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Ultrastructure of the Reproductive System of the Black
Swamp Snake (Seminatrix pygaea). III. Sexual Segment
of the Male Kidney

David M. Sever,1* Rebecca A. Stevens,1 Travis J. Ryan,2,3 and William C. Hamlett4

1Department of Biology, Saint Mary’s College, Notre Dame, Indiana
2Savannah River Ecology Laboratory, Aiken, South Carolina
3Division of Biological Sciences, University of Missouri, Columbia, Missouri
4Indiana University School of Medicine, South Bend Center for Medical Education, Notre Dame, Indiana

ABSTRACT In mature male snakes and lizards, a distal
portion of the nephron is hypertrophied in relation to its
appearance in females and immature males. This sexual
segment of the male kidney apparently provides seminal
fluid that is mixed with sperm and released into the fe-
male cloaca during copulation. In this article, we provide
the first study at the ultrastructural level of seasonal
variation in the sexual segment of the kidney of a squa-
mate, the natricine snake Seminatrix pygaea. Previous
workers have indicated that the sexual segment is secre-
tory only when the testes are spermatogenically active.
The sexual segment of the kidney in S. pygaea does not go
through an extended period of inactivity but does show a
cycle of synthesis and secretion that can be related to the

spermatogenic cycle and mating activity. We show that
synthesis of secretory product is initiated with the onset of
spermatogenic activity in the spring and culminates with
completion of spermiation in the fall. Secretion of the
product, however, occurs in a premating period in March
when the testes are inactive. Secretion during this pre-
mating period is probably necessary to provide time for
the passage of the products down the ureter in order to
mix with sperm during mating later in spring. J. Morphol.
252:238–254, 2002. © 2002 Wiley-Liss, Inc.

KEY WORDS: Reptilia; Squamata; Serpentes; Semina-
trix; kidney; sexual segment; histology; ultrastructure;
reproduction

The first histological description of a squamate
nephron was made on the European natricine snake
Natrix natrix by Gampert (1866). He noted that a
portion of the distal segment (the “Harncanalchen”)
was especially thickened and he provided the first
accurate illustration of a snake nephron (Fig. 1).
Subsequent reports by Heidenhain (1874), also on N.
natrix, and by Tribondeau (1902), on Coluber viridi-
flavus, described the enlarged distal segment of the
nephron. Regaud and Policard (1903), however,
were the first to note that this segment was sexually
dimorphic, being hypertrophied only in males (but
see Del Conte, 1972). They named this region the
“segment sexuel.”

Regaud and Policard (1903) also demonstrated
that the sexual segment was present in a variety of
male snakes and lizards but was absent in turtles.
Later work concluded that the sexual segment is
also absent in crocodilians (Fox, 1952) but is present
in amphisbaenids (Bons and Saint Girons, 1963;
Saint Girons, 1972); a portion of the nephron of
Sphenodon (Rhynchocephalia) most likely differen-
tiates seasonally into a sexual segment (Gabe and
Saint Girons, 1964). The reptilian clade Lepidosau-
ria is traditionally composed of the Squamata
(snakes, lizards, and amphisbaenids) and Rhyn-
chocephalia (cf., Pough et al., 1998). Thus, among

reptiles the presence of a sexual segment can be
considered a synapomorphy at least for the Squa-
mata and probably for the Lepidosauria.

Within squamates, however, some variation oc-
curs in the extent of the sexual segment. In most
snakes the sexual segment just involves the termi-
nal portion of the distal convoluted tubule (called
the pre-terminal segment by Fox, 1952). In many
lizards and some snakes, the sexual segment may
include the terminal segment, postterminal seg-
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ment, collecting ducts, and/or portions of the ureter
(Fox, 1965; Saint Girons, 1972).

Fox (1977) provides a comprehensive review of the
literature and no major morphological studies have
been done since that time. The function of the sexual
segment is still not clearly understood, but its secre-

tions may sustain and activate sperm (Bishop, 1959;
Cuellar, 1966), provide courtship pheromones (Vol-
søe, 1944), form copulatory plugs (Devine, 1975),
and/or have other purposes generally associated
with seminal fluid (Prasad and Reddy, 1972). The
only other source of seminal fluids in squamates is

Fig. 1. Male snake nephrons as originally depicted by Gampert (1866), copied by Regaud and
Policard (1903), and redrawn here by T.J. Ryan. Terminology follows Bishop (1959). The “inter-
mediate segment,” a short portion between proximal and distal segments that is difficult to
distinguish externally, is not labeled.
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the epididymis (Depeiges and Dufaure, 1980). Max-
imal development of the sexual segment is related to
increased androgen levels (Bishop, 1959; Misra et
al., 1965; Pandha and Thapliyal, 1964; Prasad and
Sanyal, 1969; Krohmer, 1986). Thus, seasonal vari-
ation occurs, with the height of development gener-
ally associated with the mating season. Snakes,
however, do not show as marked seasonal changes
in the sexual segment as lizards (Fox, 1977).

To our knowledge, only three ultrastructural stud-
ies have previously been done on the sexual segment
of squamates. Furieri and Lanzavecchia (1959) were
concerned only with the effects of castration on the
ergastoplasm of the sexual segment of the lacertid
lizard, Lacerta sicula. Del Conte and Tamyo (1973)
compared the sexual segment of males of the teiid
lizard, Cnemidophorus lemniscatus, to a homologous
area that undergoes some differentiation in females.
They stated that this species has continuous sexual
activity, but used only three specimens of each sex.
In both L. sicula and C. lemniscatus, the sexual
segment involves the collecting ducts. The only prior
ultrastructural study on a snake is by Kuhnel and
Krisch (1974) on Natrix natrix. All of Kuhnel and
Krisch’s specimens were sacrificed in one month
(November), and they did not describe the reproduc-
tive condition of their specimens. In this article, we
provide the first study at the ultrastructural level of
seasonal variation in the sexual segment of the kid-
ney of a snake and we relate this to our observations
on the spermatogenic cycle.

MATERIALS AND METHODS

The squamate used for this study is the black
swamp snake, Seminatrix pygaea (Cope). This small
(20–40 cm snout–vent length as adults), highly
aquatic snake is limited to the southern Atlantic
coastal plain of the United States (Dorcas et al.,
1998). This species is the subject of other studies
concerning its reproductive cycle (Seigel et al., 1995)
and the ultrastructure of the reproductive system
(Sever and Ryan, 1999; Sever et al., 2000).

Seminatrix pygaea were collected at Ellenton Bay,
located on the Department of Energy’s Savannah
River Site in Aiken County, South Carolina. This
“Carolina bay” is freshwater, 10 ha, shallow (2 m
maximum depth), and relatively permanent (Gib-
bons and Semlitsch, 1991). The population of S. pyg-
aea at this locale is the largest known for the species
(Gibbons and Semlitsch, 1991).

Collections were made during four periods in 1998
(10 May, 7 June, 22–24 July, and 29 September – 2
October), and one period in 1999 (17–22 March).
Snakes were collected in unbaited minnow traps and
from under coverboards alongside the bay. Speci-
mens were sacrificed within a week of capture (Ta-
ble 1).

Specimens were killed by a lethal injection (3–5
ml) of Nembutal (Abbott Laboratories, North Chi-

cago, IL). This procedure was approved by the Ani-
mal Care and Use Committee of Saint Mary’s Col-
lege. After death, snout–vent length (SVL) was
measured from the tip of the snout to the posterior
end of the cloacal orifice. The reproductive tracts
and kidneys were removed and prepared for light
microscopy (LM) and transmission electron micros-
copy (TEM). Carcasses of all specimens were pre-
served in neutral buffered formalin (NBF) and are
housed in the research collections at Saint Mary’s
College.

For LM examination, tissues were initially fixed
in NBF, rinsed in water, dehydrated in ethanol,
cleared in toluene, and embedded in paraffin or gly-
col methacrylate (JB-4 Plus; Electron Microscopy
Sciences, Port Washington, PA) plastic resin. Paraf-
fin sections (10 �m) were cut with a rotary mic-
rotome and affixed to albuminized slides. Alternate
paraffin slides from each specimen were stained
with hematoxylin-eosin (general histology), brilliant
indocyanine 6B (BB, for proteins), and Alcian blue
8GX at pH 2.5 (AB, for primarily carboxylated gly-
cosaminoglycans) followed by the periodic acid-
Schiff’s procedure (PAS, for neutral carbohydrates
and sialic acids). Sections (2 �m) from tissues em-
bedded in JB4 were stained with methylene blue
and basic fuschin. Procedures followed Dawes
(1979), Humason (1979), and Kiernan (1990).

Tissue for TEM was trimmed into 1-mm blocks
and fixed in a 1:1 solution of 2.5% glutaraldehyde in
Millonig’s phosphate buffer and 3.7% formaldehyde
buffered to pH 7.2 with monobasic and dibasic phos-
phate. After initial fixation, tissues were rinsed in
distilled-deionized water, postfixed in 2% osmium
tetroxide, dehydrated through a graded series of
ethanol, cleared in propylene oxide, and polymerized
in an epoxy resin (Embed 812; Electron Microscopy

TABLE 1. Specimens utilized and diameters of 10 sexual
segment tubules per individual

Date sacrificed SVL1 Prep2

Sexual segment

Range3 Mean SE

31 March 28.1 Par 0.15–0.21 0.17 0.005
26.2 JB4 0.15–0.20 0.18 0.005
23.2 TEM 0.13–0.18 0.15 0.005

16 May 26.1 Par 0.12–0.20 0.15 0.007
27.9 JB4 0.15–0.18 0.17 0.004
31.2 TEM 0.11–0.15 0.13 0.004

9 June 25.6 Par 0.12–0.15 0.13 0.003
23.8 JB4 0.08–0.11 0.09 0.004
26.8 TEM 0.11–0.12 0.11 0.002

30 July 28.0 Par 0.12–0.15 0.13 0.003
23.8 JB4 0.08–0.11 0.09 0.004
26.8 TEM 0.11–0.12 0.11 0.002

8 October 28.0 Par 0.13–0.17 0.14 0.004
25.5 JB4 0.12–0.18 0.15 0.007
29.0 TEM 0.12–0.16 0.14 0.007

1SVL � snout–vent length in cm.
2Preparation in paraffin, JB–4 glycol methacrylate, or in epoxy
resin for TEM.
3Sexual segment measurements are in mm.
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Sciences). Plastic sections were cut with an RMC
MT7 ultramicrotome (Research and Manufacturing
Co., Tucson, AZ) and Diatome (Biel, Switzerland)
diamond knives. Semithin sections (0.5–1 mm) for
LM were placed on microscope slides and stained
with toluidine blue. Ultrathin sections (70 nm) for
TEM were collected on uncoated copper grids and
stained with solutions of uranyl acetate and lead
citrate. Ultrathin sections were viewed with a Hita-
chi H-300 transmission electron microscope (Nissei
Sangyo America, Mountain View, CA).

Using microscope slides of paraffin, glycol methac-
rylate, and epoxy-embedded tissues, diameters of 10
sexual segment tubules from each snake were mea-
sured to 0.01 mm with an ocular micrometer. Nested
ANOVA was used to estimate variance components
for both month and snake within month; these vari-
ance components were converted to percentages of
the total (Sokal and Rohlf, 1995). To test for sea-

sonal variation, Tukey’s HSD method was used for
all pairwise comparisons of monthly mean sexual
segment diameter (Table 2). Finally, the correlation
coefficient (r) was calculated between SVL and mean
sexual segment diameter. The P � 0.05 level was
used to determine statistical significance. Statistics
were calculated using SYSTAT v. 6.1 for Windows.

RESULTS

The following sections describe the spermatogenic
cycle (Fig. 2), histology, and size variation in the
sexual segment (Tables 1, 2; Figs. 3, 4) and ultra-
structure of the sexual segment (Figs. 5–10). A sum-
mary of seasonal variation in the microscopic anat-
omy of the male reproductive system and the sexual
segment of the kidney is given in Table 3.

Spermatogenic Cycle

The testes in specimens from the March sample
are inactive, containing spermatogonia in a Sertoli
syncytium, and the efferent ductules are devoid of
sperm (Fig. 2A). The epididymis, however, like the
entire vas deferens, is packed with sperm. Spermat-
ogenesis is well under way in the specimens from
May. Proliferation of primary spermatocytes is evi-
dent (Fig. 2B). The entire vas deferens, including the
proximal portion, still contains sperm. Spermiation
is evident in June and July samples; spermatids
occur around the lumina of testicular lobules and

TABLE 2. Tukey’s HSD matrix of pairwise comparison
possibilities among the monthly means for sexual segment

of the kidney diameter in male Seminatrix pygaea

Date 31 March 16 May 9 June 30 July 8 October

31 March 1.000
16 May 0.000 1.000
9 June 0.000 0.000 1.000
30 July 0.000 0.031 0.000 1.000
8 October 0.000 0.978 0.000 0.141 1.000

The matrix consists of P values, with P � 0.05 considered signif-
icant.

TABLE 3. Microscopic differences in the testes, reproductive ducts, and sexual segment among samples of Seminatrix pygaea

March May June July October

Testes Inactive
spermatogonia

Primary
spermatocytes

Many spermatids Many spermatids Few spermatids

Efferent ductules Empty Empty A few sperm A few sperm Much sperm
Epididymis Sperm Empty Empty Empty Sperm
Vas deferens Sperm Sperm Sperm Sperm Sperm
Sexual segment

PAS�, BB� Entire cell and
lumen

Luminal border
and basally

Luminal border
and basally

Luminal border
and basally

Entire cell

Nuclei Oval
euchromatic

Irregular
heterochromatic

Irregular
heterochromatic

Irregular/oval
heterochromatic

Irregular/oval
euchromatic

Apocrine blebs Numerous Few Scant Few Numerous
Granular

luminal
secretion Abundant Scant Scant Scant Common

Colloidal
luminal
secretion Present Absent Absent Absent Absent

Microvilli Absent Present Present Not conspicuous Few
Intercellular

canaliculi Straight Labyrinthine Labyrinthine Labyrinthine Straight
Rough

endoplasmic
reticulum Not apparent Present Present Present Present

Condensing
vacuoles Absent Numerous

apically
Numerous

throughout
Numerous

apically Few
Mitochondria Basal Basal Throughout some

cells
Basal Basal
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Fig. 2. Sections though the testes and vasa deferentia of Seminatrix pygaea. A: Paraffin section stained with hematoxylin-eosin.
B–D: Glycol methacrylate sections stained with methylene blue and basic fuschin. A: 28.1 cm SVL male sacrificed 31 March. B: 26.1
cm SVL male sacrificed 16 May. C: 28.0 cm SVL male sacrificed 30 July. D: 28.0 cm male sacrificed 8 October. Ed, efferent ductules;
Ep, epididymis; Sc, spermatocytes; Sg, spermatogonia in the Sertoli syncytium; Sp, sperm; St, spermatids.



lumina possess abundant sperm (Fig. 2C). The effer-
ent ductules and proximal portions of the vas defer-
ens contain little or no sperm, indicating that trans-
fer of sperm newly formed in the testes has not yet
occurred. In the October specimens, spermiation is
nearly complete (Fig. 2D). The efferent ductules and
epididymis contain much sperm. Testicular lobules,
however, still possess some spermatids and lumina
of the testes contain numerous sperm, but not as
many as in July. The middle to distal portion of the
vas deferens holds sperm the entire year. Ultra-
structure of sperm storage in the vas deferens is the
subject of another article (Sever et al., in prep.)

Light Microscopy

Seasonal variation is apparent at the light micros-
copy level in the size of the sexual segment tubules
(Tables 1, 2, Fig. 3) and in some histological charac-
teristics (Fig. 4). Correlation between SVL and sex-
ual segment diameter is low (r � 0.122) and not
significant (r0.05 � 0.514, probability that r � 0.0 is
66.4%). Nested ANOVA reveals that significant
overall variation in tubule diameter (Table 1) occurs
within months (F � 15.665) as well as among
months (F � 66.238). However, variance among
months (variance component � 41%) is greater than
variation among snakes within months (variance
component � 35%). Tukey’s multiple comparison
matrix (Table 2) shows that the group mean for
March is significantly higher than all other months;
the group mean for May is higher than all months
except October; the group mean for June is signifi-

cantly lower than all other months; the group mean
for July is significantly different from all other
months except October; and the October group mean
is significantly different from March and June.
Overall, a pattern is evident in which sexual seg-
ment diameter is at its peak in March, declines
gradually in the spring and early summer, and be-
gins increasing once more in late summer and fall
(Fig. 3).

At the light microscopy level, the sexual segment
tubules in March are more hypertrophied than those
from other samples (Fig. 4). Areas of the cytoplasm
containing mature secretory granules stain in-
tensely BB� for proteins and PAS� for carbohy-
drates; the granules are strongly eosinophilic with
HE and stain intensely with methylene blue in gly-
col methacrylate. The product contained in the se-
cretory granules, therefore, most likely contains a
glycoprotein or mucoprotein. Nuclei appear central
in the simple columnar epithelium composing the
sexual segment. In March specimens, intensely
staining granular areas occur throughout the basal
cytoplasm and extend from the nuclei apically to the
lumen (Fig. 4A). Lumina are relatively narrow and
in most tubules contain a central translucent colloi-
dal material with a collar of granules. The luminal
material stains in the same manner as the secretory
granules in the cytoplasm of the sexual segment
tubules.

In the May sample, lumina are still relatively
narrow, but they appear wider than in the March
sample and the lumina are devoid of significant
quantities of secretory products. The BB� and
PAS� reactions, indicative of mature secretory
granules, are limited to a light ring around luminal
borders and basal to the nuclei (Fig. 4B). This con-
dition continues in the June and July (Fig. 4C) sam-
ples. In October, more diffuse BB� and PAS� reac-
tions are present, although these reactions are
weakest around the luminal borders, and lumina
still appear virtually empty (Fig. 4D).

In summary, a small amount of seasonal variation
is apparent at the light microscopy level. The tu-
bules in the March sample are the largest in diam-
eter and show the most intense staining reactions
throughout the cytoplasm. The March sample is the
only one in which quantities of luminal material
were observed that reacted histochemically in the
same manner as the secretory granules. In the other
samples, tubules were significantly smaller, histo-
chemical reactions indicating mature secretory
granules were most intense basally, and lumina ap-
pear devoid of secretory material.

Ultrastructure

March. The epithelium of the sexual segment
consists of tall, slender, simple columnar cells with
central nuclei (Fig. 5). In the March sample the
nuclei are oval, regular in outline, and euchromatic.

Fig. 3. Relationship between month and mean sexual segment
diameter in Seminatrix pygaea. Vertical lines indicate one stan-
dard error, horizontal line indicates the mean.
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Fig. 4. Glycol methacrylate sections stained with methylene blue and basic fuschin through the kidneys of male Seminatrix pygaea.
Areas in the sexual segments (Sx) with mature secretory granules stain darkly. A: 26.2 cm SVL male sacrificed 31 March. B: 27.9 cm
SVL male sacrificed 16 May. C: 23.8 cm SVL male sacrificed 30 July. D: 25.5 cm SVL male sacrificed 8 October. Ct, convoluted tubule;
Lu, lumen; Sml, secretory material in the lumen; Sx, sexual segment.



Fig. 5. Transmission electron micrograph of the sexual segment of the kidney in a 23.2 cm
Seminatrix pygaea sacrificed 31 March. Bl, basal lamina; Gm, granular material; Ic, intercellular
canaliculus; Lu, lumen; Nu, nucleus; Sg, secretory granules.



Intercellular canaliculi are narrow, relatively straight,
and possess many junctional complexes. Secretory
granules are round and almost uniformly electron-
dense (Fig. 5). The largest granules (1.5–2 �m in di-
ameter) are in the apical areas, but granules are most
numerous and crowded basally (Fig. 5). Granules �1.5
�m are interspersed among the larger ones. However,
if the granules are indeed spherical the variance in
size may simply be due to the plane of section.

Along the apical border granules appear to be
released into the lumen along with cytoplasm, i.e.,
an apocrine mode of secretion (Figs. 5, 6A). In the
lumen, free secretory granules are observed in a
granular matrix resulting from the disassociation of
the apical cytoplasm (Figs. 5, 6A). A denser, colloidal
material also is present in the lumen (Fig. 6A).

The supranuclear area contains few granules and
many small vacuoles (Figs. 5, 6B,C). The perinuclear
region also contains numerous vacuoles and lacks
mitochondria and organelles generally associated
with protein synthesis (Fig. 6C). Groups of small,
densely staining, elongate mitochondria are numer-
ous along the basal lamina (Figs. 5, 6D). Contractile
elements are not in evidence around the tubules, but
unmyelinated axons are numerous in the tunica pro-
pria (Figs. 5, 6D).

May. In the May sample nuclei are more irregular
and heterochromatic (Fig. 7A). Secretory granules in
the supranuclear area are still numerous, but much
variation occurs in electron density (Fig. 7A). Con-
densing vacuoles in various degrees of maturity are
numerous, whereas fully formed, uniformly electron-
dense granules are less common. Lumina appear rel-
atively empty and apocrine blebs along the borders are
infrequent; instead, small microvilli occur on the lumi-
nal border of epithelial cells (Fig. 7B). In the perinu-
clear areas, rough endoplasmic reticulum (Rer) is
closely associated with condensing vacuoles (Fig. 7C),
indicating a surge of product synthesis. The basal ar-
eas do not appear different from the March sample;
round, uniformly electron-dense secretory granules
are numerous (Fig. 7D).

June. In the June sample the relative decrease in
height of the sexual segment tubules from the
March and May sample noted with light microscopy
(Fig. 3) also is apparent at the electron microscopy
level (compare Figs. 5 and 7A with Fig. 8A). Some of
the epithelial cells of the sexual segment contain few
secretory granules and possess numerous mitochon-
dria throughout the cytoplasm (Fig. 8A). Others con-
tain numerous secretory granules that are often ir-
regular in outline. Nuclei are heterochromatic and
elongate with the long axis of the cells (Fig. 8A).
Apocrine blebs are few and lumina appear empty
except for some membranous debris (Fig. 8B). As in
May, condensing vacuoles and granules in various
stages of maturity are numerous apically (Fig. 8B)
and in the perinuclear areas (Fig. 8C). In addition,
the June specimen has condensing vacuoles scat-
tered among mature granules basally (Fig. 8D). In-

tercellular canaliculi are narrow and labyrinthine
(Fig. 8B–D). Multivesicular bodies that may repre-
sent secondary lysosomes are occasionally observed
(Fig. 8D).

July. In the July sample elongation of the cells
has once again occurred and the tubules resemble
those of the March specimens, with some notable
differences (compare Fig. 5 with Fig. 9A). First, the
nuclei have become less irregular and more oval, but
much heterochromatin still exists. Second, many of
the supranuclear secretory granules are still imma-
ture (Fig. 9A,B). Finally, the presence of Golgi com-
plexes, extensive RER profiles, and condensing
vacuoles in various degrees of maturity in the pe-
rinuclear areas indicates extensive synthesis of new
product (Fig. 9C).

The July specimen also differs in some other as-
pects from the May and June samples. Microvilli are
no longer conspicuous on the luminal border of epi-
thelial cells (Fig. 9B). Apocrine blebs are more nu-
merous than in the June sample, but lumina still
appear devoid of significant amounts of secretory
material (Fig. 9B).

October. Although some nuclei are still irregular
in outline, they have become more uniformly euchro-
matic (Fig. 10A). Condensing vacuoles are less nu-
merous in the apical cytoplasm and mature granules
with surrounding cytoplasm are being released by
an apocrine process into the lumina (Fig. 10B). Se-
cretion is not as abundant as in the March sample,
however, and the colloidal matrix observed in the
lumina of tubules from March is not present in the
tubules from October. Significant synthetic activity
is still apparent in the perinuclear area (Fig. 10C).
Basally, the cytoplasm is crowded with uniformly
electron-dense secretory granules (Fig. 10D).

DISCUSSION

In his comparative study of the histology of the
sexual segment in 73 species representing 19 fami-
lies of reptiles, Saint Girons (1972) found that in
snakes and Varanus the segment corresponds to the
medial region of the distal convoluted tubule. This
condition characterizes Seminatrix pygaea as well.
The sexual segment of the squamate kidney is a
derivative of the mesonephric (Wolffian) duct and
may be homologous to the seminal vesicle of mam-
mals (Prasad and Reddy, 1972; Jones, 1998). The
only sources of seminal fluid in squamates are the
epididymis and the sexual segment (Depeiges and
Dufaure, 1980). The epididymis of reptiles does not
function in sperm maturation and sperm storage as
in mammals. Instead, the vas deferens is the site of
sperm storage in reptiles (Jones, 1968). During ejac-
ulation, secretions of the sexual segment are mixed
with sperm that have been stored in a matrix of
epididymal secretions in the vas deferens (Prasad
and Reddy, 1972). The manner in which these secre-
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Fig. 6. Transmission electron micrographs of the sexual segment of the kidney in a 23.2 cm Seminatrix pygaea sacrificed 31 March.
A: Secretory products in the lumen. B: Apical cytoplasm. C: Perinuclear region. D: Basal cytoplasm. Ac, apical cytoplasm; Ax, axons;
Bl, basal lamina; Cm, colloidal material; Cv, condensing vacuole; Fn, fibroblast nucleus; Gm, granular material; Ic, intercellular
canaliculus; Lu, lumen; Mi, mitochondria; Nu, nucleus; Sg, secretory granules; Va, vacuoles.



Fig. 7. Transmission electron micrographs of the sexual segment of the kidney in a 31.2 cm
Seminatrix pygaea sacrificed 16 May. A: Overview. B: Apical cytoplasm. C: Nuclear region.
D: Basal cytoplasm. Cv, condensing vacuole; Lu, lumen; Mv, microvilli; Nu, nucleus; Rer, rough
endoplasmic reticulum; Sg, secretory granules.



Fig. 8. Transmission electron micrographs of the sexual segment of the kidney in a 31.2 cm Seminatrix pygaea sacrificed 9 June.
A: Overview. B: Apical cytoplasm. C: Nuclear region. D: Basal cytoplasm. Ax, axons; Bl, basal lamina; Cv, condensing vacuoles; Ic,
intercellular canaliculus; Lu, lumen; Mb, multivesicular body; Mi, mitochondria; Ms, membranous structures; Mv, microvilli; Nu,
nucleus; Rer, rough endoplasmic reticulum; Tj, tight junction; Sg, secretory granule.



Fig. 9. Transmission electron micrographs of the sexual segment of the kidney in a 31.2 cm
Seminatrix pygaea sacrificed 30 July. A: Overview. B: Apical cytoplasm. C: Nuclear region. Cv,
condensing vacuoles; Go, Golgi complex; Ic, intercellular canaliculus; Lu, lumen; Nu, nucleus; Rer,
rough endoplasmic reticulum; Tj, tight junction.



Fig. 10. Transmission electron micrographs of the sexual segment of the kidney in a 31.2 cm Seminatrix pygaea sacrificed 8
October. A: Overview of supranuclear region. B: Apical cytoplasm. C: Nuclear region. D: Basal cytoplasm. Ac, apical cytoplasm; Ax,
axons; Bl, basal lamina; Cf, collagen fibers; Cv, condensing vacuoles; Gm, granular material; Ic, intercellular canaliculus; Lu, lumen;
Nu, nucleus; Rer, rough endoplasmic reticulum; Sg, secretory granules.



tions are utilized by sperm in the female genital
tract is unknown.

Ultrastructure

The only previous ultrastructural study on the
sexual segment of a snake is by Kuhnel and Krisch
(1974) on Natrix natrix. All of their specimens were
collected in one month (November), and the repro-
ductive condition of the specimens was not reported.
The ultrastructure of the sexual segment of N. na-
trix in many respects resembles that of Seminatrix
pygaea from late summer or fall. The columnar ep-
ithelial cells are filled with secretory granules, most
of which are highly osmiophilic, whereas others,
which we consider condensing vacuoles, contain a
granular material or “vesicular or foamy inclusions.”
Mitochondria are concentrated in the basal regions,
Rer is paranuclear, and Golgi complexes are su-
pranuclear. Nerve fibers are frequently observed in
the connective tissue surrounding the tubules.

One major difference is that Kuhnel and Krisch
(1974) report that the sexual segment of Natrix na-
trix, unlike other portions of the kidney tubules, is
surrounded by a sheet of elongate contractile cells.
These cells give positive reactions for alkaline phos-
phatase, and the authors stated that these cells are
similar to mammalian myoepithelial cells. We found
no such sheath of cells around the sexual segment of
Seminatrix pygaea and neither myoepithelium nor
smooth muscle has been reported around kidney
tubules in other squamates. Their illustrations do
not convince us of the presence of any contractile
elements, although collagen fibers are in evidence.

Kuhnel and Krisch (1974), however, clearly de-
scribe and illustrate the apocrine mode of product
release in Natrix natrix that we found in Seminatrix
pygaea. Sanyal and Prasad (1966), in the Indian
house lizard (Hemidactylus flaviviridis), were the
first to note that release of secretory granules in the
sexual segment is apocrine.

The secretory granules of the sexual segment of
Lacerta sicula (Furieri and Lanzavecchia, 1959) and
the second region of the segment in Cnemidophorus
lemniscatus (Del Conte and Tamyo, 1973) are differ-
ent in appearance from those of Natrix natrix and
Seminatrix pygaea. In the lizards, the mature secre-
tory granules lack uniform density and contain a
central dense core surrounded by a lighter material.
In the snakes, the granules are uniformly electron-
dense and superficially resemble the zymogen gran-
ules of pancreatic Paneth cells.

Other ultrastructural studies have not addressed
seasonal variation of the sexual segment nor the
relationship to the spermatogenic cycle. The exact
timing of mating in Seminatrix pygaea is unknown.
Because males possess sperm in distal portions of
the vas deferens throughout the year, the possibility
exists that mating could occur at any time. Sever
and Ryan (1999), however, found sperm in sperm

storage tubules of a female sacrificed on 16 May and
in the vagina and posterior uterus of a female sac-
rificed on 9 June, whereas sperm were absent in the
oviducts of all females collected in July, October, and
March. These findings, although limited, suggest
that mating occurs in late spring.

The actual mating season, therefore, may extend
into periods in which the sexual segment granules
are no longer being released and a new wave of
spermatogenesis has commenced (16 May) and prox-
imal reproductive ducts are evacuated (9 June). Fe-
tuses close to birth size are found in the oviducts of
females sacrificed on 30 July (Sever et al., 2000) and
parturition usually occurs in mid-August (Seigel et
al., 1995).

The sexual segment of the kidney in Seminatrix
pygaea does not go through an extended period of
inactivity but does show a cycle of synthesis and
secretion that can be related to the spermatogenic
cycle and mating activity. Synthetic activity is initi-
ated in May, at the beginning of a new spermato-
genic cycle, and continues into October, when sper-
miation is near completion. In March, when the
testes are inactive and the vasa deferentia are filled
with sperm produced in the previous cycle, secretion
of the products of the sexual segment is most in-
tense. Secretion during this premating period could
be necessary to provide time for the passage of the
products down the ureter in order to mix with sperm
during mating later in spring.

Histochemistry

Although he did not conduct specific tests for lip-
ids, Saint Girons (1972) studied the carbohydrate
and protein histochemistry of 38 species in 11 fam-
ilies of lizards, two species in two families of amphis-
baenids, and 33 species in six families of snakes. He
reported that the secretory product of the sexual
segment is always rich in proteins and lacks acidic
mucins, but that the PAS reaction is variable. In
amphisbaenids and most lizards, the PAS reaction is
weak or absent; in Anguidae the reaction is highly
positive; and in snakes the reaction varies interspe-
cifically from positive to absent.

Like Saint Girons (1972), we did not conduct a
thorough histochemical or biochemical analysis of
the granules, but we performed some basic histo-
chemical tests for proteins and carbohydrates. We
obtained a BB� reaction for proteins, as well as a
PAS� reaction and AB� reaction in all monthly
samples. These results suggest a glycoprotein or
mucoprotein in the secretory granules. Other, more
detailed cytochemical analyses have further charac-
terized the secretory product in several squamates.

Bishop (1959), in the garter snake (Thamnophis
sirtalis), reported that “cap”-like areas of the gran-
ules show positive reactions with several lipid tests
and with PAS and suggested that glycogen occurs in
the sexual segment. We found no ultrastructural

252 D.M. SEVER ET AL.



evidence for glycogen in the sexual segment of Semi-
natrix pygaea. Bishop (1959) reported that the seg-
ment granules exhibit only a “faint flecking” when
subjected to tests for proteins.

In contrast to the garter snake, Burtner et al.
(1965) reported that the secretory granules of the
rattlesnake, Crotalus adamanteus, are principally
composed of some basic protein, probably containing
tyrosine, lysine, cysteine, and tryptophan, as well as
small amounts of other amino acids. Burtner et al.
(1965) also reported the presence of some neutral
muco- or glycoprotein (PAS�, AB�) and an unsat-
urated lipid moiety. The resemblance of the secre-
tory granules to zymogen granules of pancreatic
Paneth cell is superficial, as no enzymatic activity is
discernable in the granules (Burtner et al., 1965).

Kuhnel and Krisch (1974) found no detectable car-
bohydrates in the secretory granules of Natrix na-
trix and a weak reaction for proteins. Instead, they
reported that the granules were composed of lipids
and phospholipids and that the cells of the sexual
segment contain several hydrolases and oxyreducta-
ces which reflect enzyme activities of the glycolytic
pathway, the citrate cycle, and related metabolic
pathways.

In lizards, the cytochemistry of the sexual seg-
ment of the Indian house lizard, Hemidactylus fla-
viviridis, is the subject of articles by Misra et al.
(1965), Sanyal and Prasad (1966), and Prasad and
Reddy (1972). They reported that the secretions of
the sexual segment are rich in phospholipids and
contain acid phosphatase. The secretory granules
also contain some protein but lack carbohydrates
(Sanyal and Prasad, 1966). The association of acid
phosphatase with phosphatides in the sexual seg-
ment, together with the presence of esterase in the
oviduct could result in the liberation of fatty acids
and glycerylphosphorycholine; these products may
be used to sustain sperm (Sanyal and Prasad, 1966).
Prasad and Reddy (1972) suggested that the sexual
segment is homologous with the seminal vesicles of
mammals.

In the lizard Cnemidophorus lemniscatus, how-
ever, Del Conte and Tamyo (1973) found little evi-
dence for a lipid moiety in the secretory granules.
Instead, they reported that granules in the first
region of sexual segment contain a mucoprotein,
whereas in the second region the granules contain a
greater abundance of protein.

In summary, our observations on the glyco- or
mucoprotein nature of the granules in the sexual
segment of Seminatrix pygaea agrees most with
Saint Girons (1972) on a variety of snakes, Burtner
et al. (1965) on Crotalus adamanteus, and Del Conte
and Tamyo on the lizard Cnemidophorus lemnisca-
tus. However, none of these previous studies nor the
present study conducted extensive tests for lipids, so
whether phospholipids, etc., occur, as reported in
Natrix natrix and Hemidactylus flaviviridis, re-
quires further investigation. If interspecific differ-

ences do occur in chemistry of the sexual segment
granules, such findings could have physiological im-
plications concerning the transport, storage, and ca-
pacitation of sperm and these data also could have
phylogenetic significance.

CONCLUSIONS

We propose that possession of a portion of the
male nephron modified into a sexual segment can be
traced back to the common ancestor of the squamate
or even lepidosaurian clade. Thus, the character is a
very ancient trait that appeared before differentia-
tion of the 5,000� species of extant squamates.
These taxa have evolved a myriad of diverse mor-
phological, ecological, physiological, behavioral, and
reproductive characters. We should not be sur-
prised, therefore, to find that interspecific differ-
ences occur in the location of the sexual segment
(terminal segment, collecting duct, etc.), chemical
nature of the secretory product, timing of secretory
activity, etc., that reflect the diversity in other char-
acters. We should expect homoplasy, as with other
morphological and reproductive characters, to be
commonplace. Because of these factors, the phyloge-
netic implications of some interspecific differences
may be quite obscure beyond the level of species
group or family. Thus, the challenge is to determine
the functional significance of the morphology and
physiology of the sexual segment in regard to the
reproductive biology of a given species. Activity of
the sexual segment is as essential to mating activity
as spermatogenesis or testosterone production.
Thus, one cannot truly understand the reproductive
biology of any male squamate without consideration
of the secretory cycle of the sexual segment.
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