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UMAG-Net: A New Unsupervised

Multiattention-Guided Network for Hyperspectral

and Multispectral Image Fusion
Shuaiqi Liu , Siyu Miao, Jian Su , Bing Li , Weiming Hu , and Yu-Dong Zhang

Abstract—To reconstruct images with high spatial resolution and
high spectral resolution, one of the most common methods is to fuse
a low-resolution hyperspectral image (HSI) with a high-resolution
(HR) multispectral image (MSI) of the same scene. Deep learning
has been widely applied in the field of HSI-MSI fusion, which is
limited with hardware. In order to break the limits, we construct
an unsupervised multiattention-guided network named UMAG-
Net without training data to better accomplish HSI-MSI fusion.
UMAG-Net first extracts deep multiscale features of MSI by using
a multiattention encoding network. Then, a loss function containing
a pair of HSI and MSI is used to iteratively update parameters of
UMAG-Net and learn prior knowledge of the fused image. Finally,
a multiscale feature-guided network is constructed to generate an
HR-HSI. The experimental results show the visual and quantitative
superiority of the proposed method compared to other methods.

Index Terms—Deep learning, hyperspectral images (HSIs),
image fusion, multispectral images (MSIs).

I. INTRODUCTION

R
EMOTE sensing hyperspectral images (HSIs) are images

of high spectral dimensions consisting of hundreds or

even thousands of narrow bands [1]. Benefiting from the high

spectral resolution, they are more sensitive to subtle changes

in reflected energy and can be used for material identification.
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Images produced by hyperspectral sensors contain more infor-

mation than those produced by multispectral sensors that have

material identification properties. As a result, the formers are

widely used in environmental monitoring, military, industrial

and agricultural applications [2]–[10]. However, due to the

physical constraints of the imaging equipment, the radiant light

energy received by the hyperspectral imaging sensor is divided

among many bands, which results in a lower spatial resolution

for HSI than multispectral image (MSI). The low spatial resolu-

tion severely affects the use of HSI in computer vision-related

tasks [11]. In order to improve the spatial resolution of HSI,

we usually fuse high-resolution (HR) MSI and low-resolution

(LR) HSI to HR-HSI. This process is also known as HSI

super-resolution reconstruction. The reconstructed HR-HSI can

better perform computer vision tasks such as anomaly detection

[12] and change detection [13]. Generally, the HSI-MSI fusion

algorithms can be classified into four kinds, such as extensions

fusion method based on pansharpening, fusion methods based

on matrix factorization, fusion methods based on tensor repre-

sentation, and fusion methods based on deep learning.

Early methods to fusing spatial and spectral information,

which aimed to fuse LR-MSI with HR panchromatic (PAN)

images to enhance the spatial and spectral resolution of the fused

image, are known as pansharpening image fusion methods. Sub-

sequently, pansharpening image fusion algorithms have been

gradually extended to HSI-MSI fusion. For example, Aiazzi

et al. [14] proposed an HSI-MSI fusion method by using the

spectral response function (SRF). Zhang and He [15] proposed

an HSI-MSI fusion method through three-dimensional (3-D)

wavelet transform. Chen et al. [16] proposed a fusion framework

of HSI and MSI based on region chunking. Selva et al. [17]

applied HR MSI to construct high spatial resolution images of

each spectral band of HSI by linear regression, and then we can

get the final fused image by HSI and the synthesized images. In

general, extended fusion methods based on pansharpening are

simple and efficient, but the quality of the fusion needs to be

improved.

The degradation from high spatial resolution to low spatial

resolution can be regarded as the process of image element

blending, whereas image fusion is the inverse process, which

can be regarded as the process of unmixing. Therefore, a

matrix factorization-based approach can be used for MSI fu-

sion. In recent years, image fusion algorithms based on matrix
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factorization have been widely developed for their intuitive inter-

pretation of fusion results. For example, Yokoya et al. [18] gave

an HSI-MSI image fusion algorithm by coupled nonnegative

matrix decomposition. In this algorithm, they used the vertex

component analysis algorithm to extract the initial endmember

features in LR-HSI. The endmember matrix of LR-HSI and the

abundance matrix of HR-MSI were then iteratively derived by

using the sensor’s sensing model and the matrix decomposition

algorithm. The two matrices were multiplied together to obtain

an HR fusion result. Dong et al. [19] first used LR HSI to

learn overcomplete dictionaries and then proposed an image

fusion method by using nonlocal (NL) similarity and sparse

prior, which can effectively improve the spatial resolution of

the fused images. And in [20], He et al. gave an HSI-MSI

image fusion algorithm based on robust nonnegative matrix

factorization with sparse noise regularizers. Han et al. [21]

modeled the global similarity of HR-HSI by grouping similar

blocks and combined it with a constrained sparse representa-

tion for HSI super-resolution reconstruction. Wei et al. [22]

proposed a fast multiband HSI-MSI image fusion method. The

method constructed a closed-form solution of the corresponding

Sylvester equation by using a circular matrix and downsampling

matrix, which greatly saved the running time of this algorithm.

Furthermore, combined with the alternating iteration algorithm

and the block coordinate descent algorithm, it can be easily

extended to fusion methods based on Bayesian estimation, which

can lead to better fusion results.

In recent years, tensor analysis is widely used in the field of

HSI. Dian et al. [23] proposed an HSI super-resolution algorithm

based on NL sparse tensor decomposition. The algorithm treated

the HSI as a 3-D tensor. And the sparse Tucker factorization

was used to decompose the HSI into a 3-D core tensor and

a 2-D dictionary of three modes. Then, the input HR-MSI is

divided into several image blocks, and it is considered that

the set of image blocks belonging to the same class share

a common spatial and spectral dictionary based on the NL

self-similarity of images. The spectral dictionary is learned

from LR-HSI image block set, and spatial dictionary is learned

from HR-MSI image block set, whereas core tensor is extracted

from HR-MSI image block by tensor sparse coding. Finally, the

HSI fusion image is obtained by multiplying the core tensor and

the dictionary of the three modes. In [24], Li et al. proposed an

HSI and MSI image fusion method based on coupled sparse

tensor factorization. Dian et al. [25] factorized the HSI into

smaller full-band blocks, and the HSI-MSI fusion problem can

be turned to an optimization problem of a sparse core tensor and

three dictionaries estimating for each full-band block. Wang et

al. [26] proposed a pansharpening method based on sparse tensor

neighbor embedding. In this method, each tensor constructed

by MSI can be sparsely coded based on its neighbor tensor

and the joint sparse coding assumption was constructed on

bands. Finally, an HR multispectral tensor was obtained by

weighting the sparse tensor coefficients on the PAN image. Xu

et al. [27] proposed an HSI-MSI fusion method based on NL

tensor factorization. This method first constructed an NL similar

block tensor of HSI according to MSI. Then, HSI-MSI fusion

was performed by coupling tensor canonical polymorphism

decomposition, which achieved a good fusion effect. Dian and

Li [28] proposed an HSI-MSI fusion method base on low tensor

multi rank regularized, which also achieved a good fusion effect.

HSI-MSI fusion methods based on matrix factorization and

HSI-MSI fusion methods based on tensor factorization are col-

lectively referred to as image fusion methods based on fac-

torization. The representation of image fusion methods based

on factorization is consistent with the representation of the

imaging model and is an intuitive description of imaging. Image

fusion methods based on factorization typically assume that

the HR-HSI share the same endmember to the corresponding

LR-HSI scene. Therefore, the spectral properties of the fusion

image are extracted from the LR-HSI. Although LR-HSI and

HR-HSI in the same scene have the same spectral information in

a physical sense, in terms of realistic imaging processes, LR-HSI

is the spatial degradation result of HR-HSI in the same scene.

During the degradation process, HR-HSI loses some details and

produces a certain degree of distortion in the spectral domain.

So, there are differences between LR-HSI and HR-HSI in the

spectral domain, and it has some errors between the fusion

image based on factorization and the ground truth (GT) image.

In addition, image fusion methods based on factorization are

difficult to obtain stable and accurate fusion results because

they are usually sensitive to initial values. With the develop-

ment of deep learning [29], HSI-MSI fusion methods based

on deep learning come out on top, which have high recon-

struction accuracy and fast computational speed. For example,

Rao et al. [30] proposed an HSI-MSI fusion method based

on a residual convolutional neural network constructed by the

sparse residuals between multispectral and PAN images, which

is helpful to solve the spectral distortion problem of traditional

methods. Dian et al. [31] proposed a pansharpening method

based on deep learning. The final HR-HSI was reconstructed

by combining the trained network model and the image prior

information. Xie et al. [32] proposed an HSI-MSI fusion method

by combining model-based HSI-MSI fusion method and deep

learning. Experimental results show that the superiority of the

method.

The good performance of deep learning based methods often

needs a lot of paired training data. However, hyperspectral

datasets are often difficult to acquire due to imaging conditions

and hardware limitations [33]. As a result, synthetic data are

often used for network training, which reduces model flexibility

and affects the performance of the network. Therefore, HSI-MSI

image fusion methods based on deep learning without training

are a hot research issue. For example, Zhang et al. [34] proposed

an unsupervised HSI-MSI image fusion method that did not

require paired datasets. In this method, LR images were gen-

erated in an unsupervised manner via a generative adversarial

network. The generated images were then used for supervised

training of the HR fusion images. Uezato et al. [35] proposed a

guided deep decoder (GDD) network, which can be applied for

image denoising and image fusion without training. Although

HSI-MSI fusion image can be obtained based on the above

methods without needed supervised learning, the structure of

these networks does not make full use of the semantic features

and detailed information of the images.
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For fusing LR-HSI and HR-MSI, we proposed an unsu-

pervised multiattentive guidance network to get better HSI

super-resolution reconstruction. Specifically, a new network

is constructed as a regularizer. The network is initialized by

random noise and does not require any training, and the final

fusion HR-HSI can be gained by only a pair of MSIs. The

proposed network consists of two parts: multiattention encod-

ing (MAE) network and multiscale feature-guided (MSFG)

network. The semantic features of the MSI are extracted by

the MAE network in the proposed network. Then, in order to

guide the output of the MSFG network, multiscale features of

the image can be extracted by attention mechanisms and NL

similarity blocks in the MAE network. Our contributions are as

follows.

1) An unsupervised end-to-end network, namely UMAG-

Net, for HIS-MSI image fusion is proposed. UMAG-Net

can generate corresponding HR-HSI images by using only

one pair of images without any training data.

2) An MAE network is constructed. The NL block and spa-

tial cross attention (SCA) block in the encoding network

enable the full extraction of the semantic information and

image details of the HSI.

3) A novel network structure is proposed as a regularizer

for the unsupervised HSI-MSI fusion problem instead of

using a handcrafted regularizer. The Laplacian guide (LG)

block and upsampling guided (UG) block in the novel

network generate fuse images by exploiting the multiscale

semantic features of LR-MSI.

Experimental results show that the proposed UMAG-Net can

achieve superior performance on unsupervised HSI-MSI fusion

problems.

II. RELATED WORK

In recent years, deep learning based HSI and MSI fusion meth-

ods have made great progress [36]. These kinds of methods are

mainly based on learning the correspondence among LR-HSI,

HR-MSI, and the corresponding HR-HSI through multilayer

deep neural networks. The learned correspondences will be

used as a priori knowledge to construct the missing spatial and

spectral information in the new input sources images to complete

the target HSI-MSI fusion work. It is generally accepted that

such methods make use of not only the information carried by

the input sources images itself but also the mapping relationships

learned by relying on a library of training samples. Thus, better

performance can be obtained than with HSI-MSI fusion methods

based on manually defined prior information. However, Ulyanov

et al. [37] proposed the deep image prior (DIP) algorithm, which

argued that human-designed network structures are inherently

capable of capturing a large amount of low-level statistical prior

information about an image. Thus, targets like denoising and

super-resolution can be achieved by iteratively learning the

prior knowledge of an image. It is also believed that neural

networks with random initialization can be able to extract better

hand-designed prior distribution features. Gandelsman et al. [38]

proposed the double-DIP algorithm to segment an image into its

basic components by coupling multiple DIP networks, which

makes it suitable for various tasks. Sidorov and Hardeberg [39]

extended the DIP algorithm to the field of hyperspectral imaging.

Attention mechanisms enable networks to ignore irrelevant

features and focus on important features. Therefore, attention

mechanisms are widely used in various deep network construc-

tions. Wang et al. [40] proposed an NL attention mechanism

that can well capture the relational weights of any pixels in

an image with respect to the current pixel. Good results were

achieved in the fields of target detection, instance segmentation,

and key point detection. Gu et al. [41] proposed a channel atten-

tion module based on a local cross-channel interaction strategy

without dimensionality reduction, which effectively improves

the computational efficiency of the network. Yao et al. [42] first

introduced cross-attention to an HSI super-resolution task by

multiplying two original features (LR-HSI and HR-MSI) with

the attention map of another image, respectively, to transmit im-

portant information thus obtaining better image super-resolution

results.

Inspired by the above works, an unsupervised multiattention-

guided network (named UMAG-Net) is proposed in this article,

which consists of an MAE and an MSFG network, with random

noise and HR-MSI as inputs to iteratively learn a prior. Specif-

ically, two attention mechanisms in the encoder–decoder are

incorporated. NL blocks are used to better retain spectral and

spatial details of the image. Spatial cross-attention blocks are

utilized instead of traditional cascades to better achieve spatial-

spectral information transfer by highlighting useful information

in the image while suppressing irrelevant information in the

encoder–decoder network. An LG block is used to connect the

MAE network with the MSFG network to achieve better fusion

results while ensuring feature alignment.

III. PROPOSED METHOD

A. Fusion Model

The HSI-MSI fusion problem is actually a problem of estimat-

ing HR-HSI by using HR-MSI and LR-HSI. Let X ∈ R
W×H×L

denote HR-HSI. Let W , H , and L denote the width, height,

and the count of bands, separately. HR-MSI is denoted by

Y ∈ R
W×H×l. Z ∈ R

w×h×L denotes LR-HSI, where l is the

count of bands of Y (l ≪ L), and w and h are the width and

height of X(m ≪ M , n ≪ N ).

In general, the HSI fusion problem based on deep neural

networks can be formulated as

min
X

L(X,Y, Z) +R(X) (1)

where L denotes the loss function and R is the handcrafted

regularizer.

Instead of using a handcrafted regularizer, a new convolu-

tional neural network was applied to estimate the generated

HR-HSI, which is shown as

X = gθ (N) (2)

where gθ denotes a mapping function with network parameters

of θ and N denotes the random noise of the input network. It

is worth noting that the size of N may vary when conducting
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Fig. 1. Structure of the UMAG-net.

experiments on different datasets. Its size needs to be consistent

with the size of Z.

Instead ofR(·), the prior distribution is obtained by the neural

network. In addition, X is represented by a neural network

mapping. Thus, manual errors are avoided and the flexibility

of the network has been increased. Formula (1) can be rewritten

as

min
θ

L (gθ (N) , Y, Z) . (3)

From formula (3), we use the implicit prior regularization X

of the neural network to generate HR-HSI with only LR-HSI

and HR-MSI, and the whole network does not need to be

trained. Specifically, the network is first randomly initialized.

Then, the network parameters are iteratively updated by using a

loss function that contains a pair of LR-HSI and HR-MSI. The

parameter update process is similar to the traditional neural net-

work training process. The number of iterations is set manually.

When the number of iterations reaches the set value, the iteration

stops and the fusion is completed. The structure of the proposed

network is described in the following.

B. Network Architecture

In this article, an UMAG-Net is proposed. Fig. 1 shows the

structure of UMAG-Net, which consists of an MAE network and

an MSFG network. As shown in Fig. 1, MAE incorporates two

attention mechanisms to the traditional encoder–decoder: NL at-

tention and spatial cross-attention, which can extract multiscale

image features of MSI well.

MSFG takes random noise as input for generating HR-HSI

images and uses LG blocks in the guided network to connect the

MAE network with the MSFG network to achieve better fusion

while ensuring feature alignment. The construction of MAE and

MSFG is described in the following, respectively.

1) Multiattention Encoder: The structure of the encoder in

UMAG-Net is like that of U-Net, as shown in the blue back-

ground section in Fig. 1. For UMAG-Net, the number of layers of

the encoder–decoder is determined by the downsampling factor.

With a downsampling factor of 32, the number of layers is 5

(log
2
32). U-Net [43], which is widely used in image processing,

consists of a downsampling section and an upsampling section.

The former is designed to gradually highlight background infor-

mation, whereas the upsampling process combines information

from the downsampling layers with input information from the

upsampling to recover image details and recover the image step

by step. MAE incorporates NL blocks between the downsam-

pling network and the upsampling network and uses SCA to fuse

features at the same scale. Thus, MAE can adequately exploit

the semantic features of the MSI and preserve details in each

band.

In Fig. 1, the orange frame section is the encoder. The first

convolutional layer of the encoder is a 3× 3 convolution with

a step size of 1. It is used for shallow feature extraction. The

remaining four convolution blocks are identical in structure, each

consisting of two convolution layers. The first convolution layer

has a convolution kernel of size 3× 3with stride 2. The second

convolution layer has a convolution kernel of size 3× 3 and a

step size of 1.

As can be seen from Fig. 1, the decoder of the MAE consists

of convolutional layers and spatial cross-attention modules. All

modules contain upsampling and batch normalization opera-

tions. Incorporating batch normalization between the convo-

lution and the rectified linear unit (ReLU) prevents gradient

disappearance and explosion while accelerating network conver-

gence. In the proposed UMAG-net, instead of using the encoder

and decoder features as the output directly to obtain HSI, the

different scale features are input to the guided network for

further processing to obtain a better HSI reconstruction. SCA

block is used to fuse all features of the encoder and decoder,

highlighting effective salient features that contribute to HSI-MSI

fusion while suppressing irrelevant information in the input

image. The structure of the SCA block is shown in Fig. 2.

The spatial attention (SA) block [41] is shown in the red

frame in Fig. 2. Let Xl denote the input encoder low-level

features and Xh denote the decoder high-level features. For

SA, the feature map size is assumed to be c× h× w, where

c is the number of input channels, and h and w are the width

and height of the feature map, respectively. SA first reduces the

dimensionality of X by using parallel point convolution ϕ, and

we can obtain the compressed featuresX ′
l andX ′

h of the encoder

and decoder. Then the compressed features are summed. After

that, the feature with a channel number of 1 is then obtained by
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Fig. 2. Cross-space attention blocks.

Fig. 3. NL blocks.

the ReLU function [denoted by ReLU(·)] followed by another

point convolution [denoted byϕ1(·)]. Finally, the pixel attention

weight Wp is obtained by the Sigmoid function, which is shown

as

Wp = σ (ϕ1 (ReLU (X ′
l +X ′

h))) . (4)

Recalibration of the encoder low-level features Xl by using

weight Wp, i.e.,

Xal = WpXl. (5)

Although SA blocks can effectively suppress irrelevant re-

gions in the input image and do a better job of highlighting

salient features that are useful for a particular task, their results

may contain noise. Therefore, SCA blocks are used for feature

enhancement of images. The SCA block consists of two SA

blocks, as shown in Fig. 2. Let outputs of the two SA blocks

be Xal and Xah, respectively. Cascade the two (the cascade is

denoted by ©) and obtain the feature with channel number 1 by

point convolution ϕ. Finally, we can obtain the final feature by

the ReLU function as follows:

Xlh = ReLU (ϕ (Wp1Xl©Wp2Xh)) . (6)

As can be seen from Fig. 1, the MAE constructed in this article

is different from other end-to-end encoder–decoder networks in

which its encoder features will also enter the guided network

through the upsampling block. Therefore, it is not appropriate

to use all encoder features as input of the decoder.

An NL block is incorporated between the encoder and de-

coder to capture the interaction information between all pixels,

which helps the network better extract the contextual semantic

information. Fig. 3 shows the structure of the NL block.

For the input feature map, let X denote the feature map with

a size of C × h× w, where C represents the count of channels,

and h and w denote the height and width of X , separately. The

feature enhancement block first uses point convolutionϕ onX to

produce featuresX1,X2, andX3 with a three-way channel count

halved and the size is c× h× w (c = 0.5C). The three-way

features can be reshaped into a 2-D matrix of size c× hw. The

Fig. 4. Structure of the UG block.

first two features are multiplied by the Softmax function to obtain

the weight of each pixel, which can be expressed as

W = σ(XT
1
X2) (7)

where W ∈ R
hw×hw, σ is the Softmax function, and T denotes

the transpose. The third way feature X3 is multiplied by the

weighting factor W to obtain the weighted feature Wa(Wa ∈
R

0.5c×h×w). By applying the point convolution function and

batch normalization to the weighted feature Wa, we can recover

the number of channels to get a feature Fw of the same size

as the input features. Finally, the output features Xout are ob-

tained through jump connections that can facilitate information

dissemination and recovery, which is shown as follows:

Xout = ϕ(Wa) +X. (8)

The NL feature enhancement block enhances the feature map

representation by encoding a wider range of semantic informa-

tion into the local receptive field. It is worth noting that this

block has no restriction on the input size of the feature map and

is less computationally intensive.

2) Multiscale Guided Network: In image fusion, it will in-

evitably lose some of the effective information only by using

the coder and decoder result as the output. And a single coder-

decoder structure cannot retain both shallow and deep features

of the image. Therefore, an MSFG network combined with the

output of MAE is constructed for image fusion.

MSFG contains three structures: convolutional layers, UG

blocks, and LG blocks. In MSFG, the MAE encoder extracts

multiscale features of MSI as the input to the UG block, whereas

the MAE decoder features are used as the input to the LG block.

So that the MSFG can fully extract the multiscale features of

the MSI image to achieve the final image fusion to accurately

recover the HSI image detail information and finish the HSI-MSI

fusion.

Bilinear interpolation upsampling may result in an image too

smooth to effectively recover the boundaries and fine structures

of the image. Therefore, we use the same structure in [35] for

the upsampling operation with the upsampling module, whose

structure is shown in Fig. 4.

As shown in Fig. 4, the UG block consists of SA gates

and channel normalizations. The SA gate consists of point

convolutions, LReLU, and sigmoid function, which is effective

in ensuring the spatial localization of MSIs when processing

MSI features. Notably, the two input features of the upsampling

module have the same scale.

The Laplacian attention block consists of an adaptive mean

pooling layer, convolutional layers, activation functions, and a

cascade function, the structure of which is shown in Fig. 5.

Let the Average(·) function denote the adaptive average

pooling layer in the LG block, φk(·)(k = 3, 5, 7) denote the
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Fig. 5. LG block structure.

convolution kernel size of 3× 3, the convolution operation with

padding and dilation of k, respectively. And let σ(·) denote the

activation function. The features from the encoder are pooled

and then convolved by three convolutions, and we can obtain

multiscale features f3, f5, and f7, which is shown as
⎧

⎨

⎩

f3 = φ3(Average(En))
f5 = φ5(Average(En))
f7 = φ7(Average(En))

. (9)

Subsequently, the cascaded multiscale feature (f3©f5©f7) is

passed through a convolution layer and an activation function to

obtain the following features:

Dφn
= σ(ϕ(f3©f5©f7)). (10)

Feature Nn in the guided network is obtained as feature

weights Wf through an attention gate, which consists of point

convolution, LReLU, and sigmoid functions. Wf can be ex-

pressed as

Wf = σ(LReLU(ϕ(Nn))). (11)

Laplacian attention ensures that the input features are aligned

with the features of the MSI while extracting image features at

multiple scales. The whole weighing process can be expressed

as follows:

Noutn = LReLU(Wf ⊗Dφn
). (12)

C. Loss Function

Let X ∈ R
W×H×L, Y ∈ R

W×H×l, and Z ∈ R
W×H×l de-

note HR-HSI, HR-MSI, and LR-HSI, respectively. If X̃ denotes

the estimated HR-HIS, the loss function can be defined as

L(X̃, Y, Z) =
∥

∥

∥
RX̃ − Z

∥

∥

∥

2

F
+ λ

∥

∥

∥
X̃D − Y

∥

∥

∥

2

F
(13)

where R is the SRF and D is the spatial downsampling function.

The first term measures the spectral similarity betweenX andZ,

and the second term measures the spatial similarity between X

and Y . λ is the balance term, which is used to adjust the balance

between the two, which is set to 0.1.

IV. EXPERIMENTAL RESULTS

A. Datasets

To test the effectiveness of UMAG-Net, two public datasets,

the Columbia Computer Vision Laboratory dataset (CAVE) [44]

and the Harvard database [45], are chosen for the experiments.

Fig. 6. Examples of RGB images from the CAVE dataset (first row) and the
Harvard dataset (second row). (a) Balloons. (b) Beer. (c) Toys. (d) Feathers. (e)
Flowers. (f) Img 1. (g) Img b2. (h) Img b6. (i) Img d9. (j) Img f2.

The first dataset contains 32 high-quality indoor HSI of size

512× 512captured by a universal classification pixel camera.

Each HSI in the CAVE dataset has 31 bands starting at 400 nm

and covering a wavelength range of 300 nm with 10 nm intervals.

The Harvard dataset contains 50 images of size 1024× 1024.

Each HSI has 31 bands covering the wavelength range from 420

to 720 nm at 10 nm intervals. Fig. 6 shows the RGB images from

CAVE and Harvard datasets.

B. Experimental Setup

1) Compare Methods: To verify the reliability and validity

of UMAG-Net, we compared our method with seven MSI-HSI

fusion algorithms. The first two methods among the seven

methods are deep learning based methods, whereas the last five

are traditional MSI-HSI fusion methods. Deep learning based

MSI-HSI fusion methods include: 1) MSI-HSI fusion method

based on MS/HS fusion networks (supervised deep learning

model, MHF) proposed in [32]; 2) MSI-HSI fusion method

based on GDD networks (unsupervised deep learning model,

GDD) proposed in [35]. Traditional MSI-HSI fusion methods

include the following.

1) MSI-HSI fusion method based on coupled nonnegative

matrix factorization (CNMF) proposed in [18].

2) MSI-HSI fusion method based on nonlocal sparse tensor

factor decomposition (NLSTF) proposed in [23].

3) Semiblind MSI-HSI fusion method based on nonlocal

sparse tensor factor factorization (NSTF) proposed in [25].

4) MSI-HSI fusion method based on local low-rank coupled

spectral factorization (LRCS) proposed in [46].

5) MSI-HSI fusion method based on low-rank tensor training

rank representation (LTTR) proposed in [47].

Only MHF needs to be trained in the traditional method. We

use the code published by the author in the corresponding paper

for the test data. Our method is implemented under Pytorch

1.5.1 framework running in the Windows 10 environment with

Intel(R) Xeon(R) Silver 4214R CPU @ 2.40 GHz and NVIDIA

GeForce RTX 2080 Ti GPU.

2) Evaluation Metrics: Together with evaluating the per-

formance of each fusion method by subjective visualization,

seven objective evaluation metrics are presented for better

evaluation The objective evaluation indicators adopted in this

article are: correlation coefficient (CC), the mean of absolute

error (MoAE), relative dimensionless global error in synthesis
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(ERGAS) [48], peak signal-to-noise ratio (PSNR), root-mean-

square error (RMSE), spectral angle mapper (SAM) [49], struc-

tural similarity (SSIM) [50], and universal image quality index

(UIQI) [51], which are described in the following.

The similarity of the content of an image is determined by the

score, CC is mainly used to score the similarity of the content

between two images, which is defined as

CC =

∑M
i=1

∑N
j=1

(X̃(i, j)− ¯̃
X)(X(i, j)−X̄)

√

(

∑M
i=1

∑N
j=1

(X̃(i, j)− ¯̃
X)2

)(

∑M
i=1

∑N
j=1

(X(i, j)−X̄)2
)

(14)

where X denotes the GT, X̃ denotes the estimated HSI, and

M ×N denotes the image size. CC in HSI fusion is calculated

as averaged over all bands. The larger the CC is, the nicer the

fusion image can be.

MoAE is the mean of the absolute error. And it is often used

to indicate the magnitude of the difference between two images.

The definition of MoAE is as follows:

MoAE =
1

MN

M
∑

i=1

N
∑

j=1

∣

∣

∣
X (i, j)− X̃ (i, j)

∣

∣

∣
(15)

where X denotes GT, X̃ denotes the estimated HSI, and m

denotes the pixels number in data X . A smaller MoAE indicates

that the error between the fused image and the GT is smaller.

RMSE is often used to indicate the similarity between two

images. The smaller its value is, the better the image is. Let the

size of X and X̃ be M ×N . The mean square error is defined

as

RMSE =

√

√

√

√

1

MN

M
∑

i=1

N
∑

j=1

∣

∣

∣
X (i, j)− X̃ (i, j)

∣

∣

∣

2

(16)

where X(i, j) indicates the pixel value of image X at position

(i, j) and X̃(i, j) indicates the pixel value of image X̃ at position

(i, j).
PSNR is a full reference image quality evaluation metric,

which is often a representation of the degree of difference

between two images. It is often defined through the mean squared

error and can be expressed as

PSNR = 10log10

(

MAX

RMSE

)2

= 20log10

(

MAX

RMSE

)

(17)

where MAX denotes the maximum value of the image color.

PSNR of HSI is defined as the average of all bands. A higher

PSNR value indicates that the difference between the fused

image and the original image is less, and more detail is preserved.

ERGAS is expressed as a synthetic error for all bands, i.e.,

ERGAS(X, X̃) =
100

d

√

√

√

√

1

S

S
∑

i=1

(

RMSE(Xi, X̃i)

µ(X̃ii)

)2

(18)

where d is the spatial subsampling factor, µ denotes the mean

value of the image, and S denotes the band number. A smaller

ERGAS indicates a higher spectral agreement between the two

images.

As an indispensable index for evaluating spectral distortion,

SAM is defined as

SAM(X, X̃) =
1

M

M
∑

j=1

arccos
〈X, X̃〉

‖Xj‖
2

∥

∥

∥
X̃j

∥

∥

∥

2

(19)

where M is the number of spectral pixels, and 〈〉 is the inner

product of the two vectors. Smaller SAM indicates less spectral

distortion.

SSIM measures the similarity of two images. The value of

SSIM would be 1 when the two images are identical. As an

implementation of structural similarity theory, SSIM defines

information about the structure in terms of image composition

as a property that reflects the structure of objects in a scene,

irrelevant of luminance and contrast. Distortion is expressed as

a combination of structure, luminance and contrast. The mean

is used as an estimate of brightness, the standard deviation as an

estimate of contrast, and the SSIM is measured by covariance

SSIM =
(2µXµX̃ + c1) (σXX̃ + c2)

(

µ2

X + µ2

X̃
+ c1

)(

σ2

X + σ2

X̃
+ c2

) (20)

where µX and µX̃ represent the mean ofX and X̃ , respectively,

σX and σ
X̃

represent the variance of them, respectively, and

σXX̃ denotes the covariance of them. To maintain stability,

constants c1 = (pD)2 and c2 = (qD)2 are employed, where

p = 0.01 and q = 0.03. The dynamic range of the pixel values,

denoted byD , is usually set to 255. The smaller the gap between

SSIM and 1, the better the fusion result will be.

UIQI evaluates the effect of the fusion image by measuring

the correlation loss, brightness distortion, and contrast distortion

between the fusion image and the source image. The UIQI of

two images X and X̃ is defined as

UIQI(X, X̃) =
σ
X,X̃

σXσ
X̃

2X̄ ¯̃X

X̄2 + ¯̃X
2

2σXσ
X̃

σ2

X + σ2

X̃

(21)

where σ and µ represent the variance and mean, separately. The

CC of X and X̃ , given in the first term, is a measure of the linear

correlation between the two images and has an optimum value

of 1. Linear correlation does not suggest that there is no relative

distortion between images. Thus, the second and third terms are

used to assess the relative distortion. The second term is used

to measure the proximity of the average brightness between the

two images, which obtains the best value of 1 when the average

brightness is equal. σX and σ
X̃

can be regarded as the contrast

estimation of X and X̃ . The third term can measure the degree

of contrast similarity between images. When and only when σX

is equal to σ
X̃

, the third term obtains the optimum value of 1. A

larger UIQI value indicates a better effect of image fusion.

C. Experimental Results

1) Experiments Based on CAVE Dataset: When these meth-

ods are tested on the CAVE dataset, the HR-HSI is given 32-

fold downsampling to obtain the LR-HSI. The HR-HSI is then
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TABLE I
OBJECTIVE EVALUATION METRICS FOR EACH FUSED IMAGE ON THE CAVE DATASET

Fig. 7. RGB image of each fusion algorithm for the flower image. (a) GT. (b) GDD. (c) LTTR. (d) MHF. (e) NLSTF. (f) NSTF. (g) LRCS. (h) CNMF. (i) Our.

spectrally downsampled with the Nikon D700 SRF to generate

an HR-MSI. Although the proposed method does not require

training data, there are deep learning methods that need to

be trained in the comparison algorithm. The CAVE dataset is

divided into a training set and a test set. 12 images are selected

for testing and the remaining 12 images are utilized for model

training of the comparison methods.

12 randomly selected images on the CAVE dataset are tested

and the objective evaluation metrics obtained from 12 images

are averaged to obtain the final objective evaluation metrics of

each fusion method. Table I presents the test results. In Table I, ↓
indicates that a smaller value for an objective indicator is better

and ↑ indicates that a larger value for an objective indicator is

better. The best results of the objective indicator are bolded,

whereas the second best results are underlined.

In Table I, obviously, the objective evaluation metrics of

UMAG-Net and MHF are far superior to other methods. How-

ever, MHF needs 20 images for model training in advance,

whereas the proposed method can obtain better image fusion

results without training data. Notably, compared to MHF, the

SAM value of the proposed algorithm is reduced by 8.7%,

which shows that the spectral distortion of the HSI fusion image

obtained by UMAG-Net is much smaller than MHF. Although

the overall performance of GDD is not as good as MHF and the

proposed method, it still yields better results than NLSTF and

LTTR in terms of detail preservation and spectrum preservation.

NSTF has the most serious spectral distortion because of its

semiblind fusion. CNMF and LRCS have a relatively large

spectral distortion due to the consideration of coupling and

unmixing mechanisms.

To intuitively observe the performance of each method, a set

of test images is randomly selected to show. Fig. 7 shows RGB

images generated from the fused image obtained by each image

fusion method. The petal areas with rich features (green box and

red box) are selected to enlarge. Fig. 7 shows that GDD, MHF,

and UMAG-Net can better restore image details, and the color

fidelity is better. The color of CNMF is distorted in some areas

and the image details cannot be recovered well. LRCS, LTTR,

NLSTF, and NSTF have problems such as blurring and loss of

fine structures at the petal boundaries.

To provide a visual representation of the effect of each image

fusion method, the error maps of the fusion results and the GT

at each band are plotted. Fig. 8 shows the error map for the 10th

band of the flower image in the CAVE dataset, with Reference

indicating the HSI in the 10th band, whereas Fig. 9 shows the

error map for the 28th band of the flower image in the CAVE

dataset, with Reference indicating the HSI in the 28th band.

From the results in Fig. 8, it is noticeable that the errors pro-

duced by UMAG-Net and NLSTF are smaller, but UMAG-Net

has a better fusion effect at the left rear flower. GDD and LTTR

have obvious errors at the lower left square. MHF with excellent

quantitative performance has a serious error at the center of the
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Fig. 8. Error map for the 10th band of each fusion algorithm for the flower image. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF.
(h) LRCS. (i) CNMF. (j) Our.

Fig. 9. Error map for the 28th band of each fusion algorithm for the flower image. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF.
(h) LRCS. (i) CNMF. (j) Our.

image. LRCS has more errors at the pistil. NSTF has more errors

at the rear leaf. And CNMF has obvious error in a large area and

performs the worst.

In Fig. 9, UMAG-Net still maintains a good fusion effect in

the 28th band. In contrast, the fused images of the remaining

two deep learning methods (GDD and MHF) have severe loss

of detail at the edges of the flowers and the fused image of MHF

even has bad artificial texture in the background. The fusion

results of the traditional methods generally performed poorly in

the bands at the back. NLSTF, which performs better in band 10,

shows significant block errors in band 28. And the fused images

of LTTR, NSTF, LRCS, and CNMF show significant errors at

the petals and leaves.

2) Experiments Based on Harvard Dataset: The HSI in the

Harvard dataset is cropped into blocks of size 1024× 1024.

Downsampling by a factor of 32 used HR-HSI to obtain LR-HSI.

And HR-MSI is obtained by down-sampling HR-HSI spectrum

using the Nikon D700 SRF. Since MHF requires training data,

the Harvard dataset is divided into a training set and a test set.

In total, 20 images are selected as test images, whereas the

remaining 30 HSIs are used for training.

In all, 20 randomly selected images on the Harvard dataset

are tested and then the objective evaluation metrics obtained

by each method on the 20 images are averaged to obtain the

final objective evaluation metrics for each fusion algorithm, as

presented in Table II. In Table II, ↓ indicates that a smaller

value for an objective metric is better and ↑ indicates that a

larger value for an objective metric is better. The best results for

objective metrics are bolded, whereas the second best results are

underlined.

In Table II, all the metrics of the UMAG-Net are opti-

mal except for the UIQI metric on the Harvard dataset. Even

on the UIQI metric, a very small gap of 0.0061 appears

between UMAG-Net and the optimal value, which fully il-

lustrates the advantage of the proposed method in HSI-MSI

fusion.

Compared to the CAVE dataset, fusion of HSIs on the Harvard

dataset is relatively less difficult. In order to visualize the effect

of fusion of each method, a random set of images from the

Harvard dataset is selected to show the fused images of each

algorithm. Fig. 10 shows the RGB images obtained by spectral

downsampling of the fused images from Imgf2. Two regions,
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TABLE II
OBJECTIVE EVALUATION METRICS FOR EACH FUSED IMAGE ON THE HARVARD DATASET

Fig. 10. Imgf2 image of each fusion algorithm RGB image. (a) GT. (b) GDD. (c) LTTR. (d) MHF. (e) NLSTF. (f) NSTF. (g) LRCS. (h) CNMF. (i) Our.

Fig. 11. Error map for band 12 of the Harvard dataset Imgf2. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF. (h) LRCS. (i) CNMF.
(j) Our.

the window edge (green box) and the tree trunk (red box), are

selected for magnification.

For an intuitive understanding of the effectiveness of each

image fusion method, the error maps of the fused image and the

GT in each band are plotted. Fig. 11 shows the error map for

the 12th band of the Imgf2 image in the Harvard dataset, with

Reference indicating the HSI in the 12th band, whereas Fig. 12

shows the error map for the 26th band of the Imgf2 image in the

Harvard dataset, with Reference indicating the HSI in the 26th

band.

Fig. 11 shows that the visual effect of the fusion results

from the proposed method, GDD, and the traditional method

LTTR (which relies on complex a priori knowledge) is better.

Compared to GDD, the reconstruction error of our method is

smaller at the light pole and window of the house on the left. The

reconstruction error of our method at the tree trunk on the left
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Fig. 12. Error map for band 26 of the Harvard dataset Imgf2. (a) Reference. (b) GT. (c) GDD. (d) LTTR. (e) MHF. (f) NLSTF. (g) NSTF. (h) LRCS. (i) CNMF.
(j) Our.

Fig. 13. RGB images generated from the fusion results of each model. (a) GT. (b) w/o–SCA. (c) w/o–LG. (d). w/o–NL. (e) UMAG.

side is smaller compared to LTTR. Other methods have obvious

local errors, such as the left border of the chimney in the fusion

image of MHF, the chimney and street light in the fusion image

of CNMF and the right rear house in NLSTF, NSTF, and LRCS

fusion results.

Fig. 12 shows the error map for band 26 of the Harvard dataset.

In band 26, deep learning methods that do not require pre-

trained models (GDD and the proposed method) still maintain

good reconstructions, whereas fused images from deep learning

methods that require training (MHF) and traditional algorithms

(CNMF, NLSTF, NSTF, LRCS, and LTTR) have obvious local

reconstruction errors.

D. Ablation Experiments

To better illustrate the validity of the proposed model, the

role of each part of the proposed network structure is analyzed.

Table III gives the effects of the three components (the spatial

cross-attention block, the LG block, and the NL block) on the

fusion results of CAVE dataset. w/o-SCA denotes the network

model of UMAG-Net without the spatial cross-attention block,

w/o-LG denotes the network model of UMAG-Net without the

LG block, and w/o-NL denotes the network model of UMAG-

Net without the NL block.

In Table III, UMAG shows the best performance. And by

reducing anyone block, the network performance will be de-

graded to some extent. After removing the SCA block, the

indicators become significantly worse. Among them, the SAM

TABLE III
COMPARISON OF THE RESULTS OF THE REMOVAL OF A MODULE WITH THE

UMAG RESULTS

value is reduced by 0.6053 and the PSNR value is reduced by

0.9934, which indicates that the SCA block can better recover

the spatial details and maintain the spectral properties compared

with the traditional cascade method. After removing the NL

or LG blocks, there are different degrees of deterioration in

the indicators. For example, the PSNR values of w/o-NL and

w/o-LG are reduced by 0.9247 and 0.4841, respectively, which

indicates that the NL and LG blocks can better extract MSI

features and thus are more conducive to the retention of image

details.

For an intuitive view of the fusion effect of each algorithm,

a set of randomly selected images from the CAVE dataset is

shown to display the RGB images generated by the fused images

of each method, as shown in Fig. 13. The top right corner of

the white feather (red box) and the bottom right corner of the
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Fig. 14. Ablation experiment error map. (a) Reference. (b) GT. (c) w/o–SCA.
(d) w/o–LG. (e) w/o–NL. (f) UMAG.

yellow feather (green box) are zoomed in. In Fig. 13, the fused

images from w/o-SCA, w/o-LG, and w/o-NL are presented. The

white feather in the red box has blurred edges and artifacts

in the background, the yellow feather in the green box has

incorrect texture recovery at the notch, whereas the fused image

obtained by UMAG-Net has clearer and more accurate feather

boundaries.

Similarly, an error map of the fused image and the GT image

at band 28 is presented in Fig. 14.

In Fig. 14, Reference denotes the 28th band HSI image. It

can be clearly seen that w/o-SCA is poorly fused at the feather

border, losing a lot of detailed texture, whereas w/o-LG and

w/o-NL are poorly fused in the lower part of the green feather,

losing a lot of detailed texture; UMAG-Net maintains the feather

edge detail and the edges between the squares at the top of the

picture.

V. CONCLUSION

In this article, an UMAG-Net without training data is proposed

for the HSI-MSI fusion. In the proposed UMAG-Net, the MAE

network is used for deep extraction of multiscale image features

from MSIs and the UG block is used to generate HR-HSIs.

Features at different scales in encoder and decoder are injected

into the upsampling attention network via LG blocks, and the

network takes random noise as input. Spatial detail and spectral

features of HSI and MSI are fully leveraged by UMAG-Net.

Compared with other HSI-MSI fusion methods, the proposed

method achieves optimum image fusion results.
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