities and all synaptic vesicles were round. Asymmetric synapses in chemically fixed tissue show

similarly shaped vesicles, as do the vesicles at asymmetric synapses of chemically fixed tissue that is then high-pressure

frozen and freeze substituted in resin. The symmetric synapses, seen in chemically fixed tissue, show vesicles with

characteristic ovoid shapes irrespective of how they were resin embedded.

DOI: 10.7554/eLife.05793.011

The following source data and figure supplement are available for figure 4:

Source data 1. Statistics underlying Figure 4B.

DOI: 10.7554/eLife.05793.012

Figure supplement 1. Examples of glutamatergic synapses (A, B, C), situated on dendritic spines, with round clear

vesicles; and presumed GABAergic synapses (D, E, F) on dendritic shafts showing flattened, dark vesicles.

DOI: 10.7554/eLife.05793.013
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Figure 5. Cryo fixation preserves larger numbers of vesicles at the pre-synaptic membrane. (A) Electron

tomography of a 200-nm thick section shows a cryo-fixed (upper) synapse with a large number of vesicles close

to the presynaptic membrane in comparison with a similar chemically fixed synapse (lower). In each case three

sample images are shown from complete tomographic series. Three-dimensional reconstructions of this

region (right hand images) show all the vesicles (red) in relation to the presynaptic membrane (blue).

(B) Measurements of the distance of vesicles from the presynaptic membrane show that more vesicles are

arranged closer (0–30 nm) to the synapse after cryo fixation (p < 0.0001, unpaired Student’s t-test).

DOI: 10.7554/eLife.05793.014

Figure 5. continued on next page
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tissue quality and levels of extracellular space, at least where ice crystal formation had not disrupted

the ultrastructure (Figure 1—figure supplement 2).

In terms of how the different cellular compartments react to the chemical perfusion fixation,

the earliest investigations were aware of the discrepancy between physiological and structural

measurements. The ‘watery look of the astrocyte’ led to suggestions that if the physiological

measurements of extracellular space were correct then ‘methods of fixation here applied must

be erroneous…’ (Schultz et al., 1957). Observations like this and many others preceded cryo-fixation

studies, first undertaken by Anton Van Harreveld. In Van Harreveld’s experiments, exposed brain

surfaces were instantaneously fixed, using cooled metal plates, to reveal a physiological level of

extracellular space. However, Van Harreveld also found that delaying the process until after the onset

of anoxia, preserved a neuropil similar to that seen with chemical fixation (Van Harreveld et al.,

1965). This was the first illustration of how the extracellular space rapidly disappears once the heart

has stopped. More recent live imaging of fluorescent diffusion markers showed a similar reduction

(Thorne and Nicholson, 2006) suggesting that the process of cardiac perfusion for chemical fixation

would induce a normal tissue response to anoxia resulting from the removal of the blood supply.

The reduction of extracellular space cannot account solely for the total tissue volume decrease

seen after chemical fixation. Analyses to calculate the volume fractions of different cell components

show that the neuronal part remains unchanged. However, considering the total tissue volume has

shrunk by 30% the neuronal portion has therefore reduced similarly to maintain the same volume

fraction. The doubling of the astrocytic volume fraction after chemical fixation could reflect how this

cell type reacts in the aftermath of anoxia. Oxygen depletion elicits an energy reduction resulting in

ions moving down their concentration gradients, with an increase in extracellular potassium, and

wholesale depolarisation and spreading depression throughout the tissue (Van Harreveld and

Malhotra, 1967; Lutz, 1992). The critical role that astrocytes play in buffering potassium in the

extracellular space (Kofuji and Newman, 2004; Binder et al., 2006) and water movement during

brain ischemia (Manley et al., 2004) point to these cells as playing the principal role in removing the

extracellular space. The high concentrations of aquaporin transporters along their surfaces (Benfenati

and Ferroni, 2010) suggest that astrocytes may be responsible for the removal of extracellular water

ensuring that any changes in outside environment are rapidly neutralised. Cryo fixing brain tissue at

different stages after the initiation of spreading depression, or ischemia, has shown similar astrocytic

morphologies to those seen after chemical fixation (Van Harreveld and Malhotra, 1967).

The swelling of the astrocytic compartment, and removal of the extracellular space in response to

chemical fixation, has important consequences for the interpretation of the ultrastructure. The perisynaptic

region in chemically fixed tissue shows smaller spaces within which neurotransmitters can diffuse

(Van Harreveld et al., 1965; Ohno et al., 2007) (Figure 1), with smaller distances between the edge of

the synapse and surrounding elements. This region has variously been described at dendritic spines with

a significant presence of astrocytes. In the neocortex, 60–70% of the bouton/spine interfaces

are partially or completely surrounded with an astrocytic process (Genoud et al., 2006). A similar

proportion was found in the hippocampus (Harris and Stevens, 1989). The larger perisynaptic space

suggested by cryo fixation to exist in vivo would give neurotransmitters a greater opportunity to diffuse

more rapidly out of the synaptic cleft, into the enlarged extracellular space where there would be

a greater dilution, possibly leading to a slowing of their diffusion. The enlarged perisynaptic space could

effectively act as a buffer zone, reducing extrasynaptic neurotransmitter concentrations, which could

help isolate synapses, reducing the possibility that their activity would influence other extrasynaptic

receptors, and minimising synaptic crosstalk. However, careful computational simulations (Rusakov and

Kullmann, 1998; Hrabe et al., 2004) taking into account spatiotemporal dynamics, tortuosity, and

binding/unbinding of neurotransmitters to various proteins (for example, glutamate transporters largely

Figure 5. Continued

The following source data and figure supplement are available for figure 5:

Source data 1. Data values and statistics underlying Figure 5B.

DOI: 10.7554/eLife.05793.015

Figure supplement 1. Synapses found on dendritic spines were the same length.

DOI: 10.7554/eLife.05793.016
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located on astrocytic membranes) are essential to gain a more detailed understanding of

neurotransmitter diffusion, and how this would be affected by the differences in ultrastructure we found

after cryo fixation compared to standard chemically fixed tissue. The reduced synaptic density in the

cryo-fixed tissue also places them further from each other, adding to their anatomical isolation.

Cryo fixation therefore appears to suggest a reduction in the influence of volume transmission

revealing an ultrastructure that might favour wiring transmission (Kullmann, 2000).

A more direct access through an enlarged extracellular space was apparent at the blood capillaries,

another site where astrocytic processes have a significant presence. Here, their endfeet completely

enclose blood capillaries after chemical fixation (Mathiisen et al., 2010) but cryo fixation reveals a

partial coverage of about two thirds (Figure 5). The abluminal surface of the endothelial cell, therefore,

is less insulated from the neuronal elements suggesting that solutes passing through the capillary wall

from the blood have more direct access to the neurons. Conversely, substances released from

neurons have greater access to blood vessels, where they might contribute to controlling blood

flow (Attwell et al., 2010).

Changes to the synapse
Other changes in the ultrastructure were seen at the synaptic connections. The classical morphology

of inhibitory and excitatory synapses: their differences in symmetry and vesicle shapes that have

proved useful for classifying types of connections in electron microscopy studies were not apparent in

the cryo-fixed tissue. The flattened appearance of synaptic vesicles in GABAergic boutons therefore

appears to be induced by the chemical fixation process.

Previous studies have shown that delaying chemical fixation by a few minutes alters synaptic

structure. Asymmetric and symmetric contacts showed greater curvature and thicker postsynaptic

densities (Martone et al., 1999; Kovalenko et al., 2006; Tao-Cheng et al., 2007). Pre-synaptically,

vesicles were located further from the active zone. Images of the frog neuromuscular junction showed

that chemical fixation, unlike freezing, could not prevent the fusion of vesicles to the presynaptic

membrane (Heuser et al., 1976). More recently, the use of high-pressure freezing, simultaneous to

synapse stimulation, has revealed how the vesicles fuse and collapse into the pre-synaptic membrane

within 30 ms of stimulation (Watanabe et al., 2013). Analyses of vesicle arrangement in cryo-fixed CNS

synapses in cultured slices (Zhao et al., 2012) or synaptosome preparations (Fernández-Busnadiego

et al., 2010) have revealed a high concentration of vesicles clustered at the pre-synaptic membrane with

the lowest concentration immediately behind this zone, 50–70 nm further back. However, after

stimulation, the lowest concentration is seen at the pre-synaptic membrane steadily increasing

further away (Fernández-Busnadiego et al., 2010). A similar picture is seen in our comparison

between chemical and cryo-fixed cortical synapses (Figure 3). After cryo fixation, the greatest

density of synaptic vesicles is at the pre-synaptic membrane, but after chemical fixation the vesicle

density increases away from the pre-synaptic membrane suggesting that chemical fixation is

unsuitable for capturing all docked vesicles.

Cryo fixation is able to reveal two groups of synaptic vesicles: one close to the synaptic membrane,

and the other further back, approximately a vesicle width away. This peak in vesicle density close to

the presynaptic release site has also been seen at the calyx of Held synapse (Han et al., 2011).

Whether this heterogenous distribution represents different functional pools is unproven. However,

a functional analysis of calyx synapses showed that disruption to the pre-synaptic protein machinery

results in less vesicular release, together with a concomitant reduction in the number of vesicles seen

close to the presynaptic membrane (Han et al., 2011). This would support the idea that vesicles against

the presynaptic membrane are docked and associated with their release machinery (Harlow et al.,

2001) where they can be depleted within a few milliseconds (Felmy et al., 2003). This arrangement of

vesicles with cryo fixation could be revealing the readily releasable pool; those aligned tightly along the

membrane. And the second grouping, further back from those in a docked position may, therefore,

be those of the recycling and reserve pool, immobilized and clustered together within the body of

the bouton by proteins such as actin or synapsin (Hilfiker et al., 1999; Siksou et al., 2007).

Cryo fixation, therefore, can provide a view of tissue ultrastructure that is closer to its natural state.

This increases the relevance of morphological analyses by revealing an arrangement of cell membranes

that more closely matches functional measurements. However, although these analyses highlight how

the exquisite organization of the brain’s cellular elements is acutely sensitive to chemical fixation, there
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are difficulties in cryo preserving large volumes of brain tissue. The high water content of the CNS

appears to limit the depth to which vitrification can occur (less than 10–20 microns in our hands at least)

before ice crystal formation causes significant damage to the structure. Large-scale preservation for

ultrastructural analysis will therefore continue to rely on chemical fixation approaches.

Materials and methods

Preparing fresh brain tissue for morphological measurements and cryo
fixation
Adult mice (C57 BL/6, 7–10 weeks old) were decapitated, and the brain immediately removed.

This was then immersed in ice-cold artificial cerebrospinal fluid (ACSF) composed of (in mM): 125 NaCl,

25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 0.1 CaCl2, 3 MgCl2, 25 glucose, 3 myo-inositol, 2 Na-pyruvate,

0.4 ascorbic acid, pH 7.4 which was bubbled with 95% O2 and 5% CO2. Slices were made with

a vibratome (Leica Microsystems VT1200) at 150 microns thickness in the coronal or tangential

plane. After cutting, each slice was then transferred immediately to a Petri dish containing the same

medium and photographed with a stereo microscope (Leica Microsystems M205C).

For cryo fixation, immediately after decapitation, the brain was exposed using blunt surgical

tweezers, and a piece of the somatosensory cortex cut from the brain using a razor blade. The tissue

was then further sliced, and pieces, approximately 200-μm thick, were placed inside a 6 mm diameter

aluminium sample holder with a 200-μm deep cavity. To ensure that no air bubbles became trapped

inside the sample holder with the tissue, a small drop of 1-hexadecene was added. This was then

high-pressure frozen using a Leica EM HPM100 (Leica Microsystems). This entire procedure was

completed as rapidly as possible, in less than 90 s from the moment of decapitation. The frozen

samples were then stored in liquid nitrogen until further processing.

Preparing brain tissue with conventional cardiac perfusion of chemical
fixatives
The animals were deeply anesthetized with pentobarbitone (0.05 mg g−1) and perfused via the heart,

using a perfusion pump, at a speed of 7 ml/min with 2.5% glutaradehyde, and 2% paraformaldehyde,

in phosphate buffer (0.1 M, pH 7.4, 250–300 ml per animal). The tubing used for perfusion was back

filled initially with 5 ml of 0.1 M PBS (pH 7.4) to help remove all blood from the circulatory system

before the fixative entered. After perfusion, the animal was left for 1 hr and the brain was removed.

70-μm thick slices were vibratome sectioned in PBS (0.01 M, pH 7.4). These slices were then stained

and embedded using previously described methods (Knott et al., 2011). Briefly, the slices were

washed in cacodylate buffer (0.1 M, pH 7.4, 3 × 5 min), post fixed in 1% osmium tetroxide and

1.5% potassium ferrocyanide in cacodylate buffer (0.1 M, pH 7.4, 40 min). They were then stained

with 1% osmium tetroxide in cacodylate buffer (0.1 M, pH 7.4) for 40 min, and then in 1% uranyl

acetate for 40 min before being dehydrated in a graded alcohol series, 3 min each change, and

embedded in Durcupan resin.

Freeze substitution resin embedding of high-pressure frozen samples
Frozen tissue was stained, dehydrated, and embedded at low temperature using a low temperature-

embedding device (AFS2; Leica Microsystems). Frozen samples were transferred to this device in

liquid nitrogen and were then initially exposed to 0.1% tannic acid in acetone, for 24 hr at −90˚C,

followed by 12 hr in 2% osmium tetroxide in acetone at −90˚C. The temperature was then raised

over 4 days to −30˚C, and then the liquid replaced with pure acetone and the temperature increased

to −10˚C over 16 hr. Finally, the tissue samples were mixed with increasing concentrations of resin

over 8 hr whilst the temperature rose to 20˚C. They were then added to 100% resin for 2 hr and then

placed in silicon moulds for 24 hr at 65˚C for the resin to harden.

Electron microscopy
Cryo-fixed tissue that showed no artifacts of fixation, such as ice crystal damage, was selected by

cutting semi-thin (0.5 mm thick) sections (2 × 2 mm) of the resin-embedded material and staining

these with toluidine blue. With transmitted light microscopy, an area of well-fixed tissue could be

identified and these regions were further trimmed and either used for TEM or FIBSEM.

Korogod et al. eLife 2015;4:e05793. DOI: 10.7554/eLife.05793 13 of 17

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.05793


TEM imaging
Ribbons of serial sections (50–100 sections) were mounted onto single slot copper grids holding

a polymer (pioloform) support film. Serial images were collected using a Tecnai Spirit (FEI Company)

120 kV transmission electron microscope operating at 80 kV, with an Eagle 4k × 4k CCD camera.

Electron tomography imaging was performed on single, 200 nm thick sections using a Tecnai F20 (FEI

Company) transmission electron microscope.

FIBSEM imaging
Some of the material was imaged with FIBSEM (Zeiss NVision40) using the same preparation and

imaging technique as described previously (Knott et al., 2011). Briefly, the trimmed blocks were

mounted with conductive paint to aluminium stubs and gold coated (Cressington). This was then

placed inside the microscope, and after ion milling to expose the required region, an imaging

electron beam of 1.6 kV was used with a milling beam of 30 kV and 800 pA. Each milling and imaging

cycle took approximately 90 s, with a pixel dwell time for the electron beam of 10 microseconds.

Six hundred to a thousand images were collected by sequentially milling and imaging, with final

image sizes of 2048 by 1536 pixels. Each pixel was 5 by 5 nm.

Image analysis and morphometric measurements
All quantitative analysis of the serial images was carried out using the FIJI software (http://pacific.

mpi-cbg.de/wiki/index.php/Fiji). Image alignments were performed using the stackreg plug-in.

Synapse density measurements were carried out using serial images through volumes of neuropil,

containing no cell bodies or blood vessels. The images were displayed in the TrakEM2 software within

FIJI (Cardona et al., 2012) and counted when they were completely contained within the displayed

volume or were touching the left, top, and upper sides of the counting frame. Those touching the

right, bottom, and lower sides were excluded. The section thickness was measured by using the

mitochondria as cylindrical objects, and counting over how many sections they were present when

lying parallel to the imaging plane (Fiala and Harris, 2001).

Measurements of volumes occupied by the different compartments were made by manually

segmenting each of the different elements in the serial images using the TrakEM2 software. Area lists

were made of the different compartments; neurites (axons and dendrites), astrocytes, and extracellular

space, and drawn in each of the serial images. Distance measurements of cortical shrinkage, glial

coverage of blood vessels, synapse and vesicle sizes, and vesicle and membrane separations were made

using the same software.

Models of cellular elements shown in Figure 3 were made using the interactive segmentation

tool in the ilastik software (www.ilastik.org) from serial FIBSEM images (Straehle et al., 2011).

These models were then imported into the 3D modelling software Blender (www.blender.org)

for final composition and rendering.
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Lehmenkühler A, Syková E, Svoboda J, Zilles K, Nicholson C. 1993. Extracellular space parameters in the rat
neocortex and subcortical white matter during postnatal development determined by diffusion analysis.
Neuroscience 55:339–351. doi: 10.1016/0306-4522(93)90503-8.

Lutz PL. 1992. Mechanisms for anoxic survival in the vertebrate brain. Annual Review of Physiology 54:601–618.
doi: 10.1146/annurev.ph.54.030192.003125.

Manley GT, Binder DK, Papadopoulos MC, Verkman AS. 2004. New insights into water transport and edema in the
central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129:983–991. doi: 10.
1016/j.neuroscience.2004.06.088.

Martone ME, Jones YZ, Young SJ, Ellisman MH, Zivin JA, Hu BR. 1999. Modification of postsynaptic densities after
transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. The Journal of
Neuroscience 19:1988–1997.

Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. 2010. The perivascular astroglial sheath provides a
complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:
1094–1103. doi: 10.1002/glia.20990.

McDonald KL, Auer M. 2006. High-pressure freezing, cellular tomography, and structural cell biology.
Biotechniques 41:137–139. doi: 10.2144/000112226.

Mikula S, Binding J, Denk W. 2012. Staining and embedding the whole mouse brain for electron microscopy.
Nature Methods 9:1198–1201. doi: 10.1038/nmeth.2213.

O’Kusky J, Colonnier M. 1982. A laminar analysis of the number of neurons, glia, and synapses in the adult
cortex (area 17) of adult macaque monkeys. The Journal of Comparative Neurology 210:278–290. doi: 10.
1002/cne.902100307.

Ohno N, Terada N, Saitoh S, Ohno S. 2007. Extracellular space in mouse cerebellar cortex revealed by in vivo
cryotechnique. The Journal of Comparative Neurology 505:292–301. doi: 10.1002/cne.21498.

Oliet SH, Piet R, Poulain DA. 2001. Control of glutamate clearance and synaptic efficacy by glial coverage of
neurons. Science 292:923–926. doi: 10.1126/science.1059162.

Rusakov DA, Kullmann DM. 1998. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural
constraints, uptake, and receptor activation. The Journal of Neuroscience 18:3158–3170.

Schultz RL, Maynard EA, Pease DC. 1957. Electron microscopy of neurons and neuroglia of cerebral cortex and
corpus callosum. The American Journal of Anatomy 100:369–407. doi: 10.1002/aja.1001000305.
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