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UMBILICAL SURFACES OF PRODUCTS OF SPACE FORMS
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Abstract. We give a complete classification of umbilical surfaces of arbitrary codi-
mension of a product Q

n1
k1

× Q
n2
k2

of space forms whose curvatures satisfy k1 + k2 �= 0.

1. Introduction. A submanifold of a Riemannian manifold is umbilical if it is equally
curved in all tangent directions. More precisely, an isometric immersion f : Mm → M̃n

between Riemannian manifolds is umbilical if there exists a normal vector field H along f

such that its second fundamental form αf ∈ Hom(T M × T M,Nf M) with values in the
normal bundle satisfies

αf (X, Y ) = 〈X,Y 〉H for all X,Y ∈ X(M) .

The classification of umbilical submanifolds of space forms is very well known. For a
general symmetric space N , it was shown by Nikolayevsky (see Theorem 1 of [6]) that any
umbilical submanifold of N is an umbilical submanifold of a product of space forms totally
geodesically embedded in N . This makes the classification of umbilical submanifolds of a
product of space forms an important problem. For submanifolds of dimension m ≥ 3 of a
product Qn1

k1
× Q

n2
k2

of space forms whose curvatures satisfy k1 + k2 �= 0, the problem was
reduced in [3] to the classification of m-dimensional umbilical submanifolds with codimen-
sion two of Sn × R and Hn × R, where Sn and Hn stand for the sphere and hyperbolic space,
respectively. The case of Sn × R (respectively, Hn × R) was carried out in [4] (respectively,
[5]), extending previous results in [7] and [8] (respectively, [1]) for hypersurfaces.

In this paper we extend the results of [3] to the surface case. In this case, the argument
in one of the steps of the proof for the higher dimensional case (see Lemma 8.2 of [3]) does
not apply, and requires more elaborate work. This is carried out in Lemma 4 below, which
shows that the difficulty is due to the existence of new interesting families of examples in
the surface case. Indeed, our main result (see Theorem 5 below) states that, in addition to
the examples that appear already in higher dimensions, there are precisely two distinct two-
parameter families of complete embedded flat umbilical surfaces that lie substantially in H3

k ×

R2 and H3
k1

× H3
k2

, respectively. These are discussed in Section 3.
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2. Preliminaries. Let f : M → Q
n1
k1

× Q
n2
k2

be an isometric immersion of a Rie-

mannian manifold. We always assume that M is connected. Denote by R and R⊥ the cur-
vature tensors of the tangent and normal bundles T M and Nf M , respectively, by α = αf ∈

Ŵ(T ∗M ⊗ T ∗M ⊗ Nf M) the second fundamental form of f and by Aη = A
f
η its shape

operator in the normal direction η, given by

〈AηX,Y 〉 = 〈α(X, Y ), η〉

for all X,Y ∈ X(M). Set

L = Lf := π2 ◦ f∗ ∈ Ŵ(T ∗M ⊗ TQ
n2
k2

) and K = Kf := π2|Nf M ∈ Ŵ((Nf M)∗ ⊗ TQ
n2
k2

) ,

where πi : Q
n1
k1

× Q
n2
k2

→ Q
ni

ki
denotes the canonical projection, 1 ≤ i ≤ 2, and by abuse of

notation also its derivative, which we regard as a section of T ∗(Q
n1
k1

× Q
n2
k2

) ⊗ TQ
ni

ki
.

2.1. The fundamental equations. The tensors R ∈ Ŵ(T ∗M ⊗ T M), S ∈ Ŵ(T ∗M ⊗

Nf M) and T ∈ Ŵ((Nf M)∗ ⊗ Nf M) given by

(1) R = LtL, S = K tL and T = K tK ,

or equivalently, by

L = f∗R + S and K = f∗S
t + T ,

were introduced in [2] (see also [3]), where they were shown to satisfy the algebraic relations

(2) StS = R(I − R), T S = S(I − R) and SSt = T (I − T ) ,

as well as the differential equations

(3) (∇XR)Y = ASYX + Stα(X, Y ) ,

(4) (∇XS)Y = T α(X, Y ) − α(X,RY)

and

(5) (∇XT )ξ = −SAξX − α(X, Stξ)

for all X,Y ∈ X(M) and all ξ ∈ Ŵ(Nf M). In particular, from the first and third equations of
(1) and (2), respectively, it follows that R and T are nonnegative operators whose eigenvalues
lie in [0, 1].

The Gauss, Codazzi and Ricci equations of f are, respectively,

(6) R(X, Y )Z = (k1(X∧Y −X∧RY −RX∧Y )+κRX∧RY)Z+Aα(Y,Z)X−Aα(X,Z)Y ,

(7) (∇⊥
Xα)(Y,Z) − (∇⊥

Y α)(X,Z) = 〈k1X − κRX,Z〉SY − 〈k1Y − κRY,Z〉SX

and

(8) R
⊥(X, Y )η = α(X,AηY ) − α(AηX,Y ) + κ(SX ∧ SY )η ,

where κ = k1 + k2.
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2.2. The flat underlying space. In order to study isometric immersions f : M →

Q
n1
k1

×Q
n2
k2

, it is useful to consider their compositions F = h ◦ f with the canonical isometric
embedding

h : Q
n1
k1

× Q
n2
k2

→ R
N1
σ(k1)

× R
N2
σ(k2)

= RN1+N2
µ .

Here, for k ∈ R we set σ(k) = 1 if k < 0 and σ(k) = 0 otherwise, and as a subscript
of an Euclidean space it means the index of the corresponding flat metric. Also, we denote
µ = σ(k1) + σ(k2), Ni = ni + 1 if ki �= 0 and Ni = ni otherwise, in which case Q

ni

ki
stands

for Rni .
Let π̃i : R

N1+N2
µ → R

Ni

σ(ki)
, 1 ≤ i ≤ 2, denote the canonical projection. Then, the

normal space of h at each point z ∈ Q
n1
k1

×Q
n2
k2

is spanned by k1π̃1(h(z)) and k2π̃2(h(z)), and
its second fundamental form is given by

(9) αh(X, Y ) = −k1〈π1X,Y 〉π̃1 ◦ h − k2〈π2X,Y 〉π̃2 ◦ h .

Therefore, if ki �= 0, 1 ≤ i ≤ 2, then, setting ri = |ki|
−1/2, the unit vector field νi = νF

i =
1
ri

π̃i ◦ F is normal to F and we have

∇̃Xν1 =
1

r1
π̃1F∗X =

1

r1
(F∗X − h∗LX) =

1

r1
(F∗(I − R)X − h∗SX)

and

∇̃Xν2 =
1

r2
π̃2F∗X =

1

r2
h∗LX =

1

r2
(F∗RX + h∗SX) ,

where ∇̃ stands for the derivative in R
N1+N2
µ . Hence

(10) F ∇⊥
Xν1 = −

1

r1
h∗SX, AF

ν1
= −

1

r1
(I − R) ,

(11) F ∇⊥
Xν2 =

1

r2
h∗SX and AF

ν2
= −

1

r2
R .

2.3. Reduction of codimension. An isometric immersion f : Mm → Q
n1
k1

× Q
n2
k2

is said to reduce codimension on the left by ℓ if there exists a totally geodesic inclusion
j1 : Q

m1
k1

→ Q
n1
k1

, with n1 − m1 = ℓ, and an isometric immersion f̄ : Mm → Q
m1
k1

× Q
n2
k2

such that f = (j1 × id) ◦ f̄ . Similarly one defines what it means by f reducing codimension
on the right.

We will need the following result from [3] on reduction of codimension. In the statement,
U and V stand for ker T and ker(I − T ), respectively. Notice that the third equation in (2)
implies that S(T M)⊥ splits orthogonally as S(T M)⊥ = U ⊕V , with U = (I −T )(S(T M)⊥)

and V = T (S(T M)⊥). Also, given an isometric immersion f : M → M̃ between Riemann-
ian manifolds, its first normal space at x ∈ M is the subspace N1(x) of Nf M(x) spanned by
the image of its second fundamental form at x.
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PROPOSITION 1. Let f : Mm → Q
n1
k1

× Q
n2
k2

be an isometric immersion. If U ∩ N⊥
1

(respectively, V ∩ N⊥
1 ) is a vector subbundle of Nf M with rank ℓ satisfying ∇⊥(U ∩ N⊥

1 ) ⊂

N⊥
1 (respectively, ∇⊥(V ∩N⊥

1 ) ⊂ N⊥
1 ), then f reduces codimension on the left (respectively,

on the right) by ℓ.

2.4. Frenet formulae for space-like curves in R4
1. We briefly recall the definition of

the Frenet curvatures and the Frenet frame of a unit-speed space-like curve γ : I → R4
1 in the

four dimensional Lorentz space, as well as the coresponding Frenet formulae, which will be
needed in the sequel.

Thus, we assume that t (s) = γ ′(s) satisfies 〈t (s), t (s)〉 = 1 for all s ∈ I . Assume first
that 〈γ ′′(s), γ ′′(s)〉 �= 0 for all s ∈ I . Define k̂1(s) = ‖γ ′′(s)‖ = |〈γ ′′(s), γ ′′(s)〉|1/2 and
n1(s) = γ ′′(s)/k̂1(s) for all s ∈ I . Denote ǫ1 = 〈n1, n1〉. Suppose that v(s) = n′

1(s) +

ǫ1k̂1(s)t (s) satisfies 〈v(s), v(s)〉 �= 0 for all s ∈ I . Define k̂2(s) = ‖v(s)‖ and n2(s) =

v(s)/k̂2(s). Let n3(s) be chosen so that {t (s), n1(s), n2(s), n3(s)} is a positively-oriented
orthonormal basis of R4

1 and set ǫ3 = 〈n3, n3〉. Then the following Frenet formulae hold,

where k̂3 is defined by the third equation:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t ′ = k̂1n1 ,

n′
1 = −ǫ1k̂1t + k̂2n2 ,

n′
2 = ǫ3k̂2n1 + k̂3n3 ,

n′
3 = ǫ1k̂3n2 .

Lesser known are the formulae in the case in which γ ′′(s) is a nonzero light-like vector
everywhere, i.e., ñ1(s) = γ ′′(s) satisfies 〈ñ1(s), ñ1(s)〉 = 0 for all s ∈ I . We carry them out
in more detail below.

First notice that 〈t, ñ1〉 = 0. Here, and in the next computations, we drop the “s” for
simplicity of notation and understand that all equalities hold for all s ∈ I . Thus,

〈ñ′
1, t〉 = −〈t ′, ñ1〉 = −〈ñ1, ñ1〉 = 0 .

Moreover, 〈ñ′
1, ñ1〉 = 0, hence ñ′

1 is space-like. Define k̃1 = ‖ñ′
1‖ and ñ2 by ñ′

1 = k̃1ñ2. Now
let ñ3 ∈ {t, ñ2}

⊥ be the unique vector such that

〈ñ3, ñ3〉 = 0 and 〈ñ1, ñ3〉 = 1 ,

that is, {ñ1, ñ3} is a pseudo-othonormal basis of the time-like plane {t, ñ2}
⊥. Since

〈ñ′
2, t〉 = −〈ñ2, t

′〉 = −〈ñ2, ñ1〉 = 0

and

〈ñ′
2, ñ1〉 = −〈ñ2, ñ

′
1〉 = −k̃1 ,

we have

ñ′
2 = 〈ñ′

2, ñ1〉ñ3 + 〈ñ′
2, ñ3〉ñ1 = −k̃1ñ3 − k̃2ñ1 ,

where

k̃2 = 〈ñ′
3, ñ2〉 .
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Finally, since

0 = 〈ñ′
3, t〉 = 〈ñ′

3, ñ1〉 = 〈ñ′
3, ñ3〉 ,

we have

ñ′
3 = 〈ñ′

3, ñ2〉ñ2 = k̃2ñ2 .

In summary, for a unit-speed space-like curve γ : I → R4
1 with light-like curvature

vector γ ′′, one can define two Frenet curvatures k̃1 and k̃2 and a pseudo-orthonormal Frenet
frame {t, ñ1, ñ2, ñ3} with respect to which the Frenet formulae are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t ′ = ñ1 ,

ñ′
1 = k̃1ñ2 ,

ñ′
2 = −k̃2ñ1 − k̃1ñ3 ,

ñ′
3 = k̃2ñ2 .

In both cases, a unit-speed space-like curve γ : I → R4
1 is completely determined by its

Frenet curvatures, up to an isometry of R4
1.

3. Flat umbilical surfaces in H3
k×R2 and H3

k1
×H3

k2
. We present below two families

of complete flat properly embedded umbilical surfaces, the first one in H3
k×R2 and the second

in H3
k1

× H3
k2

, each of which depending on two parameters.

EXAMPLE 2. Let F : R2 → R6
1 = R4

1 ×R2, where R4
1 has signature (−,+,+,+), be

given by

(12) F(s, t) =

(

a1 cosh
s

c
, a1 sinh

s

c
, a2 cos

t

c
, a2 sin

t

c
, b1

s

c
, b2

t

c

)

,

with

(13) a2
1 − a2

2 = r2 and a2
1 + b2

1 = c2 = a2
2 + b2

2 .

Then F(R2) ⊂ H3
k × R2, where k = −1/r2, by the first relation in (13). If {e1, . . . , e6}

is the orthonormal basis of R6
1 with respect to which F is given by (12), then the subspaces

V1 and V2 of L6 spanned by {e1, e2, e5} and {e3, e4, e6} can be identified with R3
1 and R3,

respectively, and

F = γ1 × γ2 : R × R = R2 → V1 × V2 = R3
1 × R3 = R6

1 ,

where γ1 and γ2 are the helices in R3
1 and R3, respectively, parameterized by

γ1(s) =
(

a1 cosh
s

c
, a1 sinh

s

c
, b1

s

c

)

and

γ2(t) =

(

a2 cos
t

c
, a2 sin

t

c
, b2

t

c

)

.

By the relations on the right in (13), both γ1 and γ2 are unit-speed curves, hence F is an
isometric immersion. Since F(R2) ⊂ H3

k ×R2, there exists an isometric immersion f : R2 →
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H3
k × R2 such that F = h ◦ f , where h : H3

k × R2 → R6
1 denotes the inclusion. It is easily

checked that the second fundamental form of f satisfies

αf

(

∂

∂s
,

∂

∂t

)

= 0

and

αf

(

∂

∂s
,

∂

∂s

)

= H(s, t) = αf

(

∂

∂t
,

∂

∂t

)

,

where

h∗H(s, t) =
ka1a2

c2

(

a2 cosh
s

c
, a2 sinh

s

c
, a1 cos

t

c
, a1 sin

t

c
, 0, 0

)

.

Hence f is umbilical with mean curvature vector field H .
In view of (13), one can write

a2
1 = r2 (1 − λ1)

λ2 − λ1
, a2

2 = r2 (1 − λ2)

λ2 − λ1
, b2

1 = r2 λ1

λ2 − λ1
, b2

2 = r2 λ2

λ2 − λ1
, c2 =

r2

λ2 − λ1
,

with 0 < λ1 < λ2 < 1. Then, one can check that the curvature vector γ ′′
i of γi , 1 ≤ i ≤ 2,

satisfies

(14) 〈γ ′′
i , γ ′′

i 〉 = k(λj − λi)(1 − λi), 1 ≤ i �= j ≤ 2 ,

and that the second Frenet curvature (torsion) of γi satisfies

(15) τ 2
i = −kλi |λj − λi |, 1 ≤ i �= j ≤ 2 .

EXAMPLE 3. Let R8
2 = R4

1 × R4
1 denote Euclidean space of dimension 8 endowed

with an inner product of signature (−,+,+,+,−,+,+,+), and let F : R2 → R8
2 be given

by
(16)

F(s, t)=

(

a1 cosh
s

c
, a1 sinh

s

c
, a2 cos

t

c
, a2 sin

t

c
, a3 cosh

t

d
, a3 sinh

t

d
, a4 cos

s

d
, a4 sin

s

d

)

,

with

(17) a2
1 − a2

2 = r2
1 , a2

3 − a2
4 = r2

2 and
a2

1

c2
+

a2
4

d2
= 1 =

a2
2

c2
+

a2
3

d2
.

The first pair of relations in (17) implies that F(R2) ⊂ H3
k1

×H3
k2

⊂ R4
1×R4

1, with ki = −1/r2
i

for 1 ≤ i ≤ 2. If {e1, . . . , e4, f1, . . . , f4} is the orthonormal basis of R8
2 with respect to

which F is given by (16), then the subspaces V1 and V2 of R8
2 spanned by {e1, e2, f3, f4} and

{f1, f2, e3, e4} can also be identified with R4
1, and

F = γ1 × γ2 : R × R = R2 → V1 × V2 ,

where γ1 and γ2 are the curves parameterized by

γ1(s) =
(

a1 cosh
s

c
, a1 sinh

s

c
, a4 cos

s

d
, a4 sin

s

d

)

and

γ2(t) =

(

a3 cosh
t

d
, a3 sinh

t

d
, a2 cos

t

c
, a2 sin

t

c

)

.
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In view of the second pair of relations in (17), both γ1 and γ2 are unit-speed curves, hence F

is an isometric immersion. Since F(R2) ⊂ H3
k1

× H3
k2

, there exists an isometric immersion

f : R2 → H3
k1

×H3
k2

such that F = h ◦ f , where h : H3
k1

×H3
k2

→ R8
2 denotes the inclusion.

One can easily check that the second fundamental form of f satisfies

αf

(

∂

∂s
,

∂

∂t

)

= 0

and

αf

(

∂

∂s
,

∂

∂s

)

= H(s, t) = αf

(

∂

∂t
,

∂

∂t

)

where

h∗H(s, t) =
k1a1a2

c2

(

a2 cosh
s

c
, a2 sinh

s

c
, a1 cos

t

c
, a1 sin

t

c
, 0, 0, 0, 0

)

+
k2a3a4

d2

(

0, 0, 0, 0, a4 cosh
t

d
, a4 sinh

t

d
, a3 cos

s

d
, a3 sin

s

d

)

.

It follows that f is umbilical with mean curvature vector field H .
By the conditions in (17), one can write

a2
1 = r2

1
(1 − λ1)

λ2 − λ1
, a2

2 = r2
1
(1 − λ2)

λ2 − λ1
, a2

3 = r2
2

λ2

λ2 − λ1
, a2

4 = r2
2

λ1

λ2 − λ1
,

c2 =
r2

1

λ2 − λ1
and d2 =

r2
2

λ2 − λ1
,

with 0 < λ1 < λ2 < 1. Then, the curvature vector γ ′′
i of the curve γi , 1 ≤ i ≤ 2, satisfies

(18) 〈γ ′′
i , γ ′′

i 〉 = (λi − λj )(κλi − k1), 1 ≤ i �= j ≤ 2, κ = k1 + k2 .

If κλi − k1 �= 0, one can check that γi , 1 ≤ i ≤ 2, has constant Frenet curvatures k̂i
ℓ,

1 ≤ ℓ ≤ 3, given by

(19) (k̂i
1)

2 = |(λi − λj )(κλi − k1)| ,

(20) (k̂i
2)

2 =
κ2|λi − λj |λi(1 − λi)

|κλi − k1|

and

(21) (k̂i
3)

2 =
k1k2|λi − λj |

|κλi − k1|
, 1 ≤ j �= i ≤ 2 .

If κλi − k1 = 0, that is, the curvature vector of γi is light-like, then one can check that
γi has constant Frenet curvatures k̃i

1 and k̃i
2, 1 ≤ i ≤ 2 (see Subsection 2.4), given by

(22) (k̃i
1)

2 =
k1k2(κλj − k1)

2

κ2
, 1 ≤ j �= i ≤ 2 ,

and

(23) (k̃i
2)

2 =
(k1 − k2)

2

4k1k2
, 1 ≤ i ≤ 2 .
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It is also easily checked that the isometric immersions in both of the preceding examples
have the frame of coordinate vector fields

{

∂
∂s

, ∂
∂t

}

as a frame of principal directions for the
associated tensor R, with corresponding eigenvalues λ1 and λ2, respectively. Moreover, they
are clearly injective and proper, hence embeddings. Therefore, all surfaces in both families
are properly embedded and isometric to the plane.

4. The main step. Umbilical submanifolds of Qn1
k1

×Q
n2
k2

were studied in [3] accord-
ing to the possible structures of the tensor S. When ker S = {0}, it was shown that R must
be a constant multiple of the identity tensor whenever the dimension of the submanifold is at
least three (see [3], Lemma 8.2), which corresponds to case (i) in the statement of Lemma 4
below. We now show that in the surface case the only exceptions are the surfaces of the two
families in the preceding section.

LEMMA 4. Let f : M2 → Q
n1
k1

×Q
n2
k2

, k1 + k2 �= 0, be an umbilical isometric immer-

sion. Assume that ker S = {0} at some point x ∈ M2. Then one of the following holds:

(i) there exist umbilical isometric immersions fi : M2 → Q
ni

k̃i
, 1 ≤ i ≤ 2, with k̃1 =

k1 cos2 θ and k̃2 = k2 sin2 θ for some θ ∈ (0, π/2), such that f = (cos θf1, sin θf2);

(ii) after interchanging the factors, if necessary, we have k2 = 0, n1 ≥ 3, n2 ≥ 2 and

f = j ◦ f̃ , where j : Q3
k1

×R2 → Q
n1
k1

×Rn2 and f̃ : M2 → Q3
k1

×R2 are isometric

immersions such that j is totally geodesic and f̃ (M2) is an open subset of a surface

as in Example 2;

(iii) ki < 0 and ni ≥ 3, 1 ≤ i ≤ 2, and f = j ◦ f̃ , where j : Q3
k1

× Q3
k2

→ Q
n1
k1

× Q
n2
k2

and f̃ : M2 → Q3
k1

× Q3
k2

are isometric immersions such that j is totally geodesic

and f̃ (M2) is an open subset of a surface as in Example 3.

PROOF. Let λ1 and λ2 be the eigenvalues of R. If λ1 = λ2 on M then f is as in (i)
by Proposition 5.2 of [3]. Now assume that λ1 �= λ2 at x and let U ⊂ M be the maximal
connected open neighborhood of x where ker S = {0} and λ1 �= λ2. In particular, λ1 and λ2

are differentiable on U .
Fix an orthonormal frame {X1,X2} of eigenvectors of R, with Xi associated to λi , and

define ξi := SXi for i = 1, 2. Thus, from (2) we have

(24) 〈ξi , ξj 〉 = 〈StSXi ,Xj 〉 = δijλi(1 − λi)

and

(25) T ξi = T SXi = (1 − λi)ξi

for i, j = 1, 2. We can write equations (6)–(8) in the frames {X1,X2} and {ξ1, ξ2}, in terms
of the Gaussian curvature K of M2 and the mean curvature vector H of f , as

(26) K = k1(1 − λ1)(1 − λ2) + k2λ1λ2 + |H |2 ,

(27) ∇⊥
Xi

H = (κλj − k1)ξi, 1 ≤ i �= j ≤ 2 ,
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and

(28) R
⊥(X1,X2) = κ(ξ1 ∧ ξ2) ,

whereas equations (3)–(5) become

(29)
(

∇XiR
)

Xj = 〈ξj ,H 〉Xi + δijS
tH ,

(30)
(

∇Xi S
)

Xj = δij (T − λj I)H

and

(31)
(

∇XiT
)

ξ = −〈ξ,H 〉ξi − 〈ξ, ξi〉H

for i, j = 1, 2 and all ξ ∈ Ŵ(Nf M2). Define the Christoffel symbols Ŵ2
11 and Ŵ1

22 by

(32) ∇X1X1 = Ŵ2
11X2 and ∇X2X2 = Ŵ1

22X1 .

Substituting
(

∇Xi R
)

Xj = ∇Xi RXj − R∇Xi Xj

= Xi(λj )Xj + (λj I − R)∇Xi Xj

into (29) yields

(33) Xi(λj ) = δij 2〈ξi,H 〉

and

(34) 〈ξi ,H 〉 = (λj − λi)Ŵ
i
jj , 1 ≤ i �= j ≤ 2 .

On the other hand, from (30) we get

(35) ∇⊥
Xi

ξj = −Ŵ
j
iiξi , 1 ≤ i �= j ≤ 2 .

Using (27), (32), (33) and (35) we obtain

R
⊥(X1,X2)H =∇⊥

X1
∇⊥

X2
H − ∇⊥

X2
∇⊥

X1
H − ∇⊥

[X1,X2]
H

=∇⊥
X1

(κλ1 − k1)ξ2 − ∇⊥
X2

(κλ2 − k1)ξ1 + (κλ2 − k1)Ŵ
2
11ξ1

− (κλ1 − k1)Ŵ
1
22ξ2

=κX1(λ1)ξ2 + (κλ1 − k1)∇
⊥
X1

ξ2 − κX2(λ2)ξ1 − (κλ2 − k1)∇
⊥
X2

ξ1

+ (κλ2 − k1)Ŵ
2
11ξ1 − (κλ1 − k1)Ŵ

1
22ξ2

=2κ〈ξ1,H 〉ξ2 − (κλ1 − k1)Ŵ
2
11ξ1 − 2κ〈ξ2,H 〉ξ1 + (κλ2 − k1)Ŵ

1
22ξ2

+ (κλ2 − k1)Ŵ
2
11ξ1 − (κλ1 − k1)Ŵ

1
22ξ2

= − κ(2〈ξ2,H 〉 + (λ1 − λ2)Ŵ
2
11)ξ1 + κ(2〈ξ1,H 〉 + (λ2 − λ1)Ŵ

1
22)ξ2 .

In view of (34), the above equation becomes

R
⊥(X1,X2)H = −3κ(〈ξ2,H 〉ξ1 − 〈ξ1,H 〉ξ2) .
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Comparing the preceding equation with

R
⊥(X1,X2)H = κ(〈ξ2,H 〉ξ1 − 〈ξ1,H 〉ξ2) ,

which follows from (28), and using that κ �= 0, we get 〈ξ1,H 〉 = 0 = 〈ξ2,H 〉, i.e.,

(36) H ∈ Ŵ(S(T M)⊥) .

In particular, we obtain from (33) that λ1 and λ2 assume constant values in (0, 1) everywhere
on U . If U were a proper subset of M2, then λ1 and λ2 would assume the same values on the
boundary of U , hence λi(1 − λi) �= 0 on an open connected neighborhood of Ū , 1 ≤ i ≤ 2,
contradicting the maximality of U as an open connected neighborhood of x where ker S = {0}

and λ1 �= λ2. It follows that U = M2.
We obtain from (34) and (36) that Ŵ2

11 = 0 = Ŵ1
22. In particular, we have K = 0

everywhere, and then (26) gives

(37) |H |2 = −k1(1 − λ1)(1 − λ2) − k2λ1λ2 .

Set ξ = H in (31). By using (25), (27) and (37), we obtain

(38) ∇⊥
Xi

T H = k2λj ξi , 1 ≤ i �= j ≤ 2 ,

and similarly

(39) ∇⊥
Xi

(I − T )H = −(1 − λj )k1ξi, 1 ≤ i �= j ≤ 2 .

In particular, bearing in mind (36) and the fact that T leaves S(T M) invariant, as follows from
the second equation in (2), we obtain that both T H and (I − T )H have constant length on
M2, hence either T H = 0, T H = H or both T H and (I − T )H are nonzero everywhere.
Therefore L1 = U ∩ {H }⊥ = U ∩ N⊥

1 and L2 = V ∩ {H }⊥ = V ∩ N⊥
1 have constant

dimensions on M2, which are, accordingly, (rank U − 1, rank V ), (rank U, rank V − 1) or
(rank U − 1, rank V − 1). Moreover, equations (27) and (36) imply that ∇⊥

T MLi ⊂ {H }⊥ for
i = 1, 2. Hence, the assumptions of Proposition 1 are satisfied, and we conclude that there
are three corresponding possibilities for the pairs (n1, n2) of substantial values of n1 and n2:
(3, 2), (2, 3) and (3, 3).

We first consider the case (n1, n2) = (3, 2). This is the case in which T H = 0, and
hence k2 = 0 by (38). Thus we have k1 < 0 from (37), and we may assume that f takes
values in H3

k × R2, with k = k1 < 0.
Set F = h ◦ f , where h : H3

k × R2 → R6
1 denotes the inclusion. By (9), the second

fundamental form of F is given by

αF (X, Y ) = 〈X,Y 〉h∗H +
1

r
〈(I − R)X, Y 〉ν ,

where r = (−k)−1/2 and ν = 1
r
π̃1 ◦ F . Therefore

(40) αF (Xi,Xj ) = δij

(

h∗H +
1

r
(1 − λi)ν

)

:= δijZi = ∇̃Xj F∗Xi, 1 ≤ i, j ≤ 2 .

Notice that
〈Z1, Z2〉 = |H |2 + k(1 − λ1)(1 − λ2) = 0
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by (37), and that

(41) 〈Zi , Zi〉 = k(λj − λi)(1 − λi), 1 ≤ i �= j ≤ 2 .

Moreover, since
π̃2(h∗H) = h∗π2H = h∗(f∗S

tH + T H) = 0 ,

it follows that
π̃2Zi = 0, 1 ≤ i ≤ 2 .

Using (27), we have

∇̃Xi h∗H = h∗∇̂Xi H + αh(f∗Xi,H)

= −F∗A
f
HXi + h∗∇

⊥
Xi

H +
1

r
〈π1f∗Xi,H 〉ν

= −|H |2F∗Xi − k(1 − λj )h∗ξi +
1

r
〈f∗(I − R)Xi − SXi ,H 〉ν

= k(1 − λj ) ((1 − λi)F∗Xi − h∗ξi) , 1 ≤ i �= j ≤ 2 .

On the other hand, by (10) we have

∇̃Xiν =
1

r
(F∗(I − R)Xi − h∗SXi) =

1

r
((1 − λi)F∗Xi − h∗ξi) .

Therefore

(42) ∇̃Xi Zj = 0, if i �= j ,

and

(43) ∇̃Xi Zi = k(λi − λj )((1 − λi)F∗Xi − h∗ξi), 1 ≤ i �= j ≤ 2 .

Also, using that

∇⊥
Xi

ξi = −
1

|H |2
〈∇Xi H, ξi〉H = −λiH ,

as follows from (24), (27) and (37), we obtain that

∇̃Xi h∗ξj = h∗∇̂Xi ξj + αh(f∗Xi , ξj )

= −F∗A
f
ξj

Xi + h∗∇
⊥
Xi

ξj +
1

r
〈π1f∗Xi , ξj 〉ν

= −δijλiZi, 1 ≤ i, j ≤ 2 .(44)

It follows from (40), (42), (43) and (44) that the subspaces Vi = span{F∗Xi, Zi, h∗ξi}, 1 ≤

i ≤ 2, are constant. Moreover, they are orthogonal to each other, hence R6
1 splits orthogonally

as R6
1 = V1 ⊕ V2.
Since Ŵ2

11 = Ŵ1
22 = 0, for each x ∈ M2 there exists an isometry ψ : W = I1 × I2 → Ux

of a product of open intervals Ij ⊂ R, 1 ≤ j ≤ 2, onto an open neighborhood of x, such
that ψ∗

∂
∂s

= X1 and ψ∗
∂
∂t

= X2, where s and t are the standard coordinates on I1 and I2,
respectively. Write g = F ◦ψ . In terms of the coordinates (s, t), the fact that αF (X1,X2) = 0
translates into

∂2
g

∂s∂t
= 0 ,
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which implies that there exist smooth curves γ1 : I1 → V1 and γ2 : I2 → V2 such that g =

γ1 × γ2. By (40), (43) and (44), each γi is a helix in Vi with curvature vector γ ′′
i = Zi and

binormal vector h∗(ξi/|ξi |), 1 ≤ i ≤ 2. It follows from (41) that (14) holds for γi , whereas
(41) and (44) imply that the second Frenet curvature of γi satisfies (15), i.e.,

τ 2
i =

λ2
i |〈Zi , Zi〉|

〈ξi , ξi〉
= −kλi |λj − λi |, 1 ≤ i �= j ≤ 2 .

Therefore, the helices γ1 and γ2 are precisely, up to congruence, those given in Example 2.
Moreover, since the curvature vector Zi along γi spans a two-dimensional subspace of Vi

orthogonal to the axis of γi and π̃2Zi = Zi , 1 ≤ i ≤ 2, it follows that the subspace R2 in the
orthogonal decompositionR6

1 = R4
1 ⊕R2 adapted to H3

k ×R2 is spanned by the axes of γ1 and
γ2. We conclude that g is (the restriction to W of ) an isometric immersion as in Example 2.

We have shown that, for each x ∈ M2, there exists an open neighborhood Ux of x

such that f (Ux) is contained in a surface as in Example 2 in a totally geodesic Q3
k1

× R2 ⊂

Q
n1
k1

× Rn2 . A standard connectedness argument now shows that f is as in the statement.
The case (n1, n2) = (2, 3) is entirely similar and leads to the same conclusion with the

factors interchanged. Let us consider the case (n1, n2) = (3, 3), so we may now assume that
f takes values in Q3

k1
× Q3

k2
. Here both T H and (I − T )H are nonzero everywhere, and we

can choose unit vector fields ξ3 ∈ ker T , ξ4 ∈ ker(I − T ) and write H = ρ3ξ3 + ρ4ξ4, where
ρk = 〈ξk,H 〉 �= 0 for k = 3, 4. Applying (31) to ξ = ξk , with k = 3, 4, we get

T ∇⊥
Xi

ξ3 = ρ3ξi and (I − T )∇⊥
Xi

ξ4 = −ρ4ξi

for i = 1, 2. Therefore, for i = 1, 2 we obtain

(45) ∇⊥
Xi

ξ3 =
ρ3

1 − λi

ξi and ∇⊥
Xi

ξ4 = −
ρ4

λi

ξi .

Using (24), the preceding equations yield

(46) ∇⊥
Xi

ξi = −λiρ3ξ3 + (1 − λi)ρ4ξ4, 1 ≤ i ≤ 2 .

On the other hand, we have

(47) (I − T )H = ρ3ξ3 and T H = ρ4ξ4 .

Thus, combining (38), (39) and (47) we get

(48) ρ2
3 = −k1(1 − λ1)(1 − λ2) and ρ2

4 = −k2λ1λ2 .

In particular, we must have k1, k2 < 0, so f takes values in H3
k1

× H3
k2

.

Set F = h ◦ f , where h : H3
k1

× H3
k2

→ R4
1 × R4

1 = R8
2 denotes the inclusion. By (9),

the second fundamental form of F is given by

αF (X, Y ) = 〈X,Y 〉h∗H +
1

r1
〈(I − R)X, Y 〉ν1 +

1

r2
〈RX,Y 〉ν2 ,

where ri = (−ki)
−1/2 and νi = 1

ri
π̃i ◦ F , 1 ≤ i ≤ 2. Therefore

(49) αF (Xi ,Xj ) = δij

(

h∗H +
1

r1
(1−λi)ν1 +

1

r2
λiν2

)

:= δijZi = ∇̃Xj F∗Xi , 1 ≤ i ≤ 2 .
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Notice that

〈Zi , Zj 〉 = |H |2 + k1(1 − λi)(1 − λj ) + k2λiλj , 1 ≤ i, j ≤ 2 .

It follows from (37) that

〈Z1, Z2〉 = 0

and

(50) 〈Zi, Zi〉 = (λi − λj )(κλi − k1), 1 ≤ i �= j ≤ 2 .

Using (27), we obtain

∇̃Xih∗H = h∗∇̂Xi H + αh(f∗Xi ,H)

= −F∗A
f
HXi + h∗∇

⊥
Xi

H

= −|H |2F∗Xi + (κλj − k1)h∗ξi .

On the other hand, by (10) and (11) we have

∇̃Xi ν1 =
1

r1
(F∗(I − R)Xi − h∗SXi) =

1

r1
((1 − λi)F∗Xi − h∗ξi)

and

∇̃Xi ν2 =
1

r2
(F∗RXi + h∗SXi) =

1

r2
(λiF∗Xi + h∗ξi) .

Using (37), it follows that

∇̃Xi Zj = 0, if i �= j ,

whereas

(51) ∇̃Xi Zi = −〈Zi, Zi〉F∗Xi + κ(λj − λi)h∗ξi , 1 ≤ i �= j ≤ 2 .

Also,

∇̃Xih∗ξj = h∗∇̂Xi ξj + αh(f∗Xi, ξj )

= −F∗A
f
ξj

Xi + h∗∇
⊥
Xi

ξj +
1

r1
〈π1f∗Xi , ξj 〉ν1 +

1

r2
〈π2f∗Xi, ξj 〉ν2

= δij

(

−λiZi + ρ4h∗ξ4 +
λi

r2
ν2

)

,(52)

where we have used (46).
If κλi − k1 �= 0, that is, 〈Zi , Zi〉 �= 0, define

Wi = ∇̃Xi h∗ξi −
〈∇̃Xi h∗ξi , Zi〉

〈Zi, Zi〉
Zi =

−k2λi

κλi − k1
Zi + ρ4h∗ξ4 +

λi

r2
ν2, 1 ≤ i ≤ 2 .

Then the vectors F∗Xi , Zi, h∗ξi and Wi are pairwise orthogonal and the subspaces Vi =

span{F∗Xi, Zi , h∗ξi ,Wi}, 1 ≤ i ≤ 2, are orthogonal to each other. Using the second equa-
tions in (48) and (45), we obtain that ∇̃XiWj = 0 and

(53) ∇̃Xi Wi =
k1k2(λi − λj )

κλi − k1
h∗ξi , 1 ≤ i �= j ≤ 2 .
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It follows that the subspaces V1 and V2 are constant, and that R8
2 also splits orthogonally as

R8
2 = V1 ⊕ V2.

If κλi − k1 = 0, define

ζi =
κ

2k1k2(κλj − k1)
(−2κ∇̃Xih∗ξi + (k2 − k1)Zi), 1 ≤ i �= j ≤ 2 .

Then 〈ζi, ζi〉 = 0, 〈ζi , Zi〉 = 1 and ζi ∈ span{F∗Xi , h∗ξi}
⊥. Moreover, the subspaces Vi =

span{F∗Xi, Zi , h∗ξi , ζi}, 1 ≤ i ≤ 2, are orthogonal to each other. Furthermore, since

(54) ∇̃Xi ζi =
k2

1 − k2
2

2k1k2
h∗ξi ,

it follows that V1 and V2 are constant and that R8
2 also splits orthogonally as R8

2 = V1 ⊕ V2.
Since Ŵ2

11 = Ŵ1
22 = 0, for each x ∈ M2 there exists an isometry ψ : W = I1 × I2 → Ux

of a product of open intervals Ij ⊂ R, 1 ≤ j ≤ 2, onto a neighborhood of x, such that
ψ∗

∂
∂s

= X1 and ψ∗
∂
∂t

= X2, where s and t are the standard coordinates on I1 and I2,
respectively. Write g = F ◦ψ . In terms of the coordinates (s, t), the fact that αF (X1,X2) = 0
translates into

∂2
g

∂s∂t
= 0 ,

which implies that there exist smooth curves γ1 : I1 → V1 and γ2 : I2 → V2 such that g =

γ1 × γ2.
If κλi − k1 �= 0, it follows from (49), (51), (52) and (53) that γi is a unit-speed

space like curve in Vi with constant Frenet curvatures k̂i
ℓ, 1 ≤ ℓ ≤ 3, and Frenet frame

{F∗Xi, Ẑi, h∗ξ̂i , Ŵi}, where Ẑi , ξ̂i and Ŵi denote the unit vectors in the direction of Zi , ξi

and Wi , respectively. Moreover, by (49) and (50) we have

(k̂i
1)

2 = |〈Zi, Zi〉| = |(λi − λj )(κλi − k1)| ,

whereas from (43) and (53) we obtain, respectively, that

(k̂i
2)

2 =
κ2(λj − λi)

2〈ξi , ξi〉

|〈Zi, Zi〉|
=

κ2|λj − λi |λi(1 − λi)

|κλi − k1|

and

(k̂i
3)

2 =
k2

1k
2
2(λi − λj )

2〈ξi , ξi〉

(κλi − k1)2|〈Wi ,Wi 〉|
=

k1k2|λi − λj |

|κλi − k1|
, 1 ≤ j �= i ≤ 2 .

If κλi − k1 = 0, it follows from (49), (51), (52) and (54) that γi is a unit-speed space
like curve in Vi with light-like curvature vector, constant Frenet curvatures k̃i

ℓ, 1 ≤ ℓ ≤ 2, and

Frenet frame {F∗Xi, Zi , h∗ξ̂i , ζi}, where ξ̂i is the unit vector in the direction of ξi . Moreover,
from (51) we obtain that

(k̃i
1)

2 =
k1k2(κλj − k1)

2

κ2
,

whereas from (54) it follows that

(k̃i
2)

2 = 〈ξi , ξi〉
(k2

1 − k2
2)2

4k2
1k

2
2

=
(k1 − k2)

2

4k1k2
.
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Comparying with (19), (20) and (21) in the first case, and with (22) and (23) in the second,
we see that γ1 and γ2 are precisely, up to congruence, the curves given in Example 3.

Now observe that

π̃2F∗ξi = h∗π2f∗ξi = h∗(f∗ξi + SXi) = λiF∗Xi + h∗ξi ,

whereas

π̃2h∗ξi = h∗π2ξi = h∗(f∗S
tξi + T ξi) = (1 − λi)(λiF∗Xi + h∗ξi) ,

where we have used that

Stξi = StSXi = R(I − R)Xi = λi(1 − λi)Xi

and

T ξi = T SXi = S(I − R)Xi = (1 − λi)SXi = (1 − λi)ξi .

On the other hand,

π̃2Zi = h∗π2H +
λi

r2
π2ν2 = ρ4h∗ξ4 +

λi

r2
ν2 .

Since

π̃2h∗ξ4 = h∗π2ξ4 = h∗(f∗S
tξ4 + T ξ4) = h∗ξ4 ,

we obtain that

π̃2

(

ρ4h∗ξ4 +
λi

r2
ν2

)

= ρ4h∗ξ4 +
λi

r2
ν2 .

If 〈Zi , Zi〉 �= 0, it follows that π̃2Wi and π̃2Zi are colinear. Similarly, π̃2ζi and π̃2Zi are
colinear if 〈Zi , Zi〉 = 0. It follows that π̃2(Vi) is spanned by

λiF∗Xi + h∗ξi and ρ4h∗ξ4 +
λi

r2
ν2 .

Therefore, the subspaces π̃2(V1) and π̃2(V2) (and hence also π̃1(V1) and π̃1(V2)) are mutu-
ally orthogonal, thus the first (respectively, second) factor R4

1 in the decomposition R4
1 × R4

1
adapted to the product H3

k1
× H3

k2
splits orthogonally as R4

1 = π̃1(V1) ⊕ π̃1(V2) (respec-

tively, R4
1 = π̃2(V1) ⊕ π̃2(V2)). We conclude that g is (the restriction to W of ) an isometric

immersion as in Example 3, and the conclusion follows as in the preceding case. �

5. The main result. We are now in a position to state and prove our main result.

THEOREM 5. Let f : M2 → Q
n1
k1

× Q
n2
k2

, k1 + k2 �= 0, be an umbilical non totally

geodesic isometric immersion. Then one of the following possibilities holds:

(i) f is an umbilical isometric immersion into a slice of Q
n1
k1

× Q
n2
k2

;

(ii) there exist umbilical isometric immersions fi : M2 → Q
ni

k̃i
, 1 ≤ i ≤ 2, with k̃1 =

k1 cos2 θ and k̃2 = k2 sin2 θ for some θ ∈ (0, π/2), such that f = (cos θf1, sin θf2);



486 J. ORJUELA AND R. TOJEIRO

(iii) after interchanging the factors, if necessary, we have k2 = 0, n1 ≥ 3, n2 ≥ 2 and

f = j ◦ f̃ , where j : Q3
k1

×R2 → Q
n1
k1

×Rn2 and f̃ : M2 → Q3
k1

×R2 are isometric

immersions such that j is totally geodesic and f̃ (M2) is an open subset of a surface

as in Example 2;

(iv) ki < 0 and ni ≥ 3, 1 ≤ i ≤ 2, and f = j ◦ f̃ , where j : Q3
k1

× Q3
k2

→ Q
n1
k1

× Q
n2
k2

and f̃ : M2 → Q3
k1

× Q3
k2

are isometric immersions such that j is totally geodesic

and f̃ (M2) is an open subset of a surface as in Example 3;

(v) after possibly reordering the factors, we have k1 > 0 (respectively, k1 ≤ 0) and

f ◦ �̃ = j ◦ � ◦ f̃ (respectively, f = j ◦ � ◦ f̃ ), where �̃ : M̃2 → M2 is the

universal covering of M2, f̃ : M̃2 → R×Q2+δ
k2

(respectively, f̃ : M2 → R×Q2+δ
k2

)

is an umbilical isometric immersion with δ ∈ {0, 1}, j : Q1
k1

× Q2+δ
k2

→ Q
n1
k1

× Q
n2
k2

is totally geodesic and � : R×Q2+δ
k2

→ Q1
k1

×Q2+δ
k2

is a locally isometric covering

map (respectively, isometry).

PROOF. If S vanishes everywhere on M2, then f is as in (i) by Lemma 8.1 in [3]. If
ker S = {0} at some point x ∈ M2, then f is as in (ii), (iii) or (iv) by Lemma 4. Then, we are
left with the case in which there is an open subset U ⊂ M2 where ker S has rank one. In this
case, the argument in the proof of Theorem 1.4 of [3] applies and shows that f is as in (v). ✷
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