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Abstract. We describe a message authentication algorithm, UMAC,
which can authenticate messages (in software, on contemporary ma-
chines) roughly an order of magnitude faster than current practice (e.g.,
HMAC-SHA1), and about twice as fast as times previously reported for
the universal hash-function family MMH. To achieve such speeds, UMAC
uses a new universal hash-function family, NH, and a design which allows
effective exploitation of SIMD parallelism. The “cryptographic” work of
UMAC is done using standard primitives of the user’s choice, such as
a block cipher or cryptographic hash function; no new heuristic prim-
itives are developed here. Instead, the security of UMAC is rigorously
proven, in the sense of giving exact and quantitatively strong results
which demonstrate an inability to forge UMAC-authenticated messages
assuming an inability to break the underlying cryptographic primitive.
Unlike conventional, inherently serial MACs, UMAC is parallelizable,
and will have ever-faster implementation speeds as machines offer up
increasing amounts of parallelism. We envision UMAC as a practical
algorithm for next-generation message authentication.

1 Introduction

This paper describes a new message authentication code, UMAC, and the theory
that lies behind it. UMAC has been designed with two main goals in mind:
extreme speed and provable security. We aimed to create the fastest MAC
ever described, and by a wide margin. (We are speaking of speed with respect
to software implementations on contemporary general-purpose computers.) But
we insisted that it be demonstrably secure, in the sense of having quantitatively
desirable reductions from its underlying cryptographic primitives.

UMAC is certainly fast. On a 350 MHz Pentium IT PC, one version of UMAC
(where the adversary has 2760 chance of forgery) gives a peak performance of
2.9 Gbits/sec (0.98 cycles/byte). Another version of UMAC (with 273° chance
of forgery) achieves peak performance of 5.6 Gbits/sec (0.51 cycles/byte). For
comparison, our SHA-1 implementation runs at 12.6 cycles/byte. (SHA-1 speed
upper bounds the speed of HMAC-SHAT1 [3], a software-oriented MAC represen-
tative of the speeds achieved by current practice.) The previous speed champion
among proposed universal hash functions (the main ingredient for making a fast
MAC; see below) was MMH [13], which runs at about 1.2 cycles/byte (for 2739
chance of forgery) under its originally envisioned implementation.



How has it been possible to achieve these speeds? Interestingly, we have
done this with the help of our second goal, provable security. We use the well-
known universal-hashing approach to message authentication, introduced by [28],
making innovations in its realization. Let us now review this approach and its
advantages, and then describe what we have done to make it fly.

1.1 Universal-Hashing Approach

UNIVERSAL HASHING AND AUTHENTICATION. Qur starting point is a universal
hash-function family [10]. (Indeed the “U” in UMAC is meant to suggest the
central role that universal hash-function families play in this MAC.) Remember
that a set of hash functions is said to be “e-universal” if for any pair of distinct
messages, the probability that they collide (hash to the same value) is at most e.
The probability is over the random choice of hash function.

As described in [28], a universal hash-function family can be used to build a
MAC. The parties share a secret and randomly chosen hash function from the
hash-function family, and a secret encryption key. A message is authenticated
by hashing it with the shared hash function and then encrypting the result-
ing hash. Wegman and Carter showed that when the hash-function family is
strongly universal (a similar but stronger property than the one we defined) and
the encryption is realized by a one-time pad, the adversary cannot forge with
probability better than that obtained by choosing a random string for the MAC.

WHY UNIVERSAL HASHING? As suggested many times before [16,25,13], the
above approach is a promising one for building a highly-secure and ultra-fast
MAC. The reasoning is like this: the speed of a universal-hashing MAC depends
on the speed of the hashing step and the speed of the encrypting step. But if
the hash function compresses messages well (i.e., its output is short) then the
encryption shouldn’t take long simply because it is a short string that is being
encrypted. On the other hand, since the combinatorial property of the univer-
sal hash-function family is mathematically proven (making no cryptographic
hardness assumptions), it needs no “over-design” or “safety margin” the way
a cryptographic primitive would. Quite the opposite: the hash-function family
might as well be the fastest, simplest thing that one can prove universal.

Equally important, the above approach makes for desirable security prop-
erties. Since the cryptographic primitive is applied only to the (much shorter)
hashed image of the message, we can select a cryptographically conservative de-
sign for this step and pay with only a minor impact on speed. And the fact that
the underlying cryptographic primitive is used only on short and secret messages
eliminates many avenues of attack. Under this approach security and efficiency
are not conflicting requirements—quite the contrary, they go hand in hand.

QUEST FOR FAST UNIVERSAL HASHING. At least in principle, the universal-
hashing paradigm has reduced the problem of fast message authentication to that
of fast universal hashing. Thus there has been much work on the design of fast-to-
compute universal hash-function families. Here is a glimpse of some of this work.
Krawczyk [16] describes the “cryptographic CRC” which has very fast hardware



implementations and reasonably fast software implementations; it needs about
6 cycles/byte, as shown by Shoup [26]. Rogaway’s “bucket hashing” [25] was the
first hash-function family explicitly targeted for fast software implementation;
it runs in about 1.5-2.5 cycles/byte. Halevi and Krawczyk devised MMH  [13],
which takes advantage of current CPU trends to hash at about 1.5-3 cycles/byte
on modern CPUs.

With methods now in hand which hash so very quickly, one may ask if the
hash-design phase of making a fast MAC is complete; after all, three cycles/byte
may already be fast enough to keep up with high-speed network traffic. But
authenticating information at the rate it is generated or transmitted is not the
real goal; the goal is to use the smallest possible fraction of the CPU’s cycles
(so most of the machine’s cycles are available for other work), by the simplest
possible hash mechanism, and having the best proven bounds.

1.2 Our Contributions

Our work represents the next step in the quest for a practical, secure, high-speed
MAC. Here we describe the main contributions associated to its design.

NEw HasH FUNCTION FAMILIES AND THEIR ANALYSES. A hash-function fam-
ily named NH underlies hashing in UMAC. It is a simplification of the MMH
and NMH families described in [13]. It works like this: the message M to hash
is regarded as a sequence of an even number ¢ of integers, M = (mq,...,my),
where each m; € {0,...,2" — 1} corresponds to a w-bit word (e.g., w = 16 or
w = 32). A particular hash function is named by a sequence of n > ¢ w-bit
integers K = (k1,...,kyn). We compute NHg (M) as

02

Z ((mai—1 + k2i—1) mod 2%) - ((ma; + k2;) mod 2)) | mod 2% . (1)

i=1
The novelty of this method is that all the arithmetic is “arithmetic that com-
puters like to do”—no finite fields or non-trivial modular reductions (as used in
previous designs for universal hashing) come into the picture.

Despite the non-linearity of this hash function and despite its being defined
using two different rings, Z/2¥ and Z/2%“, not a finite field, we manage to
obtain a tight bound on the collision probability: 27% (or 27“*! when using
signed integers). Earlier analyses of related hash-function families had to give
up a small constant in the analysis [13]. We give up nothing.

After proving our bounds on NH we extend the method using the “Toeplitz
construction,” a well-known approach to reduce the error probability without
much lengthening of the key [18, 16]. Prior to our work the Toeplitz construction
was known to work only for linear functions over fields. Somewhat surprisingly,
we prove that it also works for NH. Our proof again achieves a tight bound for the
collision probability. We then make further extensions to handle length-issues,
finally arriving at the hash-function family actually used in UMAC.

COMPLETE SPECIFICATION. Previous work on universal-hash-paradigm MACs
dealt with fast hashing but did not address in detail how to embed a fast-to-



compute hash function into a concrete, practical, and fully-analyzed MAC. For
some hash-function constructions (e.g., cryptographic CRCs) this step would be
straightforward. But for the fastest hash families it is not, since these have some
unpleasant characteristics, including specialized domains, long key-lengths, long
output-lengths, or good performance only on very long messages. We show how
to overcome such difficulties in a practical way which delivers on the promised
speed. We provide a complete specification of UMAC, a ready-to-use MAC,
in a separate specification document [7]. The technical difficulties mentioned
above are not ignored; to the contrary, they are treated with the same care
as the hash family itself. Our construction is fully analyzed, beginning-to-end;
what is analyzed is exactly what is specified. This has only been possible by
co-developing the specification document and the academic paper.

PRF(HASH, NONCE) CONSTRUCTION. Previous work has assumed that one
hashes messages down to some fixed length string and then applies some crypto-
graphic primitive. But using universal hashing to reduce a very long message to
a fixed-length one can be complex, require long keys, or reduce the quantitative
security. Instead, we reduce the length of the message by some pre-set constant
factor, concatenate a sender-generated nonce, and then apply a pseudorandom
function (PRF). See Section 5 for details.

EXPERIMENTS. We have been guided by extensive experimentation, through
which we have identified the parameters that influence performance. While any
reasonable setting of these parameters should out-perform conventional MACs,
the fastest version of UMAC for one platform differs from the fastest version for
another platform. We have therefore left UMAC parameterized, allowing specific
choices to be fine-tuned to the application or platform at hand. Here and in [7]
we consider a few reasonable settings for these parameters.

SIMD EXPLOITATION. Unlike conventional, inherently serial MACs, UMAC is
parallelizable, and will have ever-faster implementations as machines offer up
increasing amounts of parallelism. Our algorithm and specification were specifi-
cally designed to exploit the form of parallelism offered by current and emerging
SIMD architectures (Single Instruction Multiple Data). These provide some long
registers that can, in certain instructions, be treated as vectors of smaller-sized
words. For NH to run well we must quickly multiply w-bit numbers (w = 16 or
w = 32) into their 2w-bit product. Many modern machines let us do this partic-
ularly well since we can re-appropriate instructions for vector dot-products that
were primarily intended for multimedia applications. For now, our fastest imple-
mentation of UMAC runs on a Pentium and makes use of its MMX instructions
which treat a 64-bit register as a vector of four 16-bit words.

1.3 Related Work

MMH PAPER. Halevi and Krawczyk investigated fast universal hashing in [13].
Their MMH construction takes advantage of improving CPU support for integer
multiplication, particularly the ability to quickly multiply two 32-bit multipli-
cands into a 64-bit product. Their paper also describes a (formerly-unpublished)



hash-function family of Carter and Wegman, NMH*, and a variation of it, NMH.
Our NH function, as given by formula (1), is a simplification of NMH. The differ-
ence between NH and NMH is that NMH uses an additional modular reduction by
a prime close to 2%, followed by a reduction modulo 2%. These changes simplify
implementation, increase speed, and lower the collision probability.

OTHER WORK ON UNIVERSAL HAsH MACSs. Krawczyk describes a “crypto-
graphic CRC” hash-function family. Shoup later studied the software perfor-
mance of this construction, and gave several related ones [26]. In [16] one finds
the Toeplitz construction used in a context similar to ours. An earlier use of the
Toeplitz construction, in a different domain, can be found in [18]. A hash-function
family specifically targeted for software was Rogaway’s “bucket hashing” [25]. Its
peak speed is fast but its long output length makes it suitable only for long mes-
sages. Nevelsteen and Preneel give a performance study of several universal hash
functions proposed for MACs [19]. Patel and Ramzan give an MMH-variant that
can be more efficient than MMH in certain settings [20]. Bernstein reports he
has designed and implemented a polynomial-evaluation style hash-function fam-
ily that runs in 4.5 Pentium cycles/byte [6]. Other recent work about universal
hashing for authentication includes [1, 14].

OTHER TYPES OF MACs. One popular MAC is the CBC-MAC [2]. The CBC-
MAC was analyzed by [5], and a variant of it was later analyzed in [21]. In [7]
we make a PRF using a CBC-MAC variant similar to [21].

MACs have been constructed from cryptographic hash-functions. A few such
methods are described in [27,15], and analysis appears in [22,23]. An increas-
ingly popular MAC of this cryptographic-hash-function type is HMAC, which
is described and analyzed in [3,12]. In one version of UMAC we suggest us-
ing HMAC as the underlying PRF. One can view UMAC as an alternative to
HMAC, with UMAC being faster but more complex.

FuLL VERSION. The full version of this paper is in [8], and there is an associated
specification document [7]. Reference code is also available [17].

2 Overview of UMAC

Unlike many MACs, our construction is stateful for the sender: when he wants
to authenticate some string Msg he must provide as input to UMAC (along with
Msg and the shared key Key) a 64-bit string Nonce. The sender must not reuse
the nonce under the same MAC key. Typically the nonce would be a counter
which the sender increments with each transmitted message.

The UMAC algorithm specifies how the message, key, and nonce determine
an authentication tag. The sender will need to provide the receiver with the
message, nonce, and tag. The receiver can then compute what “should be” the
tag for this particular message and nonce, and see if it matches the received tag.

UMAC employs a subkey generation process in which the shared (convenient-
length) key is mapped into UMAC’s internal keys. In typical applications subkey
generation is done just once, at the beginning of a communication session dur-



Subkey generation:
Using a PRG, map Key to K = K1 K2 - - K1024, with each K; a 32-bit word,
and to A, where |A| = 512.

Hashing the message Msg to HM = NHXgey (Msg):
Let Len be |Msg| mod 4096, encoded as a 2-byte string.
Append to Msg the minimum number of 0 bits to make |Msg| divisible by 8.

Let Msg = Msg, || Msg, || --- || Msg, where each Msg, is 1024 words
except for Msg,, which has between 2 and 1024 words.
Let HM = NHg (Msg,) || NHx (Msg,) || --- || NHx (Msg,) || Len

Computing the authentication tag:
The tag is Tag = HMAC-SHA14 (HM || Nonce)

Fig. 1. An illustrative special case of UMAC. The algorithm above computes a 160-bit
tag given Key, Msg, and Nonce. See the accompanying text for the definition of NH.

ing which the key does not change, and so subkey-generation is usually not
performance-critical.

UMAC depends on a few different parameters. We begin by giving a descrip-
tion of UMAC as specialized to one particular setting of these parameters. Then
we briefly explore the role of various parameters.

2.1 An Illustrative Special Case

The underlying shared key Key (which might be, say, 128 bits) is first expanded
into internal keys K and A, where K is 1024 words (a word being 32-bits) and A
is 512 bits. How Key determines K and A is a rather standard detail (it can be
handled using any PRG), and so we omit its description here. See Figure 1. There
we refer to the hash function NH, which is applied to each block Msgy, ..., Msg,
of Msg. We now define this function. Let M = Msg; be one of these blocks.
Regard M as a sequence M = M --- M, of 32-bit words, where 2 < ¢ < 1024.
The hash function is named by K = Kj - -+ K1924, where K; is 32 bits. We let
NHg (M) be the 64-bit string NHx (M) =

(M1 +32 K1) X 64 (MQ +32 KQ) 64 t6a (M£71 +32 K£71) X 64 (MZ +32 Kz)

where +3. is computer addition on 32-bit strings to give their 32-bit sum, 44
is computer addition on 64-bit strings to give their 64-bit sum, and Xe4 is com-
puter multiplication on unsigned 32-bit strings to give their 64-bit product. This
description of NH is identical to Equation (1) (for w = 32) but emphasizes that
all the operations we are performing directly correspond to machine instructions
of modern CPUs. See the left-hand side of Figure 2.

Theorem 1 says that NH is 2732-universal on strings of equal (and appro-
priate) length. Combining with Proposition 1 gives that NHX (as described in
Figure 1) is 2732-universal, but now for any pair of strings. By Theorem 3, if an
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Fig.2. Left: The NH hash function with a wordsize of w = 32 bits, as used in
UMAC-STD-30 and UMAC-STD-60. Right: The “strided” form of NH, with wordsize
of w = 16 bits, as used in UMAC-MMX-30 and UMAC-MMX-60.

adversary could forge a message with probability 2732 4+ § then an adversary of
essentially the same computational complexity could break HMAC-SHA1 (as a
PRF) with advantage § — 27160, Under generally-accepted assumptions about
SHA-1 only negligible values of 6 can be achieved by a feasible attacker [3,4],
thus providing essentially a 2732 upper bound on the forging probability against
this version of UMAC.

2.2 UMAC Parameters

The full name of the version of NH just described is NH[n, w], where n = 1024
and w = 32: the wordsize is w = 32 bits and the blocksize is n = 1024 words.
Numbers n and w are two of UMAC’s parameters. Let us describe a few others.

Naturally enough, the pseudorandom function (PRF) which gets applied to
HM || Nonce is a parameter. We used HMAC-SHA1 above, but any PRF is
allowed. Similarly, a parameter specifies how Key gets mapped to K and A.

The universal hashing used in our example had collision probability 2732
We make provisions for lowering this. To square the collision probability one
could hash the message twice, using independent hash keys, and concatenate
the results. But an optimization in UMAC is that the two keys that are used
are not independent; rather, one key is the “shift” of the other, with a few new
words coming in. This is the well-known “Toeplitz construction.” We prove in
Theorem 2 that, for NH, the probability still drops according to the square.

In our example we used a long subkey K—it had 4096 bytes. To get good
compression with a shorter subkey we can use two-level (2L) hashing. If a hash
key of length n; gives compression ratio A\; and a hash key of length no gives
compression ratio Ay then using two levels of hashing gives compression ratio
A1 Ao with key size £1 + f5. Our specification allows for this. In fact, we allow
2L hashing in which the Toeplitz shift is applied at each level. It turns out that



this only loses a factor of two in the collision probability. The analysis is rather
complex, and is omitted.

To accommodate SIMD architectures we allow slight adjustments in indexing.
For example, to use the MMX instructions of the Pentium processor, instead of
multiplying (M7 +16 K1) by (M2 416 K2) and (M3 416 K3) by (My 416 K4),
we compute (M1+16 Kl)x32(M5+16 K5) +32 (M2+16 KQ)><32(M6+16 Kﬁ) 32 -
There are MMX instructions which treat each of two 64-bit registers as four
16-bit words, corresponding words of which can be added or multiplied to give
four 16-bit sums or four 32-bit products. So reading M; || My || M3 || My into one
MMX register and M; || Mg || M7 || Ms into another we are well-positioned to
multiply My+16 K1 by Ms+16 K5, not My+16s Ko. See Figure 2.

There are a few more parameters. The sign parameter indicates whether
the arithmetic operation Xg. is carried out thinking of the strings as unsigned
(non-negative) or signed (twos-complement) integers. The MMX instructions
mentioned above only operate on signed values, as does Java. If the input message
is sufficiently short there is no speed savings to be had by hashing it with NH.
The min-length-to-hash specifies the minimum-length message which should be
hashed before being passed to the PRF. Finally, an endian parameter indicates
if the MAC should favor big-endian or little-endian computation.

NAMED PARAMETER SETS. In [7] we suggest some settings for the vector of
parameters, giving rise to UMAC-STD-30, UMAC-STD-60, UMAC-MMX-30,
and UMAC-MMX-60. Here we summarize their salient features.

UMAC-STD-30 and UMAC-STD-60 use a wordsize of w = 32 bits. They
employ 2L hashing with a compression factor of 32 followed by a compression
factor of 16. This corresponds to a subkey K of about 400 Bytes. They employ
HMAC-SHA1 as the underlying PRF. They use signed arithmetic. The differ-
ence between UMAC-STD-30 and UMAC-STD-60 is the collision bound (and
therefore forgery bound): 2739 and 2790 respectively, which are achieved by
hashing either once or twice (the latter using a Toeplitz-shifted key). These two
versions of UMAC perform well on a wide range of contemporary processors.

UMAC-MMX-30 and UMAC-MMX-60 are well-suited to exploit the SIMD-
parallelism available in the MMX instruction set of Intel processors. They use
wordsize w = 16 bits. Hashing is accomplished with a single-level scheme and
a hash key of about 4 KBytes, which yields the same overall compression ratio
as the 2L scheme used in the UMAC-STD variants. These MACs use the CBC-
MAC of a software-efficient block cipher as the basis of the underlying PRF. Our
tests were performed using the block cipher RC6 [24]. Arithmetic is again signed.
The difference between UMAC-MMX-30 and UMAC-MMX-60 is the maximal
forgery probability: 2739 and 270, respectively.

3 The NH Hash Family
Recall that NH is not, by itself, the hash-function family which UMAC uses,

but the basic building block from which we construct UMAC’s hash. After some
brief preliminaries we define and analyze NH.



3.1 Preliminaries

FUNCTION FAMILIES. A family of functions (with domain A C {0,1}" and range
B C {0,1}") is a set of functions H = {h : A — B} endowed with some
distribution. When we write h «— H we mean to choose a random function h € H
according to this distribution. A family of functions is also called a family of
hash functions or a hash-function family.

Usually we specify a family of functions H by specifying some finite set of
strings, Key, and explaining how each string K € Key names some function
Hx € H. We may then think of H not as a set of functions from A to B but as a
single function H : Key x A — B, whose first argument we write as a subscript. A
random element h € H is determined by selecting uniformly at random a string
K € Key and setting h = Hg.

UNIVERSAL HASHING. We are interested in hash-function families in which “col-
lisions” (when h(M) = h(M’) for distinct M, M’) are infrequent:

Definition 1. Let H = {h : A — B} be a family of hash functions and let
€ > 0 be a real number. We say that H is e-universal, denoted e-AU, if for all
distinct M, M’ € A, we have that Prp_n[h(M) = h(M')] < e. We say that
H is e-universal on equal-length strings if for all distinct, equal-length strings
M, M’ € A, we have that Prp—p[h(M) =h(M")] <e. |

3.2 Definition of NH

Fix an even n > 2 (the “blocksize”) and a number w > 1 (the “wordsize”). We
define the family of functions NH[n, w] as follows. The domain is A = {0,1}*" U
{0,1}*“U---U{0,1}™ and the range is B = {0, 1}**. Each function in NH[n, w]
is named by an nw-bit string K; a random function in NH[n,w] is given by a
random nw-bit string K. We write the function indicated by K as NHg(-).

Let U, and Uy, represent the sets {0,...,2* — 1} and {0,...,2%% — 1},
respectively. Arithmetic done modulo 2% returns a result in U,,; arithmetic done
modulo 2% returns a result in Us,. We overload the notation introduced in
Section 2.1: for integers z,y let (z +. y) denote (x 4+ y) mod 2*. (Earlier this
was an operator from strings to strings, but with analogous semantics.)

Let M € A and denote M = M --- My, where |Mi| = --- = |[M,| = w.
Similarly, let K € {0,1}"" and denote K = K;---K,, where |K;| = - =
| K| = w. Then NHg (M) is defined as

/2

NHg (M) = Z (koi—1 +w maoi—1) - (k2i +w m2;) mod 22w

i=1
where m; € U, is the number that M; represents (as an unsigned integer),
where k; € U, is the number that K; represents (as an unsigned integer), and
the right-hand side of the above equation is understood to name the (unique)
2w-bit string which represents (as an unsigned integer) the Us,-valued integer
result. Henceforth we shall refrain from explicitly converting from strings to



integers and back, leaving this to the reader’s good sense. (We comment that
for everything we do, one could use any bijective map from {0,1}" to U,,, and
any bijective map from Usy, to {0,1}°*.) When the values of n and w are clear
from the context, we write NH instead of NH[n, w].

3.3 Analysis

The following theorem bounds the collision probability of NH. In the full version
of this paper [8] we also treat the signed case, yielding a bound of 2t(=*+1_AU.

Theorem 1. For any even n > 2 and w > 1, NH[n,w] is 27%-AU on equal-
length strings.

Proof. Let M, M’ be distinct members of the domain A with |M| = |M’|. We
are required to show Prx. nu [NHg (M) = NHg(M')] < 27%. Converting the
message and key strings to n-vectors of w-bit words we invoke the definition
of NH to restate our goal as showing that

2/2 £/2
Pr Z (k2i—14wmai—1)(k2i+wma;) :Z (k2i—1+wmy;_q)(kitwms;)
i=1 i=1

is no more than 27% where the probability is taken over uniform choices of
(k1,...,ky) with each k; in U,,. Above (and for the remainder of the proof) all
arithmetic is carried out in Z/2%v.

Since M and M’ are distinct, m; # m} for some 1 < ¢ < n. Since ad-
dition and multiplication in a ring are commutative, we lose no generality in
assuming mq # mb. We now prove that for any choice of ko, -, k, we have

2/2
Pry, eu, [(ml +uw k1)(m2 4w k2)+ZiLQ (Mai—1 +w koic1)(Mo +w ko) =
¢ _
(M) +u k)b o ko) + 0005 (Mg o kaio1)(mby +u ka)] <279,
which will imply the theorem. Collecting up the summations, let

2/2 £/2
Y= Z (mai—1+wkai—1)(Mmoit+wke) — Z (M _1+wkai—1)(mb;+uwka;)
i=2 1=2

and let ¢ = (m2 4w ko) and ¢ = (mf +. k2). Note that ¢ and ¢ are in U,,
and since mg # mj, we know ¢ # ¢’. We rewrite the above probability as

klzg [c(m1 4w k1) — (M) +u k1) +y=0] <27%.

In Lemma 1 below, we prove that there can be at most one k; in U, satisfying
c(my +w k1) — ' (m} +. k1) +y =0, yielding the desired bound. |

Lemma 1. Let ¢ and ¢’ be distinct values from U,. Then for any m,m’ € U,
and any y € Uy there exists at most one k € U, such that c¢(k +. m) =
Ak +w m')+yin Z/2%".



Proof. We note that it is sufficient to prove the case where m = 0. We proceed to
therefore prove that for any c¢,c¢’,m’ € U, with ¢ # ¢’ and any y € U, there is
at most one k € U,, such that kc = (k +. m')c +y in Z/22¥. Since k,m’ < 2¥,
we know that (k +. m') is either k +m/ or k+m’ — 2%, depending on whether
E+m' < 2% or k+m' > 2% respectively. So now we have

k(c—c)=m/d +yand k<2 —m’ (2)
k(c—c)=(m"—2") +yand k>2"—m' (3)

Lemma 2, presented next, shows that there is at most one solution to each of
the equations above. The remainder of the proof is devoted to showing there
cannot exist k = k; € U, satisfying (2) and k = ko € U, satisfying (3) in
Z /2@, Suppose such a ki and ko did exist. Then we have k; < 2% — m/ with
ki(c—c) =m'd +y and k2 > 2¥ — m/ with ka(c — ) = (m' — 2¥)¢ + y.
Subtracting the former from the latter yields (ks — k1)(¢’ — ¢) = 2¥¢’. We show
that this equation has no solutions in Z/22%. There are cases:

CASE 1: ¢ > c. Since both (kg — k1) and (¢’ — ¢) are positive and smaller than
2% their product is also positive and smaller than 22%. And since 2*¢’ is also
positive and smaller than 22, it is sufficient to show that the equation has no
solutions in Z. But this is clear, since (ko — k1) < 2% and (¢/ — ¢) < ¢/, and so
necessarily (ke — k1)(c’ —¢) < 2.

CASE 2: ¢ < c¢. Here we show (k2 — k1)(c — ¢/) = —2%¢’ has no solutions in
Z/2%w. As before, we convert to Z, to yield (ko — k1)(c — /) = 2%% — 2%¢'. But
again (ko —k1) < 2% and (c—¢') < (2¥ =), s0 (k2 —k1)(c—¢') < 2¥(2¥ =) =
22w _guwe/ |

Let D, = {—2¥ 4+ 1,...,2% — 1} be the values attainable from a difference of
any two elements of U,,. The following lemma completes the proof.

Lemma 2. Let x € Dy, be nonzero. Then for any y € Us,,, there exists at most
one a € Uy, such that ax =y in Z/2%".

Proof. Suppose there were two distinct elements a,a’ € U, such that ax = y
and o’z = y. Then ax = a’x so x(a — a’) = 0. Since z is nonzero and @ and o
are distinct, the foregoing product is 2%k for nonzero k. But = and (a — a’) are
in D,,, and therefore their product is in {—22% 2w+l —1 .. 22w _gw+l 4 1}
which contains no multiples of 22* other than 0. |

COMMENTS. The above bound is tight; let M = 0*0* and M’ = 1*0" and note
that any key K = K7 K, with Ko = 0% causes a collision.

Although we do not require any stronger properties than the above, NH is
actually 27“-AAU under the operation of addition modulo 22%. Only trivial
modifications to the above proof are required. See [13] for a definition of e-AAU.

Several variants of NH fail to preserve collision probability e = 27%. In par-
ticular, replacing the inner addition or the outer addition with bitwise-XOR
increases € substantially. However, removing the inner moduli retains ¢ = 27%
(but significantly degrades performance).



There is also a version of NH[n, w], called NHS[n, w], that uses signed arith-
metic. Surprisingly, the signed version of NH has slightly higher collision prob-
ability: the full paper proves a tight bound of 2~*T1-AU. This helps explain
the 2739 and 2790 forging probabilities for the four UMAC versions named in
Section 2.2 and performance-measured in Section 6; all four algorithms use the
signed version of NH.

4 Extending NH

The hash-function family NH is not yet suitable for use as a MAC: for one thing,
it operates only on strings of “convenient” lengths (fw-bit strings for even £ < n).
Also, its collision probability may be higher than desired (27* when one may
want 272% or 27%%) and this is guaranteed only for strings of equal length. We
remedy these deficiencies in this section.

4.1 Reducing Collision Probability: NH-Toeplitz

Should we wish to reduce the collision probability for NH, we have a few options.
Increasing the wordsize w yields an improvement, but architectural characteris-
tics dictate the natural values for w. Another well-known technique is to apply
several random members of our hash-function family to the message, and con-
catenate the results. If we concatenate the results from, say, four independent
instances of the hash function, the collision probability drops from 27% to 274,
However this solution requires four times as much key material. A superior (and
well-known) idea is to use the Toeplitz-extension of our hash-function families:
given one key we “left shift” to get the “next” key and hash again. For example,
to reduce the collision probability to 274 for NH[n, 16], we choose a single key
K = (Ky,...,Knt6) and hash with the four derived keys (Kjy2:,..., Kny2:)
where 0 < ¢ < 3. This trick not only saves key material, but it can also im-
prove performance by reducing memory accesses, increasing locality of memory
references and increasing parallelism.

Since these keys are related, it is not clear that the collision probability indeed
drops to the desired value of 27%4. Although there are established results which
yield this bound (e.g., [18]), they only apply to linear hashing schemes over
fields. Instead, NH is non-linear and operates over a combination of rings (Z/2%
and Z/22%). In Theorem 2 we prove that the Toeplitz construction nonetheless
achieves the desired bound in the case of NH.

We define the hash-function family NHT[n, w, ] (“Toeplitz-NH”) as follows.
Fix an even n > 2, w > 1, and ¢ > 1 (the “Toeplitz iteration count”). The
domain A = {0,1}** U{0,1}**U---U{0, 1} remains as it was for NH, but the
range is now B = {0, 1}2“)t. A function in NHT[n,w, ] is named by a string K
of w(n +2(t — 1)) bits. Let K = Ky || --- || K, y2¢¢—1) (where each K is a w-bit
word), and let the notation K; ; represent K; || --- || K;. Then for any M € A
we define NHE (M) as

NH-II—{(M) = NHKl..n(M) H NHKs..n+2(M) H ” NHK(2t—1)..(n+2t—2) (M)



When clear from context we write NHT instead of NHT[n, w, t].
The following shows that NHT enjoys the best bound that one could hope
for. The proof is in the full version [8].

Theorem 2. For any w,t > 1 and any even n > 2, NHT[n, w, t] is 27**-AU on
equal-length strings.

4.2 Padding, Concatenation, and Length Annotation

With NHT we can decrease the collision probability to any desired level but we
still face the problem that this function operates only on strings of “convenient”
length, and that it guarantees this low collision probability only for equal-length
strings. We solve these problems in a generic manner, with a combination of
padding, concatenation, and length annotation.

MECHANISM. Let H : {A — B} be a family of hash functions where functions
in H are defined only for particular input lengths, up to some maximum, and
all the hash functions have a fixed output length. Formally, the domain is A =
Uier 10, 1}" for some finite nonempty index set I C N and the range is B =

{0, 1}ﬁ, where 3 is some positive integer. Let a (the “blocksize”) be the length of
the longest string in A and let « > [lg, a| be large enough to describe | M| mod a.
Then we define H* = {h* : {0,1}" — {0,1}"} as follows.

function h*(Msg)

1. if M = A then return 0¢

2. View Msg as a sequence of “blocks”, Msg = Msg || --- || Msgy,
with [Msg;| =a forall 1 <j <t,and 1 < [Msgy| <a

Let Len be an a-bit string that encodes |Msg| mod a

Let i > 0 be the least number such that Msg, || 0° € A

Msg, = Msg, | 0’

return h(Msgy) | - || h(Msg,) || Len

S G W

ANALYSIS. The following proposition indicates that we have correctly extended
H to H*. The straightforward proof is in the full paper [8].

Proposition 1. Let I C N be a nonempty finite set, let 3 > 1 be a number,
and let H = {h : U;;{0,1}* — {0,1}°} be a family of hash functions. Let
H* = {h* : {0,1}" — {0,1}"} be the family of hash functions obtained from H as
described above. Suppose H is e-AU on strings of equal length. Then H* is e-AU
(across all strings).

5 From Hash to MAC

In this section we describe a way to make a secure MAC from an e-AU family
of hash functions (with small €) and a secure pseudorandom function (PRF).



DEerFINITION OF THE PRF(HASH, NONCE) CONSTRUCTION. We use a family
of (hash) functions H = {h : {0,1}" — {0,1}"} and a family of (random or
pseudorandom) functions F = {f : {0,1}" — {0,1}"}. These are parameters of
the construction. We also fix a set Nonce = {0,1}" and an “encoding scheme”
(,-). The encoding scheme is a linear-time computable function that maps a
string HM € {0,1}" and Nonce € Nonce into a string (HM, Nonce) of length
|HM| + |Nonce| + O(1) from which, again in linear time, one can recover HM
and Nonce. The MAC scheme UMAC[H, F] = (KEY, TAG) is defined as:

function KEY () function TAGy,;) (M, Nonce)
f<—F h<H
return (f,h) return f ((h(M), Nonce) )

The keyspace for this MAC is Key = H x F; that is, a random key for the MAC is
a random hash function h € H together with a random function f € F. Here we
have regarded a MAC scheme as a pair consisting of a key-generation algorithm
and a tag-generation algorithm. The formalization is in [8].

We point out that the use of the nonce does not, by itself, address the question
of replay detection. Our definition of MAC security [8] speaks to an adversary’s
inability to produce a new (M, Nonce, Tag) tuple, but is silent on the question of
when the verifier should regard an (M, Nonce, Tag) tuple as valid. Certainly Tag
should be the correct tag for the given message and nonce, but the verifier may
demand more. In particular, the verifier may wish to reject messages for which
the nonce was used before. If so, replay attacks will be thwarted. Of course the
verifier will need to maintain state to do this. If the sender and receiver use a
counter for detecting replays this same counter can be UMAC’s nonce.

ANALYSIS. We begin with the information-theoretic version of the scheme. The
proof and relevant definitions are in the full paper [8]. Here it suffices to indicate
that Succy*(F') measures the chance that F forges under the MAC scheme X.

Lemma 3. Let ¢ > 0 be a real number and let H = {h : {0,1}" — {0,1}"}
be an e-AU family of hash functions. Let 7 > 1 be a number and let ¥ =
UMAC[H, Rand(7)] be the MAC scheme described above. Then for every adver-
sary F we have that Succs™(F) <e+277.

In the usual way we can extend the above information-theoretic result to the
complexity-theoretic setting. Roughly, we prove that if the hash-function fam-
ily is e-AU and no reasonable adversary can distinguish the PRF from a truly
random function with advantage exceeding ¢ then no reasonable adversary can
break the resulting MAC scheme with probability exceeding € + 4.

The theorem refers to Succs*(¢, g, 1), which is the maximal chance of forging
by an adversary that runs in time ¢ and asks g queries, these totaling p bits. And
it refers to AdvIF)rf(t’ ,q', '), which measures the maximal possible advantage in
distinguishing F from a random function among adversaries that run in time '
and asks ¢ queries, these totaling ' bits. If H is a family of hash functions then
Timey is an amount of time adequate to compute a representation for a random
h — H, while Time,(x) is an amount of time adequate to evaluate h on strings
whose lengths total p bits. The proof of the following is standard.



Theorem 3. Lete > 0 be a real number, let H= {h : {0,1}" — {0,1}"} be an e-
AU family of hash functions, let T > 1 be a number and let F : {0,1}*x{0,1}" —
{0,1}7 be a PRF. Let ¥ = UMAC[H,F] be the MAC scheme described above.
Then

Succl (1, q, ) < AdVET(t', 1) + e+ 277

where t' =t + Timen + Timey (1) + O(u) and ¢ =q+1 and p' = pu+ O(q). |1

DiscussioN. The use of the nonce is important for getting a quantitatively
desirable security bound. Let UMAC[H, F] be the scheme which is the same
as UMAC, except that the PRF is applied directly to HM, rather than to
(HM, Nonce). Then the analog of Lemma 3 would say: fix a number 7 > 1,
let H= {h:{0,1}" — {0,1}"} be an e-AU family of hash functions, and let
X} = UMAC[H, Rand(7)]. Then for every adversary F, Succ:*(F) < ¢%e +277.
This is a far cry from our earlier bound of € + 277, And the problem is not
with the analysis, but with the scheme itself: if one asks e~'/2 oracle queries
of UMAC then, by the birthday bound, there is indeed a good chance to find
distinct messages, M1 and Ms, which yield the same authentication tag. This is
crucial information about the hash function which has now been leaked.

Compared to the original suggestion of [28], where one encrypts the hash of
the message by XOR-ing with a one-time pad, we require a weaker assumption
about the hash-function family H: it need only be e-AU. (The original approach
of [28] needs of H the stronger property of being “XOR almost-universal” [16].)
Furthermore, it is no problem for us that the range of h € H has strings of
unbounded length, while the hash functions used for [28] should have fixed-
length output. On the other hand, our cryptographic tool is potentially stronger
than what the complexity-theoretic version of [28] requires: we need a PRF over
the domain Encoding of possible (HM, Nonce) encodings.

Compared to the PRF(HASH, Nonce) method, PRF(Nonce) @ HASH does
have some advantages. One would need a final layer of almost-XOR-universal
hashing, like a CRC hash [16,26], or an NMH hash [13] with a conceptually
infinite (PRG-generated) key. We are still investigating such possibilities.

6 Performance

We implemented the four flavors of UMAC named in Section 2.2 on three differ-
ent platforms: a 350 MHz Intel Pentium II, a 200 MHz IBM /Motorola PowerPC
604e, and a 300 MHz DEC Alpha 21164. The code was written mostly in C, with
a few functions done in assembly. For the Pentium II we wrote assembly for RC6,
SHA-1, and the first-level NH hashes. For the PowerPC we did assembly for just
the first-level NH hashes. In both cases, the number of lines of assembly written
was small: about 80 lines.

For each combination of options we determined the scheme’s throughput on
variously sized messages, eight bytes through 512 KBytes. The experimental
setup ensured that messages resided in level-1 cache regardless of their length.



[ [ Pentium IT | PowerPC ] Alpha ]
UMAC-STD-30 [2.79 (1.03)[2.28 (1.26)]L.79 (1.60)
UMAC-STD-60 |1.40 (1.93)]1.81 (1.58)]1.03 (2.78)
UMAC-MMX-30 [ 5.66 (0.51)] 1.10 _(2.40)] 0.571 (5.02)
UMAC-MMX-60 | 2.04 _(0.08)] 0.684 (4.10)] 0.287 (10.0)
[CBC-MAC-RCG [0.162 (17.7)]0.210 (13.7)[0.068 (42.5)]
[AMAC-SHAT _ [0.227 (12.6)]0.228 (12.6)]0.117 (24.5)|

8 32 128 512 2k 8k 32k 128k
Message Size (Bytes)

Fig. 3. UMAC Performance. Left: Performance over various message lengths on a
Pentium II, measured in machine cycles/byte. The lines in the graph correspond to the
following MACs (beginning at the top-right and moving downward): UMAC-MMX-30,
UMAC-MMX-60, UMAC-STD-30, UMAC-STD-60, HMAC-SHA1 and CBC-MAC-
RC6. Right: Peak performance for three platforms, measured in Gbits/sec (cy-
cles/byte). The Gbits/sec numbers are normalized to 350 MHz.

For comparison the same tests were run for HMAC-SHA1 [11] and the CBC-
MAC of a fast block cipher, RC6 [24].

The graph in Figure 3 shows the throughput of the four versions of UMAC,
as well as HMAC-SHA1 and CBC-MAC-RCG6, all run on our Pentium II. The
table gives peak throughput for the same MACs, but on all three platforms. The
performance curves for the Alpha and PowerPC look similar to the Pentium 11—
they perform better than the reference MACs at around the same message length,
and level out at around the same message length.

As the data shows, the MMX versions are much faster than the STD versions
on the Pentium. Going from words of w = 32 bits to w = 16 bits might appear to
increase the amount of work needed to get to a given collision bound, but a single
MMX instruction can do four 16-bit multiplications and two 32-bit additions.
This is more work per instruction than the corresponding 32-bit instructions.

UMAC-STD uses only one-tenth as much hash key as UMAC-MMX to
achieve the same compression ratio. The penalty for such 2L hashing ranges
from 8% on small messages to 15% on long ones. To lower the amount of key
material we could have used a one-level hash with a smaller compression ratio,
but experiments show this is much less effective: relative to UMAC-MMX-60,
which uses about 4 KBytes of hash key, a 2 KBytes scheme goes 85% as fast, a
1 KByte scheme goes 66% as fast, and a 512 bytes scheme goes 47% as fast.

Another experiment replaced the NH hash function used in UMAC-STD-30
by MMH [13]. Peak performance dropped by 24%. We replaced the NH hash
function of UMAC-MMZX-30 by a 16-bit MMH and performance dropped by 5%.

We made a 2~ !5-forgery probability UMAC-MMX-15 in the natural way,
which ran in 0.32 cycles/bytes on our Pentium II.

We tried UMAC-STD-30 and UMAC-STD-60 on a Pentium processor which
lacked MMX. Peak speeds were 2.2 cycles/byte and 4.3 cycles/byte—still well
ahead of methods like HMAC-SHA1.



7 Directions

An interesting possibility (suggested to us by researchers at NAI Labs—see
acknowledgments) is to restructure UMAC so that a receiver can verify a tag
to various forgery probabilities—e.g., changing UMAC-MMX-60 to allow tags
to be verified, at increasing cost, to forging probabilities of 271°, 2739 2745 or
2769, Such a feature is particularly attractive for authenticating broadcasts to
receivers of different security policies or computational capabilities.
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