Ulyanov-type inequalities between Lorentz-Zygmund spaces
Amiran Gogatishvili, Bohumir Opic, Sergey Tikhonov, and Walter Trebels

ABSTRACT. We establish inequalities of Ul’yanov-type for moduli of smoothness relating the source
Lorentz-Zygmund space LP'"(log L)*~7, v > 0, and the target space Lp*75(log L)* over R"if 1 <p<
p* < oo and over T" if 1 < p < p* < oo. The stronger logarithmic integrability (corresponding to
LP™>3(log L)®) is balanced by an additional logarithmic smoothness.

1. Introduction
In [31, (3.6)’] Ul’yanov has shown, that, for functions f € LP(T), 1 < p < oo,

R 1/11*
_ . - dt 11
wi(f,0)p S [t %wi(f,t)p) ¥ , —:‘B—U, 0<o<l1/p, keN,
0

where the k-th order modulus of smoothness wy(f,d), is defined in the standard way by

wi(f,0), = sup IAFfllp,  Anf(z) = flz+h) = f(z), AF=AAFL

The importance of Ulyanov-type inequalities follows from its relation to problems in the theory of function
spaces, approximation theory, and interpolation theory — see, e.g., [17], [23], [28]. In recent years
numerous contributions — see, e.g., [10], [11], [30], [23], [28], [26] — extended and improved this result
in various directions. To obtain sharp Ulyanov-type inequalities, it turned out necessary to introduce
moduli of fractional orders. The modulus of smoothness w,(f,d), of fractional order £ > 0 of a function
f e LP(R™) (or fe LP(T™)), 1 <p< oo, is given by (cf. [5, p. 788])

o0

a8y = S AL ey, ARS) = D1 (j)f (i + vh).

v=0

Then a typical sharp Ulyanov-type inequality for f € LP(R™), 1 < p < oo, reads as follows ([23], [28])

, 0<o<n/p.

5 AN 11
(11) wn(fu 6)17* S (A [t_owﬁ+0(f7 t)p]p t) 9 E = 5 -

31Q

Here we use the notation A < B, with A, B > 0, for the estimate A < ¢ B, where c is a positive constant,
independent of the appropriate variables in A and B. If A < B and B < A, we write A = B (and say
that A is equivalent to B). For two normed spaces X and Y, we will use the notation ¥ — X if Y C X
and | fllx < [If[ly forall feY.

In this paper we replace the space LP(T) by the Lorentz-Zygmund space LP"(log L) over R™ or T™. In
particular, in the case of the torus T™ we can consider the limit case o = 0.

To define the Lorentz-Zygmund spaces LP'"(log L)*(R™), 1 < p,r < o0, @ € R, we introduce the log-
arithmic function £(¢) = (1 4 |logt|), t > 0. A measurable function f belongs to the space LP"* =
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LP"(log L)*(R™) if

I 1/r
[l = 4 (PO @) <00, 7 <o
supyq /7 07 () f*(t) < o0 y T=09,
where f* denotes the non-increasing rearrangement of f. Thus L? = LPP* and || f|, = ||f|lp.p:0- In the
case of the torus, the integration extends over the interval (0,1) — see [2, p. 253]; the Lorentz-Zygmund

spaces are rearrangement invariant Banach function spaces if p > 1. For all these concepts see, e.g.,
[2, Chap. 2], [19].

Let us first formulate and comment our two main results. The former concerns functions defined on the
Euclidean space R™, the latter functions on the torus T".
THEOREM 1. Let K >0,1<p<o0,0< 0o <n/p, and o € R.
(a) If y=20and 1 <r < s < oo, then
L. LdiN1/s 1

(1'2) wn(fa 6)])*78;(1 < ( [t 14 (t) Wf-i-‘ro(fv t)p,r;oc—'y] ?) s 0 — 0+, E =

0
for all f € LP"(log L)*~7(R™).
(b) If y <0 and 1 <r < s < oo, then inequality (1.2) holds only if f=0. If s <r, then inequality (1.2)
with « =~ =0 is not true for all f € LP"(R"™).

D=
|
319

REMARK 1.1. Theorem 1 shows how the logarithmic component in smoothness on the right-hand side of
(1.2) leads to an additional logarithmic integrability on its left-hand side. In contrast to the Riesz fractional
integration | f|lp- S [(=A)7/2f|,, 1/p* = 1/p — o/n, we note that, for a fived p, the logarithmic Riesz
integration still leads to a type of LP-space (see [20]); cf. also the embedding

LP"(log L)*(R™) — LP*(log L)’(R"), 1<p<oo, r<s, B<a.

THEOREM 2. (a) Let k> 0,1<p<o0,0<o<n/p,l1<r<s<oo,a€R, and v>0. Then
5
dt\1/s 1 1 o
L < —opy ) st - - _ Y
(13 wlf e S ([ T OO0aolprant ) Sm0n =2
for all f € LP"(log L)*~7(T™). Inequality (1.3) holds for v < 0 only if f is constant.
(b) Let K >0,1<p<o0, and o € R.
(i) If 1 <r<s<oo then, for all f € LP"(log L)*~7(T™) when 6 — 0+,
é
_1/s Sdt\1/s
1) olhBma < ([ 0O raaF) OO G0 >0

(i) If 1 <s<r<oo then, for all f € LP"(log L)*~7(T™) when 6 — 0+,
(1.5)
Sdt

4 1/s
wfDpsa S /0 O O welfOpriaal'T) O T @) 0nf i 7> U =1/s.

REMARK 1.2. (a) The two terms on the right-hand side of (1.5) are independent of each other: Consider
the case p =r, k >0, a« =y > 0. We can choose (see [21, Thm. 2] for k € N and [25, Thm. 2.5] for

k> 0) f sufficiently reqular such that w,(f,t), = =1/ =7(t) (E(E(t)))_ﬂ, where 3 > 1/s, to obtain

that the first integral term is equivalent to (5(6(5)))1/57’87 while the second behaves like (6(6(5)))76.

Next, if we(f,t), = t°, then the first term leads to £Y~/7(5) 6%, the second one to £/5=1/T+7(§) 5",

Analogously, the independence of the two terms on the right-hand side of (1.4) can be shown: Consider
_ -8 K

we(fit)p = L) (L)) 7, B> 1/s, and we(f, 1), = t*.

(b) Theorem 2 (b) in the case 1 <p<oo, 1<s<r<oo,n=1,k=1, and o=~ =0 is contained

in [22, p. 336] by Sherstneva.
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(¢) Estimate (1.4) in the case s =71 =p, and n =1 is an improvement of

5
d
wk(f,é)pmwg/ W(u)wk(f,u)p—s, §—0+, keN, y>0, feLP(T), 1<p<oo,
0

(see [30]) which follows as a specification of an abstract Ulyanov-type inequality for semigroups in Banach
spaces. Indeed,

(/ e g, )

0 is
5( > f”’(2j_15)W£(f72j5)p)1/p < Z W(2j_15)wk(f,2j5)p/2 du

2i-15 U

29§

Z /2 w)wy(f;u)pl” %)1/17

j=—00 /P10

A

j=—00 j=—o00

by the monotonicity properties of the modulus of smoothness. Here the last term is approzimately
fo 0 (w) wi(f,u)p . Moreover,

5 5
m((s)wk(f,a)pzm(a)% / W du < / O wwr(fow)y 2

0 0 u
since 7(8) is decreasing and wy(f,0),/8% is almost decreasing on (0,1).

In what follows appropriate (modified) K-functionals play an essential role since they can be identified
with the occurring moduli of smoothness. To make this more precise, introduce the Riesz potential space
HYH(R™) = {g € LP"(log L)*(R™) : |glgprie = [(=A)2gllpra <00},  A>0,

where (—A)*? is to be understood in the standard way (cf. [3, p. 147]). As K-functional on the couple
(LP"(log L)™(R™), HY""*(R™)), we will mainly use the expression

. TP, P,y L 1 — . p.ria |,
K(f,t 07 (og L) Y)Y i= inf(LF = e+ tlgliagr)

P o
X

The following lemma contains some characterizations of this K-functional; here we use the notation F
for the Fourier transformation and F~! for its inverse.

LEMMA 1.1. Let 1<p<oo,1<r <00, a€R, and X\ > 0. Define on LP"(log L)*(R™) the generalized
Weierstrass means W} and de la Vallee Poussin means Vi by
Wrf = F e f Vif = PN« £ >0,
where x € C*[0,00) is such that x(u) =1 for 0 <u <1 and x(u) =0 for u > 2. Then
(1.6) K(f. % LP" (log L), HY™ ) = || f = W fllpria
(L.7) K(f, £ 17" (log L)*, HY" ®) % ||f = Vi llpria + Vi lpre
(1.8) WA(f,)pria = K(f, 1 LP" (log L), HY™9) .

On LP(R™), 1 < p < oo, the first two characterizations are folklore, (1.8) has been shown by Wilmes [33].
For the sake of completeness, we give a proof of (1.6) and (1.7) in Subsection 2.1. Since in the derivation
of the three characterizations only Fourier multiplier arguments are used, i.e., one works with bounded
linear operators, the extension to L (log L)*-spaces is immediate by an 1nterpolat10n argument given in
[12, Cor. 3.15]. Namely, this corollary says that quasilinear bounded operators T : LP — LP, 1 < p < oo,
are also bounded on the interpolation spaces LP"(log L)*, a € R, 1 < r < oc.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1. Since the Fourier
multipliers with respect to R™ have periodic counterparts (cf. [24, Chap. VII]), the abstract arguments
are independent of the underlying measure space, and the Wilmes’ characterization also holds in the
periodic situation [34], we obtain the sublimiting case 0 < o < n/p of Theorem 2 as that of Theorem 1 (a);
details are left to the reader. Finally, in Section 3 we treat the limiting case o = 0 for Lorentz-Zygmund
spaces over T".
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2. The sublimiting case p < p* for Lorentz-Zygmund spaces over R"

The proof of Theorem 1 (a) essentially runs as follows: Replace the modulus of smoothness on the left-
hand side of (1.2) by an appropriate (modified) K-functional, estimate the latter by a K-functional with
respect to LP"(log L)* 7-spaces, apply a Holmstedt-type formula (cf. [15, Thm. 3.1 (c)]) and go back
to the associated modulus of smoothness on LP"(log L)*~7. For this purpose, we have to prove a series
of results, e.g., embedding of a homogeneous Besov-type space into some Lorentz-Zygmund space, etc.

2.1. Auxiliary means. As already observed, by [12, Cor. 3.15], we need to prove (1.6) and (1.7)
only on LP(R"™), 1 < p < oo.

Proof of (1.6) and (1.7). We start with (1.6). By [27, Cor. 2.3])
e (tlen? (t|€)) e (tlen>
e o (] b (URE)
21 7 e I+ 17 e e t>0.
Therefore, using Minkowski’s inequality and the boundedness of the first two terms in (2.1), we get for
any g € HY,
If - Wt/\pr <I(f-9) - Wt)\(f = Dlp+llg - WtAng S —gly+ t/\‘g|H§ )

since g — Whg = F1[(1 — e~ (EDY)(¢[€]) =] % t*(—=A)*/2g. Taking the infimum over all g, we arrive at
the part ” 27 of the estlrnate in (1.6). Similarly, using the boundedness of the third term in (2.1), we
obtain the converse estimate

K(f,%5 L7, HY) < |f = W fllp + W g S IF = WSl
completing the proof of (1.6).

Now consider (1.7). Since V;f € C*°NLP for any f € LP, the part ” <7 is trivial. To verify the converse
inequality, we note that, by [27, Cor. 2.3],

- x(t[€]) ~1 [ (EED XD
I e o [ R e )
The first two estimates show that || f — Vif|l, < K(f,t*; LP, HY). Together with (1.6), the estimate of
the third term in (2.2) finally implies that t>‘|‘/}f|H§ < K(f7 t>‘ LP HY). O

Next we consider a theorem on fractional integration, a slight variant of [20, Thm. 2.1], which is based on
a modified Bessel potential operator. We define the Riesz potential operator with logarithmic component
by

17 f i=kon v fy Flhoyl(§) = €] log™ (e +[€]?), 0<o<n, v>0.
Analogously to [20], we obtain that

(2.3) k‘m(x) Sl (J2l), kgL () < Kk5L (D) ST,

where k3% () :=1t"" fo u) du is the maximal function of k* (cf. [2, p. 52]).

LEMMA 2.1. Let1<p<ool <s<oo,a€R, v20,0<0<n/p, and 1/p* =1/p—c/n. Then
I|1I° ra—~y  forall f e LP"(logL)*™".

The proof is analogous to that of [20, Thm. 2.1], since in [20] only estimates (2.3) were used to get the
corresponding result for the Bessel-type potential operator.

The next lemma deals with a Bernstein inequality for logarithmic derivatives. Throughout the paper we
put

Br(0) :={{ € R" : [{| < R}.
LEMMA 2.2. Let 1<p<oo,1<r<oo,a€R, and v>0. Then

1< R,

: ; O(R) gl -
1 Y 2 < p,T—"y
17008 e+ 68 oy < { 40 1o G )

for all g € 8" with suppg C Bg(0).
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Proof. Let x € C*[0,00) be as in Lemma 1.1. Again, in view of [12, Cor. 3.15], we only need to show
that

|7~ log™ (e + 1€)X (1€]*/R*) ] s S O(R),  R>1,
which immediately follows by of [27, Cor. 2.3]. O
A combination of these two lemmas gives the following embedding.
LEMMA 23. Let 1<p<oo,l1<r<s<oo,a€R, v>0,0<0<n/p, and 1/p* =1/p—oc/n. Then

O(R) [lgllpria—y 1< R
190 . < pria—ys LS
1177 gllp* 530 S { 19llpria—n , 0<R<1,

for all entire functions g € LP"(log L)~ with suppg C Br(0).

Proof. Note that [70g = [77"7g = [7YF~1[log” (e + |£]?) §] and, therefore, by Lemmas 2.1 and 2.2,
170Gl 50 S 1F~ log? (e + [€1*) ] llp,ria—y S €' (R) gllprsa—r,  RZ1.

The following variant of a Nikolskii inequality will turn out to be useful.
LEMMA 2.4. Let 1<p<p*<oo,1<r<s<oo,a€R, and v=>0. Then

19+ 550 S R*VPVPO0(R) Ngllp,ria—ry
for all g € LP"(log L)*~" with suppg C Br(0), R > 0.

Proof. Take x from Lemma 1.1 and define vg(x) := F~1[x(|¢|/R)](x). Then
R" R™ 1

SN P )

lvr(z)] S (11 Rlz))" vg(t) (L+ R/ vg (t) < min ;

By the assumption on the support of the Fourier transform of g, we have vg x g = g. Therefore, by

O’Neil’s inequality,

oo

g (t) = (v x )" (t) < tvg (g™ (t) +/t vg(u)g"(u) du.

Hence,

lgllp sia S (/Ooo [tl/p*ga(t) min {Rn, %} /Otg*(u) dural{f)l/s

g /oo {tl/P*ga(t) /OO g*(u> d ]Sﬂ 1/s NN
0 . A+ Ru/myn ) TR

Observing that ¢°£7(¢t), € > 0, is almost increasing and ¢t°¢7(t) is almost decreasing, elementary esti-
mates lead to

R ) ¢ s di 1/s
Nl < R" / |:{t1/p +171/p[‘/(t)} tl/P*lea*’Y(t)/ g* (U) du] _
0 0

t
OO 1/p*—1/ 1/p—1pa— L. AN
+ {7 e e ) | g () du] S
n 0
. o0 t Sdt 1/S
S Rn(l/P—l/P )eV(R) (/ [tl/P—lga—“{(t)/ g*(u) du} t) )
0 0

Now apply a Hardy-type inequality [12, Lemma 3.1 (i)] to obtain (cf. the estimate [20, (2.5)])
N S Rn(l/pil/p*)[}l(R) 191lprsa—~ -
Similarly, handle the term Ns, use [12, Lemma 3.1 (ii)] (cf. the estimate [20, (2.6)]) to arrive at

[/t 1-1/ g*(t) NV R o r
Ny < R" R VAN €7 WL Y = R" / / .
2 (/0 [ ( )(1 +Rt1/”)"} ) ( 0 .
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Apply Minkowski’s inequality, observe that

1 , 0<t<R™,

1/n\n ~
(1+Rt ) "“{ R_nﬁ_l, t>R—n7

and use again the monotonicity properties of t*<£7(t) to get No < R*M/P=1/P)0V(R) | gllp.ra—- - O

Next we need an analog of Lemma 2.1 with Besov-type spaces involved instead of Riesz-type potential
spaces. To this end, we define the Besov-type space BS,’?J@’S(R"), c>0, 8,7y€R, by

5 S s > —0a Sdu l/s
(2.4) BErH: :{feL“U%LW:UE%mm:=<A [u eﬂmwwﬁﬁw»mﬂu) <<m}

where x > 0. Note that the definition of B((,{)A’,T;B )8 is independent of x > 0. This follows from the
Marchaud inequality

(25) oy S [ 0T g F ) d
t
and a Hardy-type inequality [12, Lemma 3.1 (ii)]. To deduce (2.5), we refer to an abstract Marchaud

inequality from [29] — see the next remark.

REMARK 2.1. Let (X, ||-||) be a (complex) Banach space and {T'(t)}i>0 be an equibounded (Cy)-semigroup
of linear operators from X into itself with infinitesimal generator Ar (cf. [3, §6.7]), i.e.,

T(ty+ts) = T(t1)+T(ts) forall ty, t5 >0, T(0)=1I,
IT(@)| < C with a constant Cindependent of t > 0,
Jim [T~ = 0 forcach € X ((Co)-property)
Tt f —
thI(I)lJr Hw - ATfH = 0 forall f € D(Ar) (domain of Ar).

The operator Ar is closed, D(Ar) is a Banach space under the graph norm ||g|| + ||Arg|, and the
associated K-functional is given by

K(f,t; X,D(Ar)) := inf — t)A .
(f.:X, D(Ar)) := inf {17~ gl +t]Arg] |

If one defines the fractional power (—Ap)*, n >0, of (—Ar) by the strong limit

(=Ar)if = sft]i131+ 7[1 _Z:(t)}#

then (—Ar)* is closed and [29, (1.12) and (1.5)] imply that

f,

(2.6) K(f,t* X, D((-Ar)*)) < t* /OO u PR (f,ut T X D((—A)PT)) du for any k> 0.
¢

Now observe that for X = LP"(log L)?(R"™), 1 < p < oo, the generalized Weierstrass means {20},

f F e M x>0
(2.7) mw-{f e

differing from the Weierstrass means of Lemma 1.1 in the normalization of the parameter t > 0, form
(cf. [3, §6.7] and [12, Cor. 3.15]) an equibounded (Cp)-semigroup of linear operators of the required
type and
— - 38
D(Agyn) = D((—Agqp1)!) = HL™P .
Thus, (2.6) in combination with (1.8) gives the Marchaud inequality (2.5).

An important role in the proof of Theorem 1 is played by the following embedding.
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LEMMA 2.5. Let 1<p<oo,0<o<n/p,1<r<s<oo,a€R, and v=0. Then

1 1
S flpgra—e forall f€ BRI — = = - 7.
p p n
Proof. Consider the partition of unity on R"™,
D owilEh =1 for ££0,  @;(t) =(277t), (t) == x(t) — x(2t),
j=—o00
with the cut-off function x from Lemma 1.1. Set
(2.8) fi=F e (€D * f, jeL
Under the assumption that
(2.9) £l w0 S Y (02711 f;llpria—n1°
j=—00

holds, we show that the assertion of Lemma 2.5 is true. To this end, we first note that
||~7:71[90](|§|)] *f”p,?";a—"/ < Hf_v2 J'f pria—y T Hf_V21 J'f

|107T§0¢—’Y

(2.10) S K(f, 2790 ppriesy gRrR)
by Lemma 1.1. Therefore,
lva S 3 [O@PK(f 2 rme mpre) [ S
j=—00

dt

t )

and Lemma 2.5 is established in view of (1.8) and (2.4) provided that (2.9) is valid.

We prove (2.9) by an argument communicated to us by A. Seeger. Choose ¢ € C*°(0,00) with supp @ C
(1/4,4) and @ =1 on supp ¢; set @; = $(277+). Define T5,f = FH@;(1€)] * f. Then T, JJi = [ for
the f;’s from (2.8). Recall that suppfj C{&eR™: 2771 L |¢] < 2771} and, therefore, by the Nikolskii
inequality from Lemma 2.4,

Q1) @RI, e ST Flria s S W a0 =n(1/p—1/5°),

for all f € LP"*=7. Now fix p, 1 < p < oo; choose p§, pj such that p < p§ < p* < p] < oco. Set
oo =n(1/p—1/p§), o1 =n(1/p—1/p}), consequently og # o1. Then (2.11) also holds with this fixed p
but with (p*, o) replaced by (p},0;), i =0, 1. Hence, for an arbitrary sequence (F});cz, F; € LP"77,

~ [ IO R(e e ) )

we have
(2.12) HZT%FJ .5 Z”T% (2) 27| T, Fllp,rsa—ry
jez LR jez Jez
S D 0@ 2 Fllprsa—ry -
JEZ

Now apply an interpolation argument: Define the sequence space ¢2(X), X a normed space, as the space
of X-valued sequences (Fj);jecz with

I E3)sler == (Z [ 277]1€7(27) Fj |l x }q>1/q <00,

JEZL

)J) :ZT

JEL

and a linear operator S by

Then (2.12) means that
St lL (LP7e=) — LPose j=0,1.
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Since og # o1, we obtain, by [3, Thm. 5.6.1 (dotted version)] that
(213) (5, (X0 (X)og = £2(X), o =(1—B)op+ 001, 0<h<1, 1<q< o0,

Yo

Moreover, (Lpévs?a, Lpl’sva)e .= LP"9e where 1/p* = (1 —0)/pi +0/p% and 0 < @ < 1. Thus, the real
interpolation implies that
(2.14) S LL(LPTeTY) o PG
Choose F; = f; with f; from (2.8). Then

S((F);) =S((£);) =D Ts,ti=> fi=1

jez JEL
and, by (2.14),
1/q

||f||p*,q;a S Z[Qjallﬁ(?j) fJ|

JEL

]q
p,ria—vy )

which gives (2.9) on putting ¢ = s. O

As already announced, we want to apply an appropriate Holmstedt formula for the proof of Theorem 1 (a).
To this purpose, we introduce slowly varying functions. A measurable function b : (0,00) — (0,00) is
said to be slowly varying on (0, 00), notation b € SV(0,00) if, for each ¢ > 0, there is an increasing
function g. and a decreasing g_. such that t°b(t) = g-(t) and ¢t°b(t) ~ g_.(t) for all t € (0, 00).
Clearly, one has that {7 € SV(0,00), v € R. For the sake of simplicity, in the following we assume that
t+¢b(t) are already monotone. To describe the framework of the desired Holmstedt formula, let (X,Y) be
a compatible couple of Banach spaces, where Y C X has a seminorm |-|y such that |||y := | ||x+]||v
is a norm on Y. We will work with the (modified) K-functional

K(f,: X,Y) := inf ([|f — gllx +tlgly)
gey

and we will state a slight variant of the Holmstedt formula involving slowly varying functions given in
[15, Thm. 3.1 (c¢)] without proof.

LEMMA 2.6. Let 0 <6 <1,1<s< 00, and be SV(0,00). Define the interpolation space (X,Y)g s by

(X,Y g = {f € X :|floss = (/0 =K (f, 1 X, Y)]* ‘f) "< oo}.

If 0 <0 <1, then

K(f 1 0(0): (X, Y )o,s0, V) = ( /0 [u™b(u) K (f,u; X, Y)]* du)l/s

forall f € X and all t > 0.

2.2. Proof of Theorem 1 (a). Using the characterization (1.8), we can reduce the problem to
estimates between K-functionals. Thus,

Wi (f5 O)p* 50 = K(f, tHQLp*’S;aaHS*’S;a) <f = 9gllpr 550 + tK”(_A)R/ngp sia forall g€ Hp e
in particular, in view of Lemma 2.1, for all g € H2'*77. Consider g; = V;g, the de la Vallée-Poussin
means of g € H2'"*™" from Lemma 1.1. Note that
(el gz orio— S 19l o
since || F~Hx(t|¢])] |1 = O(1) by [27, Cor. 2.3]. As suppg; C B4(0), Lemmas 2.5 and 2.3 imply that

(215) wn(fa t)P’WSSOt 5 |f - gt']gé{”’vy“a*w),ef + [y(t) tKH <_A)(K/+a)/2,gt||p7r;a7'y .

We want to apply the Holmstedt formula from Lemma 2.6. To this end, we have to get rid of the de la
Vallée-Poussin means, i.e., we have to estimate g; by g. Clearly,

Wn(fa t)p*,s;a ,S |f - g|Bg’z)v;Yr;a—'y),s + |g - gt|Bg’1?:Yr;a—'Y),s + 07 (t) t“\gt|H5,+r;a—w
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and, by the above argument, |g;|zp.ria—v S |g|gp.ria—~. Observe that
kto k+o

t [e’e] ) o du 1/3
9=l = ([ + [ )00 @EG = gt rme e Pt )

Since K (g — g¢, ut7) S ut7)g — g¢| grrie— and K(g — g, u"7) < [|g — Gtllp,ria—ry , We see that
K+o

19 = 9l ppria=e SEO)E|9e] oo + )19 = gillp,rsa—r-

The estimate
||g - gt”p,r;a—'y S K(gatmm; LPme7, Hﬁiéfai’y) S tn+a|g|H’{Z£;@*7

follows from Lemma 1.1, the definition of the K-functional and the fact that g € H2/"* 7. Thus, (2.15)
holds for all g € HE'*™7 | which implies that

(2.16) Wi (f; t)p*,s;a N inf (‘f _g|B(p,raa*v)vS +£7(1) tn|g|Hl’v“"—‘*)‘
ge ’z;f&afv o k4o

Now B — (Lprse=y HPTOY)g 00 0 = o/(k+ o), which directly follows from the definition of
the interpolation space given in Lemma 2.6 and the characterization (1.8) of the involved K-functional.
If we change the variable t* to t'=% and set p(t) = t'=%¢7(t), we can interpret the right-hand side of
(2.16) as K (f,p(t); (LP7o=7  HE ") g oo, HEU ™). By Lemma 2.6, the latter can be reformulated
as follows

t 1/s
a— Ti— Tio— — roa— ro— sdu
K (f, p(t); (LP7eY  HETO T ) g g, HETIOTT) & (/0 [u™ 00 (w) K (f,u; L2577 HET )] ) .

u

Hence, using the change of variables and (1.8), we arrive at
t . du\ "
We(fi)prsia S (/O [u=70 (u)K(f, un—&-a';Lp,T;a—"/’H’]zi"&a—’Y)]s)

u
t d 1/s
</0 [u™ 70" (u) Weto (f, U)p,r;a—’y]su) .

Q

U
U

2.3. Proof of Theorem 1 (b). (i) First let v < 0. Then it follows from (1.8) that f e HL/ *"

implies that wxto(f,t)p.ria—y = Ot*T7), t — 0+ . Together with (1.2) and the assumption v < 0, this
gives wy(f,0)p* ;0 = 0(6%), 6 = 0+.
Therefore, by (1.8), it remains to show that
K(f, 6% LP *(log L), H? *%%) = 0(6") as § — 0+ = f=o.

(From the proof of Lemma 1.1 it is clear that

O (=AY W5 fllps s S 1 = W Fllpe o S K(f,6% L7 (log L), HZ5%).
Thus, by the Fatou property of the Lorentz-Zygmund spaces and the hypothesis, we have

[(=8)/2 fllp e < Timnf [(~2)"/2 W' f

p*,si00 = 0.

But (—A)"/2f =0 yields f =0, since f e L? *(log L)*. O

(ii) Concerning the case s < r, we show that, under this assumption, the Ulyanov-type inequality (1.2)
implies a fractional integration theorem, which is false in Lorentz spaces. To this end, take a =~y =10
and write LP" := LP"i0, Consider the set of entire functions of exponential type

By = {pR € LP"(R™) : supp Pr C Br(0), R> o}.
Then the following Riesz-type inequality holds:
(2.17) |Piys o S0 "wn(Prys, 0)pe,s,  Prys € Eppays, 1<p” <00, 1<s<o00, k>0,
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Indeed, this is proved in [33] for p* = s and the argument following (1.8) shows that (2.17) is true.
Formula (1.8) and the definition of the K-functional imply that

(2.18) o (Paysit)pe & K (Pyss 5475 L7 HET,) S 0547 | Pyl
Estimates (2.17) and (2.18) applied to (1.2) lead to
< Sk o —0 4 k+0o sdt 1/5
[Prysl gpes S0 ; =t Pryslary, I ) = |Puyslazy, -
Since the estimates involved are independent of ¢ > 0 and Jp~q Epr;r is dense in LP", we get
1 1
s S llpor s fer”r’ 1<p<oo, 0<o<n/p, —*:f—g.
p p n
However, this contradicts [14, Thm. 10.3]. O

(2.19) 170 f

3. The limiting case p = p* for Lorentz-Zygmund spaces over T"

In this section we discuss the limiting case o =0, i.e., when p = p*. When trying to follow the effective
approach of Section 2, we encounter the difficulty that we cannot carry out the monotonicity arguments
used in the proof of Lemma 2.4 on the whole half-line, but only on the interval (0,1) or (1, c0) separately.
There are two possibilities how to overcome this obstacle. One is to use the concept of broken indices for
the log-function - see [13]. The other, which we make use of, is to restrict ourselves to the n-dimensional
torus T™. In the following we use the standard Fourier series setting (cf. [24, Chap. VII)),

f((E) ~ Z fm62wi7nw7 ]?m — f(x)e—QTrimw d$7 f e Ll(Tn),
mezm T
and denote by 7y the set of all trigonometric polynomials of degree N, i.e.,
TN = {TN: Z CmeX™ e e C, mEZ"}, N eNg.
|m|<N

Since in this section there will be no ambiguity, we use the notation of the previous sections though the
underlying measure space is T". Thus we write

1 1/r
T n {07 * Tdt
DT € L) flya = ([ EPE@F @O T ) <ok
for the periodic Riesz-potential space HY""*(T™) of order A > 0
HYW = {g € LP" |9|Hf’r;a = H(_A))\/zgnp,r;a < oo}, (_A)A/Qg ~ Z |m|’\’g\m et
meZTL
and for the associated K-functional K (f,t*; LP"(T™), HY"“(T™))

(£ 1070 B = inf (1f = gllpro + Plalage) . 3> 0.
A

On account of the Poisson-summation formula (see [32, p. 37]) we note that the periodic analogs of
(1.6) and (1.7) hold; the periodic analog of (1.8) is due to Wilmes [34]. Hence the following variant of
Lemma 1.1 is true.

LEMMA 3.1. Let 1 <p<oo,1<r<oo,a€R, and A > 0. Define on LP"(log L)*(T™) the generalized
Weierstrass means W' and de la Vallée-Poussin means V; by

Wt/\f — Z e—(t|m\)>\J’f\me%rimac7 Vif = Z X(t|m|)fm€2wimx7 t>0,
mezn Im|<2/t
where x € C*[0,00) is from Lemma 1.1. Then
(3.1) K(f, Y5 LP" (log L)*, HY™ %) & |[f = W fllp,ra
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(3.2) K(f,05 L7 (log L)*, HY" ) 2 || = Vifllpria + Vil lge

(3.3) Wx(f, )pria =~ K(/, t*; LP" (log L)®, HYW).

3.1. Proof of Theorem 2 (b). We start with deriving analogs of Lemmas 2.1, 2.2, and 2.4 in
the limiting case p = p*. These results will be used in the proof of Theorem 2 (b). Define a fractional
integration 97 of logarithmic order v > 0 via o7 f .= l;o,v x f, where the Fourier series and the growth
behavior (at the origin) of ko — see [32, Thm. 7 (ii)] - are given by

27rzmx 1 1

~ 1
3.4 k _ k < —1 = 0.
( ) 0’)’ Z ].Og €+ |m|2) | O,’Y('T)‘ ~ |x|" Og |{17| y T —

mezZ"

As the next result is a slight variant of [20, Thm. 2.4], we state it without proof.
LEMMA 3.2. Let 1<p<oo,1<r<s<oo,a€R and v>0. Then
1 flpsia S Wfllpsa—y  for all f € LP"(log L)*~7(T").

By the Poisson-summation formula (see [32, p. 37]), it is clear that the proof of Lemma 2.2 also works
in the periodic situation. Hence, we obtain the following lemma.

LEMMA 3.3. Let 1<p<oo,1<r<oo,a€R and v > 0. Then the Bernstein-type inequality

H Z log” (e + |m|?) cpe®™™m® S’W(N)H Z Cn 2T
[m|<N |m|<N

prio—y pria—y
holds for all trigonometric polynomials of degree N.

A combination of these two lemmas yields a Nikolskii-type inequality for the limiting case.
LEMMA 3.4. Let 1<p<oo,1<r<s<oo,aa€R, and v> 0. Then

H Z cm1627rim:v S [y(N) H Z CmGQwimm

|m|<N [m|<

p;s;a p,ria—=vy

for all trigonometric polynomials in Ty, N € N.

Proof. By Lemma 3.2,

‘ ‘ § Cm 627szx

|m|<N

H Z IOg e+|m| ) 2mwimax
—  cne
log e+ |mf2) ™

S| X0 oot mp) e

Im|<

p,s;a p,s;a p,ria—vy

and an application of Lemma 3.3 gives the assertion. 0

To formulate an analog of Lemma 2.5 in our limiting case, we need the Besov-type space involving only
the logarithmic smoothness £7, v > 0, defined by
B).s ! du 1/s
B @) = {f € 07 Ul ggme = ([ 10@anlfwpral ™) <o}
where £ > 0. The notation B(p mif)s g justified by the fact that the definition is independent of x > 0.
To verify this, we make use of the notion of best approximation. Here En(f)p g denotes the error of
approximation of f € LP"8 by elements from 7Ty , given by

Enx(f)prp =f{||f = Tnlprp: Tn € In}

and we call Tﬁ,’”ﬁ (f) € T the best approximation to f € L% from 7y . Next we observe that, for
any k> 0,

1 d . K— .
G 2V T EDprsamy: J €No
o

(2

(35) Ej(f)pﬂ‘ a—y S Wm(fv 1/])p,r a—vy §
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Here the first estimate is the Jackson inequality which can be easily derived from the classical Jackson’s
theorem for the integer order moduli of smoothness (see [8, Thm. 2.1]):

Ej(f)p,r; a—y S W[n]-ﬁ-l(f: 1/j)p,r;oc—'y S we (fv l/j)p,r;a—’y .

The second estimate in (3.5) is the weak inverse inequality which is known (see [7, Thm. 2.3]) for the
case £ € N. We can prove it, for any x > 0, as follows. By (3.2),

n (s 1/2) gy = N = Vi fllparamn + 27 Vi flygprias

Now we use the fact that the de la Vallée-Poussin sum satisfies ||V} f||p.ria—y < C||fllp,ria—vy and Vi yTn =
Tn, Tn € Ty . Therefore, one has (see also [6, Sect. 4])

(3'6) ”f - VZ*mf”p,r;oz—'y S Eom (f)pﬂ“;a—’w
We now need the Bernstein inequality in LP" =7 (T"),

TNl ppria— = VT |gpria—s S NOK(Ty, 1% L2 (log L), HE" ) S NE[[Tn [lp.rsa—y »

~

which follows from (3.2). This estimate and (3.6) yield

m

Voo flygpres = | Vot f = Vavs f) + Vil yprva
=1

m m—1
S Z 2ln||‘é*lf - ‘/2*1+1f||p,r;a7'y + ||V1pr,r;af’y S EO(f)p,r;af'y + Z 2ZHE2l(f)p,r;a7fyo
=1 =0
Thus, we get
m—1
wn(ﬂ 1/2m)p,r;a7v S27m (EO(f)p,r;a*W + Z 21&E2l (f)p,r;a*v}
=0

which is equivalent to the last estimate in (3.5). Using monotonicity properties of the modulus of smooth-
ness, we get

1 1/s 00 1/s
(/0 [W(“)wﬁ(ﬁ“)p,r;ﬁ]s?> ~ (Z[m(l/l’)wm(ﬁ1/V)p,r;ﬁ}si> .

v=1

This estimate, (3.5), and Hardy’s inequality imply that, for any -, s > 0,

1 1/s oo 1/s
(3.7) </0 [[Y(u)wn(f,u)p,r;ﬁ]sczt> ~ (Z[W(l/v)Ey_l(f)p,r;6]5i> :

v=1
Note that in the case 0 < s < 1 we use the following Hardy-type inequality for monotonic sequences {¢;}

(e [ S, v [P Sl ] S S v () sl

(p,r3;B),s
Y

Finally, (3.7) immediately implies that the definition of By is independent of x > 0.

LEMMA 3.5. (a) Let either Q = (a,b) with —oo < a <b < oo orlet & CR™, n > 2, be a bounded domain
with a Lipschitz boundary. If 1 < p,r <oo,1<s<oo, a €R, and 8> —1/s, then

Bé;:)g‘;a),S(Q) SN Lp,£;ﬂ+04+1/ max{s,r}(Q) )

M) IfFQ=T" n>11<pr<oo, and o € R, then

(3.8) BRI ST o LPET), >0, 1<r<s <o,
(3.9) BRI S (T s LPTTY), > 1fr—1/s, 1<s<r <o,
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Proof. (a) By [19, Thm. 4.6],

(3.10) L) — LP1 () for any p; € [1,p).
If n > 2, choose p; such that

n
3.11 {17 } < p1 < min{p,n}.
(3.11) max {1, -} < py < minfp,n)

Together with the (generalized) Sobolev embedding theorem (cf., e.g., [12, Thm. 4.8 and Thm. 4.2]),
embedding (3.10) implies that
. 1 1 1
WLLPT(Q) s WILPH(Q) — LP1(Q), —=———.
Py P n
If n =1, then, cf. [1, Lemma 5.8, p. 100], W!LY(Q) — C(f), which, together with (3.10) shows that
the embedding
WILPTY(Q) — WILPY(Q) — LP1(Q)

remains true with any pj € [1,00], and hence with pj satisfying 1 < p < p} < co. Combining the em-
bedding W!LP"%(Q) — LP1(Q) with the trivial embedding LP":%(Q) < LP"%(Q) and using a limiting
interpolation, we arrive at

X = (Lrre (@), W), o (@), @) =y

0,s;8 -
for any s € [1,00] and @ € R. Since (cf. [16, (1.6)])
K(f,t; LP7e(Q), WHLPT(Q)) & min{1, ¢} fllpria + @1(F, t)piria

for all f € LP2(Q) + WILPT(Q) and every t > 0, one can show that X = B(()%T;a)’s(Q). Note that

t

Moreover, if 1 < s < oo and 3 > —1/s, then, using [13, Thm. 5.97, Thm. 4.77 (i), p. 952], we obtain
that Y «— Lp-siftatl/max{sr}(Q) and the result follows.

(b) Replace a by a —~, take 8 = v —1/s and § = v — 1/r, to obtain embeddings (3.8) and (3.9),
respectively. O

1 d 1/s
1l = [l + ( / (@) 0r (£, Dpia]® t) .

Proof of Theorem 2 (b). Unlike the proof of part (a), here we will use the technique based on estimates
of the best approximations rather than a Holmstedt-type formula.
By (3.3) and (3.2), we have

(3.12) wr(f, 1/N)p,8;04 S = Vl/Nf”p,S;a + N7N|Vl/Nf|H,€*S?(¥ = I+1II.
(i) Let us first handle the case r < s. Lemma 3.4 together with (3.2) and (3.3) gives
(3.13) IT < (log N) wi (f, 1/N)prsa—ny -
Concerning I, we first observe that under our restriction on the parameters, by (3.8),
1
_ dt\1/s
(3.14) e S Wllpriams+ ([ 0701 0pramal” )
< = y—1/s( s 1\1/s
S Wl + (107G B (Ppras]” 5)
j=1

forall f € LP"(log L)*~7(T™), where the latter inequality follows by (3.7). For arbitrary g € LP"*~7(T")
set f:=g—TX"* " 7(g). This implies that
Ej(fpria— < 1 flpria— =19 = TR (Dlpria—y = EN(9)pria—y 0<j<N

and
Ej(f)p,r;a—'y = Ej (g)p,r;a—'y ) j = N.
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Rewrite (3.14) for the above function f =g —Th"" "(g) to get

EN(Q)p,S;a N ||9_Tp’r;aiv( )”ps a

0o e
S B+ (54 3 DBt ]
j=1 j=N+1
a 1/s
/S EN(g)p,ra ’Y+EN pﬂ‘oz A/(Z ’y 1/5* )
j=1
+( Z [~ 1/9 Eij(9)pr;a—]® 7‘>1/5
J=N+1 J
N KV(N)EN(g)p,r;a—’yﬂL( Z [[/*I/S(j)Ej(g)p,r;a_’y}8§>1 5.
j=N+1

Observe that, by [8, Thm. 2.1],

Ej(g)pra 'ysw[ +1(gal/])pra vwwn(gvl/])pra )

and that, by (3.6), [lg—Vi/nllp.s;a S EN(9)p,sia to get the desired estimate for I. Together with (3.13),
this establishes (1.4).

(ii) Let us now consider the case 1 < s < r. Concerning I, we first observe that under our restriction on
the parameters, by (3.9),

1
—1/r sdt 1/s
e S W llprias + ([ 107 Q100 racal §)

Now follow straightforward the proof in (i) to obtain

oo

—1/r —1/r(; 51 /s
EN(9)p,s;a §w+1/s Y () EN(Q)p,T;a—7+< Z 4 Y () Ej(9)p,r; a—] 7’)
J=N+1 J
for any g € LP"*~7(T"™). This implies that

s

dt\1/s

(315) IS O w018 + ([0 O wnl Do )
0

With regard to 11, we need the following variant of Nikolskii’s inequality for trigonometric polynomials
Txn € Tn(T™) which states that

(3.16) 1Tw lp.s:a < (log N)YH/s=1/r y>1/r—1/s, s<m,

and which will be proved below. Suppose (3.16) is true. Then
I1 S N~ (og N)" Vo=V n flygprar S log N 0 (f1/N) prsa—ry »
by (3.2) and (3.3). In view of (3.15), this proves assertion (1.5).
To prove (3.16), we need the following Remez inequality (see [9] and also [18])
(3.17) Tx(0) < C(n)TxH(NT™), N eN,

where T7; is the non-increasing rearrangement of T. Then

N 1/ppa dt ! 1/ppa * sdt
[loa S [ 0PCOTOPE + [ [BPE@T01S =1t b
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By (3.17),
N~
Lo TP [ (8PEOFT S TN )
0
N at\""
s norem ([ wreowr
0
NT" ar\""
s oW ([ wreonyor T STyl .-
0

Finally, by Holder’s inequality,

1 s/r 1 (r—=s)/r
dt X X dt
nos ([ weeconory) ([ errood)
1 dt s/r
s oo ([ e OmorT) S 0 I s
Note that the power of the ¢(N)-factor is positive since v > 1/r — 1/s. O
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