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Umbilicity of spacelike submanifolds
of Minkowski space

S. Izumiya, D. Pei and M.C. Romero-Fuster *

Abstract

We study some properties of spacelike submanifolds in Minkowski n-
space all whose points are umbilic with respect to some normal field. As
a consequence of these and some results contained in {1] we obtain that
being v-umbilic with respect to a parallel lightlike normal field implies
conformal flatness for submanifolds of dimension n — 2 > 3. In the case of
surfaces we relate the umbilicity condition to that of total semiumbilicity
(degeneracy of the curvature ellipse at every point). Moreover, if the
considered normal field is parallel we show that it is everywhere timelike,
spacelike or lightlike if and only if the surface is included in a hyperbolic
3-space, a de Sitter 3-space or a 3-dimensional light cone respectively. We
also give characterizations of total semiumbilicity for surfaces contained
in hyperbolic 4-space, de Sitter 4-space and 4-dimensional light cone.

1 Introduction

A submanifold M immersed in Minkowski space IR} is said to be totally umbilic
if IT = M, for some smooth function A on M, where I and II respectively
denote the first and second fundamental forms on M. The study of conditions
implying umbilicity of spacelike hypersurfaces in Minkowski space is well spread
in the mathematical literature. For instance, it is known that the only constant
mean curvature compact spacelike hypersurfaces in the de Sitter space are the
umbilical ones (see, S. Montiel (1988) 7], or [2] for a review of the results
related to this). A weaker property to be considered in the case of submanifolds
of codimension at least two is that of umbilicity with respect to a given normal
field. That is, I, = Al,, where v is some normal field on M and I, is the
second fundamental form in the direction determined by v.

*Work partially supported by DGCY'T' grant no. BFM2000-1110



It is a well known fact ([3]) that a (n—2)-submanifold of euclidean n-space is
contained in a standard (n — 1)-sphere if and only if it is umbilical with respect
to some parallel normal field (that happens to be the restriction of the radial
field). We consider here, in first place, the corresponding problem for spacelike
(n — 2)-submanifolds immersed in Minkowski n-space. We show that umbilicity
with respect to a parallel pseudonormal field v implies lying in hyperbolic (n—1)-
space, de Sitter (n — 1)-space or (n — 1)-dimensional lightcone according v is
timelike, spacelike or lightlike.

An equivalent condition to umbilicity with respect to a given normal field on
surfaces in euclidean 4-space is the total semiumbilicity ({10]). This is defined
in terms of the curvature ellipse at each point introduced in [8] (see also [6]).
Totally semiumbilical surfaces are those at which the curvature ellipse degener-
ates into a segment at every point except perhaps at isolated ones (umbilics) at
which it becomes a point. Totally umbilical surfaces are a degenerate case for
which the curvature ellipse degenerates everywhere into a point.

The concept of curvature ellipses for spacelike surfaces in Minkowski 4-space
was introduced in [5]. We use here this setting in order to analyze the total
seminmbilicity of such surfaces. We prove that analogously to the euclidean
case this property is equivalent to umbilicity with respect to some normal field
v whose geometrical characterization is given. As a consequence of this, we
show that a surface M is contained in hyperbolic 3-space (de Sitter 3-space or
3-dimensional lightcone resp.) if and only if M is totally semiumbilical and the
curvature ellipses define parallel spacelike (timelike or lightlike resp.) normal
fields over M. We also characterize the semiumbilicity condition for surfaces in
n-dimensional Minkowski space, n > 4, in particular for those contained in the
4-dimensional hyperbolic spaces, de Sitter spaces and lightcones.

2 Basic concepts and notations

We consider the (n -+ 1)-dimensional Minkowski space (JR™*1, (,)), with the
pseudo scalar product given by

((Zos 21, -, Tn), (Y0, Y1y - Yn)) = —ZoYo + T1Y1 + - + TnYn-
We shall denote this space by R}

We say that a vector x = (2o, ..., z,) € IRYT\{0} is spacelike, timelike or
lightlike provided {x,x) > 0, = 0 or < O respectively. The norm or length of a

vector x € IRY is defined by ||x|| = (|(x,x)])7.
Given a vector v € ]RKhLl and a real number ¢, we define the hyperplane with
pseudonormal v as

HP(v,c) = {x € RT™|(x,v) = c}.

This hyperplane is said to be spacelike, timelike or lightlike according to v is
timelike, spacelike or lightlike.



We define the Hyperbolic n-space by
N = (ke B xox) = Lag > 1)
and the de Sitter n-space by
ST = {x € B*[(x,x) = 1}.

The Hyperbolic n-space and de Sitter n-space with center a € B{LH and
radius r € IR, are respectively defined by

H(a;r) = {x € R""{x —a,x —a) = -1,z > 1},
Sta;r) = {x € R"(x —a,x —a) =r}.
We also consider the set
LC, = {x € R""|(x —a,x —a) = 0}
known as the n-dimensional light cone with vertez a.

Suppose that M is a surface immersed in R;‘H. We say that M is a spacelike
surface if the tangent plane T, M is spacelike (i.e., consists of spacelike vectors)
and thus a euclidean plane (T,M, (,}) for every point p € M. In this case, the
normal space NpM is a Lorentz (n — 1)-space ((N,M, (,)).

3 Principal configurations associated to normal
vector fields

Given a smooth oriented surface M immersed in IR}, we denote by X'(M)
and N (M) the space of the smooth vector fields tangent to M and the space
of the smooth vector fields normal to M, respectively. Consider the second
fundamental map,

o X(M) x X(M) > NM, o(X,Y) = VgV - VxY,

where V denotes the pseudoriemannian connection of R} and X and Y are
local extensions to IR?+1 of tangent vector fields X and Y on M. This map is
well defined, symmetric and bilinear. Given any normal field v € N (M)\{0},
we have for each x € M a function

H,:TiM x TuM — R, H,(v,w) = {a(v,w), ¥(x)).

which is also symmetric and bilinear. The second fundamental form of M at x
is the associated quadratic form,

II,: TuM - R, II,(v) = H,(v,v).



Then the shape operator associated to the normal field v is defined as
S, :TM —TM, S,(X)=—(Vgi)",

where 7 is a local extension to IR™! of the normal vector field v at x and
()" means the tangent component. This operator is bilinear, self-adjoint and
satisfies the following equation: (5,(X),Y) = H,(X,Y),VX,Y € X(M). So,
we have that IT,(X) = (S,(X), X).

We can find for each x € M, an orthonormal basis of eigenvectors of
S, € TyM, for which the restriction of the second fundamental form to the
unitary vectors, I1,|g1, takes its maximal and minimal values. The correspond-
ing eigenvalues k1, kp are the v-principal curvatures, respectively. A point x is
said to be v-umbilic if both v-principal curvatures coincide at x. Let U, be the
set of v-umbilics in M. For any x € M\U, there are two v-principal directions
defined by the eigenvectors of S, , these fields of directions are smooth and in-
tegrable, then they define two families of orthogonal curves, its integrals, which
are called the v-principal lines of curvature. The two orthogonal foliations with
the v~umbilics as its singularities form the v-principal configuration of M. We

- say that the surface M is v-umbilical if each point of M is v-umbilic.
The differential equation of v-lines of curvature is

S.(X(p)) = Ap) X (p) 1)

Suppose that M is locally given by an immersion X : U — B?H, with local
coordinates (u,v). Let E, F, G be the coefficients of the first fundamental form
in this coordinate chart. The coefficients of the second fundamental form are
given by

€y = I]u(au) = “<a(6u;au)7y> = <quay>a
fr = _<a(8uaav),V >=—-< a(avyau),y> = <Xuv77/>a
gy = I[V(av) = _<a(av:8v);’/> = <Xv'uaV>7

) 3 %X 8°X %X
where 9, = m;av = 5177qu = W,Xuv = Budv and Xy, = Fo

Equation (1) has the following expression in this coordinate chart, [9].

(fLE — e, F)du® + (9, F — e,Q)dudv + (g, F — f,G)dv? = 0.

If we assume that this coordinate chart is isothermic, so £ = G > 0, F =0,
this equation has the form

fudu2 + (gu - CV)dU‘dU - fl/dv2 =0, (2)

Remark 3.1 If we take coordinates such that the immersion X above is given
in the Monge form, it can be easily seen that the matriz of the quadratic form
11, (and thus that of the operator S,) at a point p coincides with that of the
hessian of the height function X, ) at p.



4  r-umbilicity.

It is known that surfaces immersed in a 3-sphere of euclidean 4-space are totally
umbilic with respect to the radial field ([3], [10]). We see next that the analogous
statement for surfaces immersed in Minkowski n-space is also true.

Lemma 4.1 Let M be a surface immersed in either H" (a; —r), S* (a;7)
or LC,, for some a € R} and somer € IR.. Then M is v-umbilic,where v is
the position field ot each point of M.

Proof: Suppose that M is locally given by X : U — R} as above, so v = X. In
each one of the three considered cases we have that (X, X) is constant. Hence,
Xy, Xy = ({X,,X) =0.

By considering isothermic coordinates we have,

ey = <quyy> = ~‘<)(u7)(’u,> = _Ev
fu = <Xuv7’/>:7<XU7XU>:Oy
gy = <va;V>:_<Xv,Xv>:7G:“E-

Therefore, e, = g, and f, = 0 at each point and it follows from equation (2)
that the surface is v-umbilic. O

Suppose that M is a spacelike (n-—2)-manifold locally given by an immersion
X :U - IR?. Then we can choose a pseudo-orthonormal frame {e1, ez} for the
normal bundle and an orthonormal frame {es, ..., e, } for the tangent bundle of
M, with ey timelike and e;,7 = 2,...,n spacelike vectors. We have then the
dual 1-forms w; = §(e;){dX, e;) and the connection 1-forms w;; = d(e;){de;, €;),

where
1 1=2,..,1

(e;) = Sign(e;) = { 1 =1

Lemma 4.2 Suppose that M is an (n—2)-submanifold immersed in Minkowski
n-space that is v-umbilical for some constant length normal field v on M with
curvature function A. Then we have,

a) If v is parallel then A is constant.

b) Supposing that v is parallel, then A = 0 if and only if v is a constant field.

Proof: We may have that v is either everywhere timelike, spacelike lightlike.
Suppose first that v is a timelike parallel normal field. Moreover, since v has
constant length, we may assume that (v,v) = —1. In this case we may choose
e; = v. We then observe that the parallelism condition on v is equivalent to
wiz = 0. We prove now that wis = 0 = X\ = constant. In fact, we have

wii(X) = (Vxei,e5) = (5, (X) + Vxeé1,e5) = (Se, (X), ¢;)
= (AX,e;) = w;(X), 7=3,..,n,VX € X(M).



So wy; = Awy, j =3,...,n and by taking exterior derivatives
dAANw; + Mdw; = dwyy, j=3,...,n.
Take j = 3 and consider the structure equations {[5], [11])
dwiz = w1z A was + Wia A was + ... + Win A Wp3.
So we have
dwiz = wip A wos - )\(w4 AWz + oo+ Win A Wp3.

Moreover, dws = §(e3)6(ea)wss Awqg + ... + 8(eg)d(en)wan Awp = wa Awaz + ... +
wy, A wpz. Therefore,

dA A ws + Adws = dwiz = wia A wasg + Aws A wys.
And hence,
dA A w3 + AMwag Awas + ... +wn Awns) = win Awag + AMws Awag + ... +wn Awns).

Consequently,
dA A w3 = wig A wos.

Analogous arguments for § = 4, ..., n lead to
dA A wj = wiz2 A w2j,j =3,...,n.

And it clearly follows that wip = 0 = d\ = 0 = \ = constant.

If v is a spacelike normal field, we take e; = v. We have again that the par-
allelism of v is equivalent to wis = 0 and an analogous argument (interchanging
the subindecies 1 and 2) leads to the required result.

Suppose now that v is a parallel lightlike vectorfield. We consider a pseudo-
orthonormal frame {e;,e2} on NM and an orthonormal frame {es,...,e,} on
TM as above. We have that (v,v) = 0 and thus we can take v = e; & e,
Moreover, since v is parallel, V£ (eq £ e2) = 0,¥X € X(M). That is, wiz =
Fwii = 0. On the other hand,

(win Fwp)(X) = |
Therefore, wj1 +wj = Awy, 7=3,...,n.
By taking derivatives we get

dANw; + Mdw; = dwj Tdwse, j=3,..,n.



Now, from the structure equations
dwar = w3z A wyy + w3g Awar + ...+ Wap A Wy

dwsy = w31 A Wiz + W3a A Wiz + ... + Wi A Wpa.

and taking 7 = 3 in the above expression, we obtain

dA N w3z + Adws = wzs A wgl + w3g A war + ... + Wap A Wiy
j:(w31 ANwio + w3g AN wgee + ... + Wz A ’wnz).

And since dws = w3q Awg + ... + wW3n A wy, it follows,

dX A w3 + )\(W34 ANwq + .. Fwsp A wn) = w3y N waq £ (’LU31 AN wis + (w34 AN way +
o F Wan Awp1) = (wag Awag + ...+ wag Awpa) = wie Awse F wag Awis + wag A
(W41 + w42) + o Fwsn A (wm + wnz).

Therefore,

AN Nws = w3p Awag £ ws1 Awiz = wig A (wsg F wsy).
Analogous arguments for j = 4, ...,n lead to
AA N\ wq = w1 A (w]‘Q F wjl).

And we have that wijs = 0 = d\ = 0 = X\ = constant, in this case too. So
statement a) is shown.

b) Suppose now that v is constant. Again, if v is timelike, we can put e; = v
and we have that Vxe; = 0,VX € X(M). In particular, w1j(X) = (Vxer,e;) =
0,vX,j = 3,..,n. But as we have seen before, wi; = Aw;,7 = 3,...,n. So it
follows that A = 0. The argument for a spacelike v runs analogously. On the
other hand, if v is a constant lightlike normal field, we can put v = e; 4-e,. We
then have that ?61 (1 £é2) = 0,5 = 3, ...,n. Therefore, wq; + wy; = 0. But in
this case, as we have seen above, wi; £ wy; = Mwj,j = 3,...,n and hence A = 0.

Finally, if v is a parallel timelike field we have that w1 = 0 and then A =0
implies that wi; = dw; = 0,5 = 3,...,n. Therefore, (Vxeéy,e;) = 0,VX,j =
2,3,...,n. And thus, Vxé; = 0,VX € X(M), which implies that v = e; is
constant. The spacelike and lightlike cases are proven in a similar way. O

Theorem 4.3 Let M be o (n — 2)-submanifold immersed in IR}.

i) If M is v-umbilic for some parallel everywhere timelike field v then either
M s contained in some hyperbolic 3-space, provided v has nonzero curvature,
or M lies in a spacelike hyperplane in case that v has vanishing curvature.

i1) If M is v-umbilic for some parallel everywhere spacelike field v then either
M is contained in some de Sitter 3-space, provided v has nonzero curvature, or
M lies in a timelike hyperplane in case that v has vanishing curvature.

i) If M is v-umbilic for some parallel everywhere lightlike field v then either
M is contained in some light cone, provided v has nonzero curvature, or M lies
in a lightlike hyperplane in case that v has vanishing curvature.



Proof: Suppose that M is v-umbilical and hence, for any vector X tangent to

M, we have B B B
Vxv =Vxv+Viv =AX + Viv.

But V1'v =0, for v is parallel, and thus
vxl/ =2X.

On the other hand, we have that the covariant derivation of the radial vec-
tor field X is the identity, i.e., VxX = X, for any vector X tangent to IR}.
Thercfore the following equation holds:

vx ()\X - I/) = 0,
for any X tangent to M. It follows that v — AX is a constant vector Xj, so

AX(p) = v(p) = Xo,Vp € M.
Now, in case that A £ 0 we can put

Xo _ v(p)
X(p)— —=—=—"L, Vpe M
w5 P
which, being A constant, means that M belongs to either a hyperbolic (n — 1)-
space in case that v is spacelike, to a de Sitter (n — 1)-space in case that it is
timelike, or to a lightcone in case that it is lightlike.

If X = 0 we have from lemma 4.2 that v must be a constant normal field X,
over M. But this implies that M is contained in a hyperplane orthogonal to
Xo. O

It has been shown in [1] that for a Riemannian (n — 2)-manifold with n > 5,
the condition of being conformally flat is equivalent to admit some isometric
embedding in the lightcone of a Minkowski n-space. Consequently, we have

Corollary 4.4 If M is a (n — 2)-submanifold of R}, n > 3 which is umbilic
with respect to some parallel lightlike normal field v then M is conformally flat.

Remark 4.5 The computations made in lemma 4.2 can be easily adapted to
the case of higher codimensional spacelike submanifolds of IRY. So the results
established in theorem 4.8 also hold for these submanifolds.

As a consequence of lemma 4.1 and theorem 4.3 for surfaces in IR} we have
the following corollary:

Corollary 4.6 Let M be a surface immersed in IR},
1) M is v-umbilic for some parallel everywhere timelike field v if and only
if either M is contained in some hyperbolic 3-space, provided v has nonzero



curvature, or M lies in a spacelike hyperplane in case that v has vanishing
curvature.

ii) M is v-umbilic for some parallel everywhere spacelike field v if and only if
either M 1s contained in some de Sitter 3-space, provided v has nonzero curva-
ture, or M lies in a timelike hyperplane in case that v has vanishing curvature.

iii) M is v-umbilic for some parallel everywhere lightlike field v if and only
if either M is contained in some light cone, provided v has nonzero curvature,
or M lies in a lightlike hyperplane in case that v has vanishing curvature.

5 Semiumbilicity

Given a surface M immersed in R? "' consider local isothermic coordinates

{z,y} on M and a pseudo-orthonormal frame, {e1,es, --,e,r1} in a neigh-
bourhood of x = f(0,0) € M, such that {es,...,en41} is a normal frame and
{€n,ens1} a tangent frame, with (e1,e1) = —1 and (e;,e;) = 1,4 =2,...,n+ 1.

The matrix of the bilinear form H,, is given by

He,(x) = { G b }

bZ‘ C;
where if ds* = E(dz? + dy?) is the firat fundamental form, we have

1 8%f 1 02f
“ Bawoy 0V e a= g

1 8%f
o

’:EW (0,0) - e,

(0,0) - €4, bl

fori=1,-,n—1.

Given x € M, consider the unit circle in 7% M parameterized by the angle
6 € [0,27]. Denote by 7y the spacelike curve obtained by intersecting M with
the timelike hyperplane defined by the direct sum of the normal subspace Ny M
and the straight line in the tangent direction represented by 6. Such curve is
called the normal section of M in the tangent direction §. The curvature vector
n(0) of vp in x lies in the timelike hyperplane N, M. Varying 6 from 0 to 27, the
vector 1(8) describes an ellipse in NxM, called the curvature ellipse of M at x.
It can be seen that the curvature ellipse is the image of the affine map (we refer
to [5] for the case n = 3, the case n > 4 is a straightforward generalization)

n:SlchM—anM

given by
n—1

0 n(0) = [ cosd sin@}.[? ?}[COSH}-(%,
1 1 T

|

%

that is,



1(0) = Hx + Bx cos 20 + Cx sin 26,

with
1 1 n—1
H, = 5((11 + 61)61 — 5 Z(az +C,‘) T €4,
=2
1 n—1
By = 5((11 —cp)er — Z;(ai —¢i) e
f=

n—1
Cx = b1€1 - sz C Gy
=2

This ellipse, contained in the Lorentz (n — 1)-space NyM, may degener-
ate into a segment for certain points of M that we call semiumbilic points. A
semiumbilic point x is said to be spacelike, timelike or lightlike provided the cur-
vature segment defines respectively a spacelike, timelike or lightlike direction in
Ny M. There may be also points at which the curvature ellipse becomes a point,
these are degenerate semiumbilics called wmbilics. A surface all whose points
are semiumbilic (except by isolated umbilics) is said to be totally semiumbilical.

Proposition 5.1 Let M be a spacelike surface immersed in R?H and let v €
N(MN{0}. A point x € M is v-umbilic if and only if v(x) is pseudo-orthogonal
to the vectors Bx and Cyx defined above.

Proof: With the same notation as the above we can write v = v —iI e
—1 ) ~
Vn-1€n-1. Then e, = =3V viaq, fu, = = >0 vib; and g, = — Y o] vici.
So it follows from the expression (2) that x is a v-umbilic point if and only if
the following two functions
n—1
fu - Z Vibz'
i=1

n—1

€ —Gv = _lei(ai *ci)

i=1
vanish at x.
On the other hand, we have that

n—1
(1, Cx) = = > uibi
=1

n—1

(v, Bx) = — Z vi(a; —¢;)

=1

which leads to the required result. O



Remark 5.2 It follows from the above proposition that the umbilic points of M
are critical points of all the principal configurations defined by normal fields on
M.

Theorem 5.3 A spacelike surface M C IR} is totally semiumbilical if and only
if M is v-umbilical for some v € N (M)\{0} locally defined at each non umbilical
point.

Proof: Suppose that M is totally semiumbilical, so the ellipse is a segment
at every point in a neighbourhood of any non umbilic point x € M, we can define
a normal field v locally given by the pseudo-orthogonal direction to that of the
curvature segment in this neighbourhood. Then it follows from proposition 5.1
that every point of M where v is defined is v-umbilic.

Conversely, we have that NyM is a Lorentz plane and the condition that
a nonzero normal vector v(x) is pseudo-orthogonal to the vectors B, and Cy
implies that these two last vectors must be parallel. Since they generate the
curvature ellipse at x € M we have that this ellipse degenerates. 0

Remark 5.4 We observe that in the proposition 5.3 the normal vector v(x) is
timelike, spacelike or lightlike if and only if the point X is a spacelike, timelike
or lightlike semiumbilic respectively. Moreover, in the last case the curvature
ellipse has direction v(x).

Therefore, from Theorem 4.1 we get the following

Corollary 5.5 Given a spacelike surface M C IR} we have that

i) M C H3(a;—r) & every point of M is either spacelike semiumbilical or
umbilical and the curvature ellipses define o parallel normal field on M.

i) M C S3(a;r) <> every point of M is either timelike semiumbilical or
umbilical and the curvature ellipses define a parallel normal field on M.

W) M C LC3(a) & every point of M is either lightlike semiumbilical or
umbilical and the curvature ellipses define a parallel normal field on M.

The following generalization for surfaces immersed in higher dimensional
Minkowski space can be analogously proven.

Theorem 5.6 A spacelike surface M C IR}, n > 4 is totally semiumbilical if
and only if there exist linearly independent normal fields vy, vs, ..., vy _3, locally
defined at every non umbilical point of M, such that M is v;-umbilical.

Corollary 5.7 A spacelike surface M C IR}, n > 4 is totally semiumbilical if
and only if it has a unique nonirivial principal configuration.

Proof: In virtue of theorem 5.6, if M is totally semiumbilic, each non umbilic
normal field 7 can be written as n = Ajvy + ... + A\p_3Vn_3 + Ay _2&, where £ is
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a field orthogonal to the umbilic fields v;,i = 1,...,n —3 and X\,i =1,...,n —
2 are smooth functions and A, s is never vanishing. Clearly, the principal
configurations associated to 77 and & coincide and the result follows.

To see the converse we observe that given two linearly independent normal
fields with the same associated configurations it is always possible to find a
linear combination of both with a trivial principal configuration. O

We consider now the particular class of spacelike surfaces of IR given by
those contained in either the hyperbolic 4-space Hi(fl), the de Sitter space
S4(1) or the lightcone LC*(0). Their total semiumbilicity can be characterized
as follows

Proposition 5.8 Given a spacelike surface M C HE(—1) (S1(1) or LC*(0)
resp. ),

a) the curvature ellipse of M at a point x € M is contained in TxH}(—1)
(TxSL(1) or TXLC*(0) resp.).

b) M is totally semiumbilical if and only if M is v-umbilic, for some field
ve NMNXHE(-1) (v e NMNXS(1) orve NMNXLC40) resp.).

Proof: a) It follows immediately from lemma 4.1 that the position field is
totally umbilic on M, but then proposition 5.1 implies that it must be pseudo-
orthogonal to the vectors By and Cx that determine the plane of the curva-
ture ellipse at x. Since the position vector at x is also pseudo-orthogonal to
TxH*(~1) (resp. TxS5(1) or T LC*(0)), Vx € M, we have that this ellipse lies
in Ty H*(~1) (resp. TxS1(1) or TxLC4(0)) Vx € M. The assertion b) is an
immediate consequence of assertion a) and proposition 5.1. O

Corollary 5.9 A spacelike surface M C H$(—1) is totally semiumbilical if and
only if M is umbilical with respect to some lightlike normal field.

Proof: We have that M is umbilical with respect to the position field X, which
is timelike in this case. Moreover, given x € M, the plane Ny M N Ty H*(—1)
is a euclidean plane. Then, given any nevervanishing vectorfield v € NM N
XH{(-1), we can always find a lightlike linear combination 1 of X and v.
Since M is X-umbilical, we have that M is v-umbilical if and only if M is
n-umbilical and then the result follows from part b) of proposition 5.8. O

The hypersurfaces of H7?(—1) determined by intersecting it with a space-
like, a timelike or a lightlike hyperplane are respectively called hyperspheres,
equidistant hyperplanes and hyperhorospheres. The hyperhorospherical geome-
try of hypersurfaces in the Hyperbolic n-space has been studied in [4] where the
invariant known the hyperbolic Gauss-Kronecker curveture was introduced. It
was there shown that the vanishing of this invariant on a hypersurface implies
that it is contained in a hyperhorosphere. We finally give a characterization
of the fact of being contained in a hyperhorosphere for surfaces in H?(—1) in
terms of umbilicity.
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Corollary 5.10 A spacelike surface M C HT(—1) lies in a hyperhorosphere
if and only if it is umbilical with respect to some lightlike normal field v with
constant zero curvature.

Proof: Observe that in this case v must be constant (remark 4.5) so M is
v-umbilical if and only if it is contained in a lightlike hyperplane and thus in a
hyperhorosphere. O
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