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HIGHLIGHTS

• An ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure was 

successfully fabricated via a facile alternating vacuum‑assisted filtration process.

• The composite paper exhibits excellent mechanical property and electromagnetic interference shielding performance.

ABSTRACT As the rapid development of portable and wearable devices, 

different electromagnetic interference (EMI) shielding materials with high 

efficiency have been desired to eliminate the resulting radiation pollution. 

However, limited EMI shielding materials are successfully used in practical 

applications, due to the heavy thickness and absence of sufficient strength 

or flexibility. Herein, an ultrathin and flexible carbon nanotubes/MXene/

cellulose nanofibrils composite paper with gradient and sandwich struc‑

ture is constructed for EMI shielding application via a facile alternating 

vacuum‑assisted filtration process. The composite paper exhibits outstand‑

ing mechanical properties with a tensile strength of 97.9 ± 5.0 MPa and a 

fracture strain of 4.6 ± 0.2%. Particularly, the paper shows a high electrical 

conductivity of 2506.6 S m−1 and EMI shielding effectiveness (EMI SE) of 

38.4 dB due to the sandwich structure in improving EMI SE, and the gradient 

structure on regulating the contributions from reflection and absorption. This strategy is of great significance in fabricating ultrathin and 

flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene‑based 

composite materials.
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1 Introduction

With the prosperity and development of electronics tech‑

nology, functional electromagnetic materials and devices 

have been extensively used in diverse fields, ranging from 

household electrical appliances to military weapons [1, 2]. 

High‑efficiency electromagnetic interference (EMI) shield‑

ing materials are of great significance for the alleviation or 

elimination of electromagnetic radiation pollution that has 

potential detrimental effects on human health and the normal 

work of electronic equipment [3–7]. As typical carbon‑based 

materials, one‑dimensional (1D) carbon nanotubes (CNTs) 

and two‑dimensional (2D) graphene sheets have drawn a 

wide of attention for EMI shielding owing to their great 

superiorities in lightweight and flexibility, in contrast to the 

old‑fashioned heavy and vulnerable metal (e.g., Cu, Ni, and 

Ag) materials [8–11]. For example, Song et al. [4] fabricated 

a lightweight and conductive CNTs‑multilayered graphene 

edge plane core–shell hybrid foam for EMI shielding using 

a chemical vapor deposition method. The resultant hybrid 

foam exhibited high EMI shielding effectiveness with more 

than 38.4 dB in X‑band. Although many exciting advances 

have been made, it is still a considerable challenge for car‑

bon‑based materials to achieve a self‑supported conductive 

network with an efficient EMI shielding performance at 

small thickness [12–14].

A novel family of 2D early transition metal carbides and/

or nitrides, MXenes (Mn+1XnTx, where M represents an 

early transition metal, X represents C and/or N, n = 1, 2, or 

3, and T is a terminating group, such as O, OH, and/or F), 

were firstly discovered in 2011 by the selective etching and 

delamination of their layered MAX phase [15–19]. With 

large specific surface area and high electrical conductiv‑

ity [20–25],  Ti3C2Tx MXene has recently been extensively 

reported as a remarkable shielding material [26–39]. For 

example, Gogotsi and his co‑workers firstly reported a 

metallically conductive  Ti3C2Tx‑based film with excellent 

conductivity (4665 S cm−1) and superior EMI shielding 

effectiveness (> 92 dB, 45 µm) [3]. Sun et al. [40] subse‑

quently fabricated a highly conductive MXene/polystyrene 

nanocomposite with the electrostatic assembly method. The 

resultant nanocomposite reached a maximum EMI SE of 

62 dB at a low MXene loading of 1.90 vol%. Li et al. [41] 

have newly reported a reduced graphene oxide/Ti3C2Tx 

hybrids foam with hollow core–shell architecture, which 

exhibits an excellent EM absorption performance. Although 

some impressive progress has been made, the fabrication of 

EMI materials with ultrathin thickness, high flexibility, and 

excellent EMI shielding performance is still an enormous 

challenge.

Cellulose nanofibrils (CNFs), which can be isolated by 

(2,2,6,6‑tetramethylpiperidin‑1‑yl) oxidanyl (TEMPO) oxi‑

dation and mechanical processing from wood and plants, 

are composed of numerous aligned β‑D‑(1 → 4)glucopyra‑

nose polysaccharide chains with abundant strongly intermo‑

lecular hydrogen bonds [42–45]. With excellent mechanical 

toughness, integrating high stiffness about 140 GPa and a 

lightweight character [46–48], CNFs have been considered 

as a promising emerging class of high‑performance nature‑

derived nanomaterials [49–52]. Moreover, CNFs with a 

typical 1D nanofiber structure will generate less insulating 

contacts between conductive nanosheets, such as reduced 

graphene oxide nanosheets [53], boron nitride nanosheets 

[54], and MXene nanosheets [55]. Particularly, CNFs are 

globally abundant, renewable, and environmental friendly 

since they are extracted from plants (e.g., wood, cotton, gar‑

lic husk). Yang et al. [53] fabricated reduced graphene/cel‑

lulose nanofiber composite films with great thermal conduc‑

tivity and EMI shielding performance by vacuum‑assisted 

filtration and hydroiodic acid reduction process. Zhang 

et al. [56] reported the preparation of cellulose nanofib‑

ers/multiwalled carbon nanotube composite film for EMI 

shielding via vacuum filtration and hot‑pressing method. 

Recently, our group has reported a highly flexible MXene/

cellulose nanofiber composite paper via a vacuum‑assisted 

filtration self‑assembly process [55]. However, owing to the 

insulating character of cellulose, the composite paper pre‑

pared by direct mixing of MXene and cellulose nanofibrils 

has showed a slight reduction in the conductivity and EMI 

shielding performance [53, 57, 58]. Thus, it is highly desired 

to develop a facile synthetic strategy, which can simulta‑

neously improve the mechanical property, electrical con‑

ductivity, and EMI shielding performance of MXene‑based 

composite materials [59, 60].

In this work, we report an ultrathin and flexible CNTs/

Ti3C2 MXene/CNFs composite paper with gradient and 

sandwich structure (CMC GS) for next generation of 

EMI shielding application by a facile alternating vacuum‑

assisted filtration method. The CMC GS composite paper 

with excellent mechanical properties shows a combination 

of high tensile strength and toughness. Furthermore, the 
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CMC composite paper with gradient and sandwich struc‑

ture shows a high electrical conductivity of 2506.6 S m−1 

and an enhanced EMI SE of 38.4 dB. The gradient structure 

of the composite paper plays a crucial role in regulating 

its contributions from reflection and absorption, rather than 

its total EMI shielding effectiveness. In contrast to gradient 

structure, the sandwich structure possesses more favorable 

advantages in the improvement in EMI SE of composite 

paper. Thus, the novel structural design in the fabrication of 

ultrathin and flexible composite paper contributes to realize 

outstanding EMI shielding performance and will broaden 

the practical applications of MXene composite materials.

2  Experimental Section

2.1  Materials

Lithium fluoride (LiF, ≥ 99%), cetyltrimethylammonium 

bromide (CTAB, > 99%), sodium bromide (NaBr), and 

sodium hypochlorite (NaClO) were purchased from Alad‑

din Industrial Corporation. Hydrochloric acid (HCl, 37 wt%) 

and sodium hydroxide (NaOH) were obtained from Sinop‑

harm Chemical Reagent Co., Ltd. CNTs (diameter 5–15 nm) 

were obtained from Shenzhen Nanotech Co., Ltd., of China. 

 Ti3AlC2 powders were purchased from Jilin 11 technology 

Co., Ltd. The bleached softwood pulp was purchased from 

Donghua Pulp Factory, China. All reagents and chemicals 

were used as received without further purification.

2.2  Synthesis of  Ti3C2 MXene Nanosheets

Ti3C2 nanosheets were synthesized according to a wet 

chemical etching method as previously reported by Gogotsi 

[3, 61]. Typically, 1 g of LiF was dissolved in 20 mL HCl 

(9 M) in a Teflon vessel and stirred for about 30 min at room 

temperature (RT). Then, 1 g of  Ti3AlC2 powders was slowly 

added into the etchant solution and the mixture was allowed 

to proceed at 35 °C for 24 h under stirring. The resultant 

slurry was washed repeatedly using deionized (DI) water and 

centrifuged at 3500 rpm for 5 min until its pH reaches about 

6. The black swelled clay‑like sediment was re‑dispersed and 

further exfoliated in deionized (DI) water under vigorously 

shaking for about 10 min. Finally, the uniform delaminated 

 Ti3C2 MXene nanosheets suspension with a concentration 

of 0.5 mg mL−1 was obtained after centrifuging for 1 h at 

3500 rpm.

2.3  Preparation of Single‑Layered  Ti3C2–CNTs 

Composite Paper

CNTs aqueous dispersion with a concentration of 

0.1 mg mL−1 was produced by ultrasonication for 20 min in 

the presence of cationic surfactant CTAB. CNTs dispersion 

was added dropwise to  Ti3C2 nanosheets suspension fol‑

lowed by further ultrasonication for 10 min to guarantee the 

complete contacts. The mixed suspension was filtered using 

a cellulose filter (0.22 µm in pore size) and dried at 60 °C, 

achieving the single‑layered  Ti3C2/CNTs composite paper. 

The weight ratios of CNTs–Ti3C2 chosen were 1:5, 1:10, and 

1:15, and the resulting single‑layered composite papers were 

denoted as CM‑5, CM‑10, and CM‑15, respectively. In these 

cases, the mass of the CNTs was set as 1 mg.

2.4  Fabrication of TEMPO‑Mediated Oxidized 

Cellulose Nanofibrils (CNFs)

CNFs were prepared using a known method [43, 62]. First, 

TEMPO (100 mg) and NaBr (659 mg) were added into a 

softwood pulp suspension (100 mL, 1 wt%) in a glass beaker. 

Then, 38 mL of 12% NaClO was added into the above mix‑

ture slowly at RT to initiate TEMPO‑mediated oxidation. 

During the above oxidation process, the pH value of the mix‑

ture was maintained at 10.5 with 0.5 M NaOH until no pH 

variation was observed. The TEMPO‑oxidized cellulose was 

purified by washing several times with DI water. The product 

slurry was re‑dispersed in DI water and further treated with a 

blender machine. The nanofibers were separated from unex‑

foliated cellulose fibers with high‑speed centrifugation for 

30 min. Finally, the collected supernatant was further treated 

with a high pressure homogenizer to obtain the uniform cel‑

lulose nanofibrils dispersion. The concentration of the CNFs 

was regulated as 0.5 mg mL−1.

2.5  Preparation of CNTs/Ti3C2 MXene/CNFs 

Composite Paper with Gradient and Sandwich 

Structure (CMC GS)

The GMT GS composite paper was prepared using an alter‑

nating vacuum‑assisted filtration method. For instance, the 
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CM‑5 was firstly filtered on the filter membrane to form a thin 

continuous layer. Then, a CNFs (4 mg) layer was deposited on 

the top of CM‑5 in the same way. After that, CM‑10, CNFs 

(4 mg), and CM‑15 were successively added to be deposited 

on their former layer. The composite paper was then dried in 

vacuum oven at 60 °C and peeled off from the filter membrane, 

yielding free‑standing CMC GS composite paper. Other com‑

posite papers with gradient or/and sandwich structure can be 

prepared through a similar process. To make the comparison, 

a randomly mixed CNTs (3 mg)/Ti3C2 MXene (30 mg)/CNFs 

(8 mg) composite paper, which was labeled as CMC mixture, 

was also constructed by a similar vacuum‑assisted filtration of 

mixed CNTs/Ti3C2 MXene/CNFs dispersion.

2.6  Characterization and Measurements

Field emission scanning electron microscopy (SEM, S4800, 

Hitachi, Japan) and transmission electron microscopy (TEM, 

Hitachi H‑800, Japan) were used to characterize morphologies 

and microstructures of the samples. The phase compositions of 

the samples were analyzed by X‑ray diffractometer (Rigaku D/

max 2550 V, Cu Kα radiation, λ = 1.54178 Å). Fourier‑trans‑

form infrared (FTIR) spectroscopy was measured using a FTIR 

spectrometer (FTIR‑7600, Lambda Scientific, Australia). The 

surface chemistries of the samples were characterized by X‑ray 

photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo 

Scientific). Nitrogen sorption measurements were obtained at 

− 196 °C on a Quadrasorb instrument (Quantachrome, USA) 

to measure the specific surface area and pore size distribution. 

The mechanical tests were performed at RT by a universal test‑

ing machine (Zwick Z005) equipped with a 100 N load cell. 

Each sample was cut into strips (10 × 30 mm2) using a knife 

blade, and the loading rate was set as 0.2 mm min−1. The elec‑

trical conductivity measurements were conducted at RT using 

a physical property measurement system (Quantum Design) 

with the standard four‑probe method. All samples were cut 

into strips (2.5 × 2.0 mm2) for measurements. Four‑pin probe 

was tightly contacted with the samples, and sheet resistance 

was recorded. The electrical conductivity of samples was cal‑

culated as Eq. 1:

where σ is the electrical conductivity (S cm−1), R is the 
sheet resistance (Ω sq−1), L and S are the length (cm) and 

(1)� =
1

s
⋅

1

R∕L

=
L

R ⋅ w ⋅ t

cross‑sectional area  (cm2) of the measured samples, and w 
and t are the width (cm) and thickness (cm) of the samples.

Agilent PNA‑N5244A vector network analyzer was 

employed to measure the electromagnetic interference shield‑

ing effectiveness (EMI SE) of samples in the frequency range 

of 8.2–12.4 GHz on the basis of a waveguide method. The 

samples were cut into the rectangular shape with a dimen‑

sion of 22.9 × 10.2 mm2 for measurements. The reflection (R), 

transmission (T), and absorption (A) coefficients were obtained 

by calculating the scattering parameters (S11 and S21). The total 

electromagnetic interference shielding values  (SET) can be 

obtained by Eqs. 2–7:

where  SER is the reflection value,  SEA is the absorption 
value, and  SEM is the multiple internal reflection value. The 
 SEM can be negligible at the time of  SET ≥ 15 dB [10, 63, 
64]. To compare the effectiveness of shielding materials 
equitably, density and thickness of the materials were also 
taken into account. The related equations were described as:

The EMI shielding efficiency (%) can be obtained as Eq. 10:

(2)SE
T
= SE

A
+ SE

R
+ SE

M
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|

2
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(
1
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)
= 10log
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1
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||
2

)

(7)SE
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= 10 log
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||
2
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||
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)

(8)SSE =
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= dB cm3 g−1
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(10)Shielding effiency (% ) = 100 −

(

1

10
SE

10

)

× 100
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3  Results and Discussion

Figure 1a schematically illustrates the preparation pro‑

cess of CMC GS composite paper. First, a thin continuous 

layer of CNTs/Ti3C2 MXene (CM) can be obtained by a 

vacuum‑assisted filtration from a dispersed CM aqueous 

solution containing 1D CNTs and 2D  Ti3C2 nanosheets. 

Subsequently, a CNFs layer deposited on the top of CM 

layer is obtained in the same way. Afterward, this filtration 

process is repeated several times alternately with various 

 Ti3C2 contents. By this strategy, CMC GS composite paper 

can be facilely obtained without using any expensive equip‑

ment or toxic organic solvents, which may have an enor‑

mous potential for large‑scale manufacturing. Particularly, 

the introduction of gradient and sandwich structure in the 

composite paper is in favor of the simultaneous enhancement 

of mechanical properties and EMI shielding performance. 

For purpose of comparison, a free‑standing randomly mixed 

CNTs/Ti3C2 MXene/CNFs (CMC mixture) composite paper 

without gradient and sandwich structure has also been pro‑

duced by the direct vacuum‑assisted filtration of CNTs/Ti3C2 

MXene/CNFs mixed dispersion.

2D  Ti3C2 MXene nanosheets were prepared by selec‑

tively etching  Ti3AlC2 precursor (MAX phase) with HCl/

LiF and further delaminating under vigorously manual 

shaking (Fig. S1). SEM images show that  Ti3AlC2 MAX 

phase is a closely stacked ternary compound (Fig. S2a, b). 

 Ti3AlC2 solid bulk changes to loosely stacked multilayered 

 Ti3C2 MXene with a characteristic accordion‑like structure 

(Fig. S2c, d). After further delaminating,  Ti3C2 MXene 

nanosheets dispersion with a typical Tyndall effect was 

observed (Fig. 1b). As shown in X‑ray diffraction (XRD) 

patterns, the representative (002) peak shifts from 9.6° to 

7.0°, indicating the increased interlayer spacing from 9.20 

to 12.6 Å (Fig. S3) [23, 65]. The chemical composition and 

surface terminations of  Ti3AlC2 MAX phase and  Ti3C2 
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nanosheets were determined by XPS (Fig. 1c). XPS results 

exhibit the absence of Al element and the existence of Ti–C 

(2p3) and Ti–O (2p3) doublets, which are in accordance with 

the previous reports and indicate the successful preparation 

of  Ti3C2 nanosheets (Fig. S4) [66, 67]. The TEM image 

shows that delaminated  Ti3C2 nanosheets with a diameter 

of ~ 500 nm were ultrathin and nearly transparent (Figs. 1d 

and S5). In addition, the dispersed CNTs aqueous solution 

with a concentration of 0.1 mg mL−1 has also been pro‑

duced by an ultrasonic processing with the assistance of 

cationic surfactant CTAB (Fig. 1e) [68]. The CNTs with 

5–15 nm in diameter and 15–30 µm in length (Fig. 1f) have 

been employed to enhance the connectivity between  Ti3C2 

nanosheets by forming a porous conductive network. When 

CNTs are added to  Ti3C2 dispersion,  Ti3C2 nanosheets are 

connected together to form numerous aggregations (Fig. 

S6). Figure 1g shows the homogeneously dispersed cellu‑

lose nanofibrils with Tyndall effect prepared from wood pulp 

with the TEMPO‑mediated oxidation method. FTIR spec‑

troscopy measurement has been performed on the CNFs, and 

the result is presented in Fig. 1h. The FTIR spectrum shows 

a broad and strong absorption band at 3446 cm−1, which 

is ascribed to the stretching vibration of O–H, while the 

strong absorption bands at 1619 cm−1 are assigned to C=O, 

proving the successful TEMPO‑mediated oxidation process. 

TEM measurement has been taken to further observe the 

micromorphology of CNFs (Fig. 1i). TEM image shows 

that the diameters of CNFs are 10–50 nm and lengths are 

200–500 nm. After alternant vacuum‑assisted filtration of 

CM and CNFs, a self‑supported and flexible CMC GS com‑

posite paper has been obtained. As shown in Fig. 1j, k, the 

composite paper can be folded into an intricate “airplane” 

shape without any crack or fracture, indicating excellent 

flexibility. Moreover, Fig. 1l shows that the thickness of the 

CMC GS composite paper is only 0.038 mm, which presents 

a great potential in miniaturized and lightweight electronic 

devices.

The chemical compositions of the single‑layered  Ti3C2 

and  Ti3C2–CNTs composites have been analyzed by XPS 

spectra. As shown in Fig. 2a, both pure  Ti3C2 paper and 
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 Ti3C2–CNTs composite paper have abundant F– and 

O– groups, which are attributed to the fluorine and oxy‑

gen terminations on  Ti3C2 nanosheets. However, the 

 Ti3C2–CNTs composite paper has a larger C/Ti atomic ratio 

(1.81) than that of the pure  Ti3C2 paper (1.10), owing to 

the addition of CNTs. Figure 2b shows the XRD patterns 

of  Ti3C2 and  Ti3C2–CNTs composite papers with different 

 Ti3C2 contents obtained by the vacuum‑assisted filtration 

method. The retained (002) peaks of CM‑5, CM‑10, and 

CM‑15 with various  Ti3C2 contents (CM‑5:  Ti3C2–CNTs 

weight ratio is 5:1; CM‑10:  Ti3C2–CNTs weight ratio is 

10:1, and CM‑15:  Ti3C2–CNTs weight ratio is 15:1) indi‑

cated the well‑preserved laminated structure of 2D  Ti3C2 

nanosheets. Moreover, with decreasing content of  Ti3C2, 

the (002) peak shifts from 2θ = 7.0° to 5.5°, signifying that 

the d‑spacing of  Ti3C2 nanosheets clearly increases from 

approximately 12.6 Å of pure  Ti3C2 paper to 16.0 Å of CM‑5 

composite paper. The increased d‑spacing is attributed to 

the successful intercalation of the CNTs into the interlayer 

spaces between  Ti3C2 nanosheets.

To further explore the role of CNTs acted in  Ti3C2–CNTs 

composite paper,  N2 sorption/desorption measurements 

have been employed to characterize their microstructure 

and exposed specific surface area. Figure 2c exhibits the 

 N2 sorption isotherms of pure  Ti3C2 paper and  Ti3C2–CNTs 

composite paper. Unlike the pure  Ti3C2 paper,  Ti3C2–CNTs 

composite paper shows a typical type‑V behavior with an 

obvious hysteresis loop of type  H2, which is resulted from 

the micropores generated through the introduction of CNTs 

between  Ti3C2 nanosheets. The specific surface area cal‑

culated based on Brunauer–Emmett–Teller (BET) method 

shows that the pure  Ti3C2 paper has a small BET surface 

area of 7.2 m2 g−1. On the contrary,  Ti3C2–CNTs composite 

paper possesses a larger BET surface area of 77.2 m2 g−1. 

The increased BET surface area indicates that the introduc‑

tion of CNTs effectively prevents the restacking effect and 

maximizes the accessibility of 2D  Ti3C2 nanosheets. As 

shown in Figs. 2d and S7, besides the uniform pore size dis‑

tribution of CNTs about 1.7 nm, the  Ti3C2–CNTs composite 

paper also has a pore size distribution within the scope of 

2.1–3.7 nm. In contrast, the pure  Ti3C2 paper lacks these 

micropores and mesopores in this range. To understand 

the role of CNTs in  Ti3C2–CNTs composite more intui‑

tively, SEM equipped with energy‑dispersive spectroscope 

elemental (EDS) mappings measurements is performed to 

characterize their morphologies and elements distribution. 

Figure 2e, f exhibits the top‑view and cross‑sectional SEM 

images of the pure  Ti3C2 paper. Without the incorporation of 

CNTs, the pure  Ti3C2 paper displayed a compactly stacked 

lamellar structure without visible pore. In contrast, after 

the introduction of CNTs as spacers, 2D  Ti3C2 nanosheets 

achieve effective separation and avoided the restack, yet 

still connected sufficiently to form a continuous conductive 

network (Fig. 2g). Moreover, the  Ti3C2 nanosheets have a 

uniform distribution in  Ti3C2–CNTs composite paper, which 

are observed in EDS mapping results (Fig. S8). Besides, it 

is worth mentioning that the  Ti3C2–CNTs composite paper 

with an undulating layered structure has numerous slit‑

shaped micropores (Figs. 2h and S9), which can be ascribed 

to the elimination of  Ti3C2 nanosheets restacking by CNTs. 

The undulating layered structure and slit‑shaped micropores 

of composite layer are of great significance for increasing 

the reflection and absorption of electromagnetic waves and 

further enhancing its EMI shielding performance. Single‑

layered CM and CNFs are used to assemble into a CMC GS 

composite paper in the alternant vacuum‑assisted filtration 

process. Figure 2i shows the cross‑sectional SEM and EDS 

mapping images, which indicate the CNTs/Ti3C2 MXene/

CNFs composite paper with gradient and sandwich structure 

has been successfully obtained. Meanwhile, a free‑standing 

CMC mixture composite paper with a homogeneous distri‑

bution of  Ti3C2 nanosheets has been prepared as a control 

by the directing vacuum‑assisted filtration process, which 

displays a uniform composite structure (Fig. S10).

Mechanical property is of great significance for EMI 

shielding materials, especially in the field of wearable or 

portable electronic devices, which need sufficient flexibil‑

ity to endure mechanical deformation. It can be seen that 

CMC GS composite paper is stable after several foldings 

and being pressed with a weight of 200 g (Fig. S11). The 

typical tensile stress–strain curves of the pure  Ti3C2 MXene, 

CMC mixture, and CMC GS composite paper are revealed 

in Fig. 3a, and the detailed data of mechanical performance 

are provided in Table S1. The tensile strength of the pure 

 Ti3C2 MXene paper is only 4.9 ± 1.0 MPa, with a fracture 

strain of 0.9 ± 0.1% (Fig. S12). The pure  Ti3C2 MXene 

paper with poor mechanical properties is hard to meet the 

requirement for practical applications. In contrast, the ran‑

domly assembled CMC mixture composite paper exhibits 

an improved mechanical property with a tensile strength 

of 94.9 ± 7.4 MPa and a fracture strain of 3.6 ± 0.2%. The 

significant improvement in tensile stress and strain can be 
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attributed to the successful incorporation of CNFs, which 

is often used as an ideal reinforcement. Particularly, the 

CMC GS composite paper, which is prepared by the alter‑

nant filtration of CNFs and CM with various  Ti3C2 con‑

tents, is not seen any reduction in mechanical properties. 

For instance, the CMC GS composite paper shows a tensile 

strength of 97.9 ± 5.0 MPa, a fracture strain of 4.6 ± 0.2%, 

a toughness of 2.1 ± 0.2 MJ m−3, and a Young’s modulus 

of 2.6 ± 0.2 GPa. Moreover, the mechanical performances 

of the  Ti3C2–CNTs (WMXene/WCNTs = 5:1) composite paper 

and the pure CNFs paper have been also investigated (Fig. 

S13). Compared to  Ti3C2–CNTs composite paper with 

poor mechanical property, the pure CNFs paper exhibits 

a great mechanical performance with a tensile strength of 

95.7 ± 13.7 MPa and a fracture strain of 5.1 ± 1.7%. The 

striking contrast between fragile  Ti3C2–CNTs composite 

paper and flexible pure CNFs paper further confirms the 

strengthening effect of CNFs in CMC GS composite paper.

To investigate the fracture mechanism of the CMC GS 

composite paper, the SEM image for the fracture surface is 
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shown in Fig. 3b. The surface of CMC GS composite paper 

shows obvious hierarchical fracture, which can be ascribed 

to the uneven and hierarchical distribution of CNFs and CM. 

Moreover, the fracture surface of the CMC GS composite 

paper shows a long‑range crack deflection and “pull‑out” 

mode, indicating that an additional friction exists in contact 

surfaces owing to the inter‑limitation between CNFs and 

CM. EDS mapping, which has been conducted on one of 

the convex surfaces within the fracture surface of CMC GS 

composite paper, shows an even distribution of C, O, and 

Ti elements, confirming that the “pull‑out” mode exists in 

stretching process. As shown in Fig. 3c, a crack propagation 

mode of CMC GS composite paper is proposed to explain 

the mechanism. When the composite paper is subjected to 

tensile load, the adjacent  Ti3C2 nanosheets can be inclined 

to slide over each other, and the hydrogen bonds between 

the CM layer and CNFs layer are slowly destroyed, which 

resulted in an initial crack. Subsequently, the long‑chain 

CNFs molecules are stretched along the drawing direction 

to dissipate more energy during the further stretching pro‑

cess, until the composite paper realizes a completely frac‑

ture. During the fracture process, the gradient and sandwich 

structure of the composite paper contributed to an obvious 

hierarchical fracture. To explore the electrical resistance 

variation of CMC GS composite paper under bending, the 

composite paper is fixed on two insulating clips and then 

linked with a light‑emitting diode (LED) lamp. As intui‑

tively reflected by the images in Fig. 3d, the brightness of 

LED lamp is not found any observable change during 100 

times bending (Movie S1). In addition, we have further 

investigated the potential applications of CMC GS compos‑

ite paper in the field of wearable designs. The composite 

paper is attached to index finger by conductive silver paste 

to monitor resistance variation after several cycles of finger 

bending tests. As shown in Fig. 3e, the resistance exhibits 

no conspicuous increase even after 100 bending cycles. The 

great flexibility and stable conductivity of CMC GS com‑

posite paper indicate the significant potentials in practical 

application to wearable or portable electronic devices.

The images of single‑layered CNFs, CM‑5, CM‑10, and 

CM‑15, which are used to be assembled into CMC GS 

composite paper, are shown in Fig. 4a. As we all know, the 

EMI shielding performance for the conductive materials is 

of great relevance to their electrical conductivity. It can be 

seen easily from Fig. 4b that the single‑layered CNFs are 

an insulating material with no electrical conductivity. The 

single‑layered CM‑5 with a  Ti3C2–CNTs weight ratio of 

5:1 displays an electrical conductivity of 10,145.8 S m−1, 

which is about 10,000 times more than the requirement 

(1 S m−1) for EMI shielding materials in actual applications 

[53]. By increasing the  Ti3C2–CNTs weight ratio to 15:1, the 

obtained single‑layered CM‑15 realizes an ultrahigh electri‑

cal conductivity of 23,812.0 S m−1. The excellent electrical 

conductivity of single‑layered CM can be attributed to the 

continuous conductive network formed by 1D CNTs and 2D 

 Ti3C2 nanosheets.

As expected, the superior conductivity endows the sin‑

gle‑layered CM with excellent EMI shielding performance 

(Fig. 4c). The total EMI shielding performance of single‑

layered CM is improved with the increment in  Ti3C2 con‑

tent, following a parallel tendency to the variation of elec‑

trical conductivities. Moreover, all the single‑layered CM 

samples show excellent EMI shielding effectiveness (SE) 

of > 30 dB over the whole X‑band. In particular, compar‑

ing with a 15‑mg‑pure  Ti3C2 paper with relative lower aver‑

age EMI SE of 34 dB (Fig. S14), the single‑layered CM‑15 

exhibits a superb EMI SE value of > 43 dB over the whole 

X‑band with a maximum of 48 dB, which is mostly owing 

to the above‑mentioned undulating layered structure and 

slit‑shaped micropores of the single‑layered CM. To theo‑

retically clarify the EMI shielding mechanism of the single‑

layered CM, the total EMI shielding effectiveness  (SETotal), 

microwave reflection  (SER), and microwave absorption  (SEA) 

all over the X‑band have been investigated, as shown in Fig. 

S15. With increasing the content of  Ti3C2 in single‑layered 

CM,  SEA exhibits an obvious ascending trend, whereas  SER 

does not show any significant variation. The inferior micro‑

wave reflection and strong microwave absorption indicate an 

absorption dominant shielding mechanism. For example, the 

 SETotal,  SEA, and  SER of the single‑layered CM‑15 at the fre‑

quency of 8.2 GHz are 47.6, 31.9, and 15.7 dB, respectively, 

which show that the contribution of reflection to total EMI 

SE (33%) is much lower than that from absorption (67%) 

(Fig. 4d).

To quantitatively analyze the influence of sandwich 

structure on EMI SE enhancement of composite paper, a 

CM–CNFs–CM composite paper with a symmetric lay‑

ered structure is prepared to be acted as an electromag‑

netic attenuator. For instance, the string “5/0.5‑4‑5/0.5” 

in Fig. 5a refers to a three‑layered composite with 5 mg 

 Ti3C2 + 0.5 mg CNTs as the first/third layer and 4 mg CNFs 

as the second layer. Compared to the CNFs–CM–CNFs 
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composite paper with same composition but different per‑

mutations of the layered structure, the CM–CNFs–CM 

paper with a wave‑transmission intermediate layer exhib‑

its an enhanced average EMI SE of 36 dB with a maxi‑

mum of 37 dB.  SETotal,  SER, and  SEA are calculated from 

the obtained scattering parameters to analyze the reason for 

EMI SE enhancement of CM–CNFs–CM paper. The incre‑

ment in  SEA of CM–CNFs–CM composite paper relative to 

CNFs–CM–CNFs composite paper is greater than the incre‑

ment in  SER, indicating that the higher effective absorption 

is responsible to the enhanced EMI shielding performance 

of CM–CNFs–CM paper (Fig. 5b). The content of CNFs 

between two CM layers in the CM–CNFs–CM composite 

paper is varied, and its effect on the EMI shielding perfor‑

mance is evaluated (Fig. 5c). With the CNFs content increas‑

ing from 2 to 4 mg, the average EMI SE exhibits a slight 

improvement from 35 to 36 dB, respectively. When the 

CNFs content further increased to 6 and 8 mg, the average 

EMI SE revealed a considerable reduction. It is mainly due 

to the existence of a small quantity of CNFs caused by vac‑

uum‑assisted filtration, which are involved in CM layer, and 

thus, the EMI performance is attenuated.

To investigate the relationship between gradient structures 

and the EMI SE of our composite paper, two‑layered CM 

composite paper with various  Ti3C2 contents in each layer 

has been fabricated with a sequential vacuum‑assisted filtra‑

tion method. Each composite paper is denoted with a string 

of numbers to conveniently represent the samples with dif‑

ferent  Ti3C2 contents. For example, the string “U10/1‑S5/1” 

referred to two‑layered composite with 10 mg  Ti3C2 + 1 mg 

CNTs as the upper (first) layer and 5 mg  Ti3C2 + 1 mg CNTs 

as the sublayer (second) layer. For the purpose of compari‑

son, an evenly distributed “15/2” composite paper with 

15 mg  Ti3C2 + 2 mg CNTs has been fabricated via a same 

vacuum‑assisted filtration method. As shown in Fig. 5d, 

although different gradient structures are presented in the 
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samples, all these two‑layered CM composite papers exhibit 

the similar EMI SE as  SEU10/1‑S5/1 ≈ SEU5/1‑S10/1 ≈ SE15/2 over 

the whole X‑band. To analyze the EMI shielding perfor‑

mance more intuitively, the reflection (R) and absorption 

(A) coefficients of different samples have also been investi‑

gated. As shown in Fig. 5e, f, the R and A of two‑layered CM 

composite paper with two kinds of gradient structures are 

quite different. Moreover, the obtained R and A have a cor‑

relation of AU5/1‑S10/1 > AU10/1‑S5/1 and RU5/1‑S10/1 < RU10/1‑S5/1, 

which are corresponding to the representation of Fig. S16 

 (SEA U5/1‑S10/1 > SEA U10/1‑S5/1;  SER U5/1‑S10/1 < SER U10/1‑S5/1) 

[38, 39, 41, 69–71]. These results demonstrate that the gra‑

dient structures do not show distinct effect on the total EMI 

shielding effectiveness but significantly affect the value of 

 SEA and  SER.

To further investigate the influence of gradient and sand‑

wich structures on the EMI shielding performance of multi‑

layered CMC GS composite paper, two layers of CNFs and 

three layers of CM with various  Ti3C2 contents have been 

used to be assembled into a composite paper for the analysis 

of EMI SE. Similarly, each composite paper has a specific 

string to conveniently represent the samples. For instance, 

the string “U5/1‑4‑10/1‑4‑S15/1” refers to a five‑layered 

composite with CM‑5 (5 mg  Ti3C2 + 1 mg CNTs) as the first 

layer, 4 mg CNFs as the second/fourth layer, CM‑10 (10 mg 

 Ti3C2 + 1 mg CNTs) and CM‑5 (15 mg  Ti3C2 + 1 mg CNTs) 

as the third and fifth layer, respectively. As shown in Fig. 6a, 

the CMC GS composite paper with an average EMI SE about 

36.6 dB exhibits a better EMI shielding performance than the 

randomly mixed CNTs/Ti3C2 MXene/CNFs composite paper 

(CMC mixture). Moreover, the five‑layered CMC GS com‑

posite paper with opposite gradient structure shows nearly 

the same EMI SE as  SEU5/1‑4‑10/1‑4‑S15/1 ≈ SEU15/1‑4‑10/1‑4‑S5/1 

over the whole X‑band. The highest EMI SE value of the 

CMC GS composite papers is 38.4 dB, indicating a high 

capability to block 99.99% of incident waves and only 0.01% 

transmission. Besides, the CMC GS composite paper with 

various gradient structures exhibits very different absorption 

coefficients,  SER, and  SEA, which are similar to the results 

of the above‑mentioned CM composite paper with gradient 

structures (Figs. 6b and S17). Additionally, the electrical 

conductivity of CMC GS composite paper and randomly 

mixed CMC composite paper has been also investigated. 

It can be seen from Fig. S18 that the conductivity of CMC 
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GS composite paper with 2506.6 S m−1 is about 5 times 

higher than CMC mixture paper with 546.6 S m−1. All these 

results revealed a similar trend with the above‑mentioned 

two‑ or three‑layered composite paper, indicating that the 

composite paper with outstanding sandwich and gradient 

structure has a more adjustable EMI SE and microwave‑

absorbing property than the randomly mixed composite 

paper with uniform structure. A potential mechanism of the 

CMC GS composite paper for EMI shielding is proposed as 

illustrated in Fig. 6c. As the electromagnetic waves struck 

the surface of CMC GS composite paper, the reflection, 

absorption, and transmission of electromagnetic waves can 

occur. Firstly, some incident waves are immediately reflected 

at the interface between air and the CM layer owing to their 

impedance mismatch, which are mainly attributed to the 

existence of numerous free electrons at the surface of  Ti3C2 

MXene nanosheets and CNTs [72–74]. The oriented align‑

ment of 2D  Ti3C2 MXene nanosheets and 1D CNTs along 

the planar direction can achieve a continuous conductive 

path and endow the CM layer with high conductivity [75]. 

The most remaining waves interact with the high electron 

density of  Ti3C2 MXene and CNTs, giving rise to ohmic 

losses and attenuating the energy of waves [3, 10, 26]. Addi‑

tionally, the overall laminated structure enables the CM 

layer to behave as a multilevel shield, which can make the 

waves be reflected and forth between the adjacent MXene 

nanosheets until completely absorbed. Meanwhile, the high 

conductive CM layer with undulating layered structure and 

slit‑shaped micropores, which are formed by using CNTs as 

spacers, will generate multiple internal reflections to pro‑

mote the dissipation of electromagnetic waves. Polariza‑

tion loss is also an important way to attenuate the incident 

waves. Actually, the localized defects of post‑etched  Ti3C2 

MXene nanosheets can generate an asymmetry distribution 

of electrons and further lead to dielectric loss. Moreover, 

the terminating groups (–F, =O, or –OH) on the surface of 
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MXene nanosheets can give rise to the asymmetric distribu‑

tion of charge density, which promotes the formation of local 

dipoles. These dipoles will rotate directionally toward the 

electromagnetic field and result in polarization relaxation 

and electromagnetic energy loss in the form of heat, which 

in turn enhance the overall shielding effectiveness [39, 76]. 

Particularly, the proposed gradient and sandwich structure 

of the CMC composite paper can attenuate or eliminate the 

internal electromagnetic waves by repeated reflection and 

adsorption and further achieve an excellent EMI shielding 

performance.

The superiority of the ultrathin and flexible CMC GS 

composite paper over other shielding materials is empha‑

sized by the comparison of their specific EMI shielding 

effectiveness (SSE), which incorporated three important 

parameters, that is, the EMI SE, density, and thickness. At 

present, metal‑ and carbon‑based materials are the main‑

stream shielding materials. Although some promising pro‑

gress in these materials has been made, few materials that 

simultaneously possess ultrathin thickness, flexibility, and 

excellent EMI shielding performance have been reported. 

As shown in Fig. 6d and Table S2, the ultrathin and flexible 

CMC GS composite paper shows both ultrathin thickness 

and high SSE and ranked the top at the comparison chart 

when comparing with other shielding materials, such as 

metal‑based materials [3, 77–80], graphene [63], reduced 

graphene oxide [8, 81, 82], carbon nanotube [10, 83], and 

other MXene‑based materials [27, 55] [84].

4  Conclusions

In summary, we have fabricated an ultrathin and flexible 

CNTs/Ti3C2 MXene/CNFs composite paper with gradient 

and sandwich structure by a facile vacuum‑assisted filtration 

method. The obtained CMC GS composite paper exhibits 

excellent mechanical properties and an outstanding com‑

bination of high tensile strength (97.9 MPa) and toughness 

(2.1 MJ m−3). The results indicate that the gradient struc‑

tures can make a great difference to the contributions from 

reflection and absorption of the composite paper, rather than 

their total EMI SE. Meanwhile, the sandwich structures with 

a different thickness enhance the EMI SE of composite paper 

and promote the composite paper to block more electromag‑

netic waves energy. The CMC composite paper with gradient 

and sandwich structure displays a better EMI SE of 38.4 dB 

than the randomly mixed CMC composite paper of 23.4 dB. 

Thus, the ultrathin, flexibility CMC GS composite paper 

with outstanding EMI shielding performance will greatly 

widen the practical applications in the fields of wearable or 

portable electronic devices.
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