
UMI-tools: modeling sequencing errors
in Unique Molecular Identifiers to improve
quantification accuracy

Tom Smith,1 Andreas Heger,1 and Ian Sudbery2

1Computational Genomics Analysis and Training Programme, MRC WIMM Centre for Computational Biology, University of Oxford,

Oxford OX3 9DS, United Kingdom; 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN,

United Kingdom

Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput

sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those

arising through PCR amplification of the samemolecule. However, bioinformatic methods to leverage the information from

UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an

ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account

for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy

both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates

and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value

of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package.

[Supplemental material is available for this article.]

High-throughput sequencing technologies yield vast numbers of

short sequences (reads) from a pool of DNA fragments. Over the

last ten years, a wide variety of sequencing applications have

been developed that estimate the abundance of a particular

DNA fragment by the number of reads obtained in a sequencing

experiment (read counting) and then compare these abundances

across biological conditions. Perhaps the most widely used read

counting approach is RNA-seq, which seeks to compare the num-

ber of copies of each transcript in different cell types or conditions.

Prior to sequencing, a PCR amplification step is normally per-

formed to ensure sufficient DNA for sequencing and/or enrich-

ment for fragments with successful adapter ligation. Biases in

the PCR amplification step lead to particular sequences becoming

overrepresented in the final library (Aird et al. 2011). In order to

prevent this bias propagating to the quantification estimates, it

is common to remove reads or read pairs with the same alignment

coordinates, because they are assumed to arise through PCR am-

plification of the same molecule (Sims et al. 2014). This is appro-

priate where sequencing depth is low and thus the probability of

two independent fragments having the same genomic coordinates

are low, as with paired-end whole-genome DNA-seq from a large

genome. However, the probability of generating independent

fragments mapping to the same genomic coordinates increases

as the distribution of the alignment coordinates deviates from a

random sampling across the genome and/or the sequencing depth

increases. For example, in RNA-seq, highly expressed transcripts

are more likely to generate multiple fragments with exactly the

same genomic coordinates. The problem of PCR duplicates is

more acute when greater numbers of PCR cycles are required to in-

crease the library concentration, as in single-cell RNA-seq, or

when the alignment coordinates are limited to a few distinct

loci, as in individual-nucleotide resolution Cross-Linking and

ImmunoPrecipitation (iCLIP). Random barcodes were initially

proposed as a method to count the number of mRNA molecules

in a sample (Hug and Schuler 2003), and have since been used

to explicitly label PCR duplicates (McCloskey et al. 2007). More re-

cently, random barcodes, referred to as Unique Molecular Identifi-

ers (UMIs), have been used to confidently identify PCR duplicates

in high-throughput sequencing experiments (König et al. 2010;

Kivioja et al. 2012; Islam et al. 2014). By incorporating a UMI

into the same location in each fragment during library prepara-

tion, but prior to PCR amplification, it is possible to accurately

identify true PCR duplicates because they have both identical

alignment coordinates and identical UMI sequences (Fig. 1A). In

addition to their use in single-cell RNA-seq and iCLIP (König

et al. 2010), UMIs may be applied to almost any sequencing meth-

od in which confident identification of PCR duplicates by align-

ment coordinates alone is not possible and/or an accurate

quantification is required, including ChIP-exo (He et al. 2015),

DNA-seq karyotyping (Karlsson et al. 2015), detection of rare mu-

tations (Schmitt et al. 2012), and antibody repertoire sequencing

(Vollmers et al. 2013).

Accurate quantification with UMIs is predicated on a one-to-

one relationship between the number of unique UMI barcodes at a

given genomic locus and the number of unique fragments that

have been sequenced. However, errors within the UMI sequence,

including nucleotide substitutions during PCR and nucleotide

miscalling and insertions or deletions (indels) during sequencing,

create additional artifactual UMIs. Nucleotide miscalling and sub-

stitution errors affect only the UMI sequence itself and do not af-

fect the alignment coordinates. Hence, these errors will inflate
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the estimation of the number of unique molecules at a particular

genomic coordinate. These errors can be identified by examining

all UMIs at a single genomic coordinate. On the other hand,

UMI indels will affect the alignment position also, leading to

the assignment of reads to incorrect genome coordinates.

Identification of such events requires the examination of sets of

UMIs at neighboring coordinates. Recombination events, also

called “PCR jumping,” create chimeric sequences thatmay change

either the UMI sequence and/or alignment. Miscalling during se-

quencing is by far the most prevalent error, occurring one to two

orders of magnitude more frequently than indels for Illumina se-

quencing (Marinier et al. 2015; Schirmer et al. 2015, 2016).

Recombination is common when sequencing amplicons, but

much rarer with the shotgun sequencing approaches in which

UMIs are utilized (Schloss et al. 2011; Waugh et al. 2015). We

therefore focus here on improving quantification via UMIs by con-

sideringnucleotidemiscalling and substitution errors within pools

of UMIs from the same genomic coordinate. Herein, we will refer

to these errors as UMI errors.

UMI errors have been considered in previous analyses (Islam

et al. 2014; Bose et al. 2015; Macosko et al. 2015; Yaari and

Kleinstein 2015). However, their impact on quantification accura-

cy has not previously been demonstrated, and there is no consis-

tency in the approach taken to resolve these errors. For example,

Islam et al. (2014) removed all UMIs where the counts were >1%

of the mean counts of all other nonzero UMIs at the genomic lo-

cus, whereas Bose et al. (2015) merged together all UMIs within

a Hamming distance of two or less, with little explanation as to

how this was achieved. We therefore set out to demonstrate the

need to account for UMI errors, to compare different methods

for resolving UMI errors and to formalize an approach for remov-

ing PCR duplicates with UMIs.
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Figure 1. Modeling errors in UMIs. (A) Schematic representation of how UMIs are used to count unique molecules. Fragmented DNA is labeled with a
random UMI sequence (short oligonucleotide; represented as colored blocks). Following PCR amplification, sequencing, and bioinformatics steps, the se-
quence read alignment coordinates and UMI sequences are used to identify sequence reads originating from the same initial DNA fragment (PCR dupli-
cates) and so count the unique molecules. (B) Average edit distances (rounded to integers) between UMIs with the same alignment coordinates. Genomic
positions with a single UMI are not shown. (Null) Null expectation from random sampling of UMIs, taking into account the genome-wide distribution of
UMIs. (C) Correlation between duplication rate and enrichment of positions with an average edit distance of 1 for iCLIP data. (D) Topologies of networks
formed by joining reads with the same genomic coordinates and UMIs a single edit distance apart. (Single hub) One node connected to all other nodes;
(complex) no node connected to all other nodes. (E)Methods for estimating uniquemolecules fromUMI sequences and counts at a single locus. Where the
method uses the UMI counts, these are shown. Red bases are inferred to be sequencing errors, and blue bases are inferred to be PCR errors. The inferred
number of unique molecules for each method is shown in parentheses.
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Results

We reasoned that UMI errors create groups of similar UMIs at a giv-

en genomic locus. To confirm this, we calculated the average num-

ber of bases different (edit distance) between UMIs at a given

genomic locus and compared the distribution of average edit dis-

tances to a null distribution generated by randomly sampling

(Methods). Using iCLIP data (Müller-McNicoll et al. 2016), we

confirmed that the UMIs are more similar to one another than ex-

pected according to the null, strongly suggesting sequencing and/

or PCR errors are generating artifactual UMIs (Methods; Fig. 1B; for

other data sets, see Supplemental Fig. S1). Furthermore, the en-

richment of low edit distances is well correlated with the degree

of PCR duplication (Fig. 1C). Overall, we detected a 25-fold enrich-

ment for positions with an average edit distance of 1, compared to

our null expectation. In contrast, when we compared the UMI se-

quences at adjacent positions, we detected an 1.1-fold (± standard

deviation of 0.1) (Methods) enrichment for UMIs, which may

have originated from a single nucleotide deletion, suggesting

UMI indels are much less prevalent than UMI errors, as expected.

We then constructed networks between UMIs at the same geno-

mic locus, where nodes represent UMIs and edges connect UMI

separated by a single nucleotide difference. Although most of

the networks contained just a single node, we observed that

3%–36% of networks contained two or more nodes, of which

4%–20% did not contain a single central node, and thus could

not be naïvely resolved (Fig. 1D). This indicates that the majority

of networks are likely to originate from a single unique molecule

prior to PCR amplification, but a minority of networks may origi-

nate from a combination of errors during PCR and sequencing or

may originate from multiple unique molecules, which by chance

have similar UMIs.

Methods to identify unique molecules

Many previous studies assume each UMI at a given genomic locus

represents a different unique molecule (Shiroguchi et al. 2012;

Soumillon et al. 2014; Collins et al. 2015). We refer to this method

as unique. Islam et al. (2014) previously identified the issue of se-

quencing errors and proposed removing UMIs whose counts fall

below a threshold of 1% of themean of all nonzero UMIs at the lo-

cus, a method we refer to as percentile.

We have developed three methods to identify the number of

unique molecules at a given locus by resolving UMI networks

formed by linking UMIs separated by a single edit distance (Fig.

1E). In all cases, the aim is to reduce the network down to a repre-

sentative UMI(s) that accounts for the network; identifying the ex-

act sequence of the original UMI(s) is not important for the

purposes of quantification. The simplest method we examined

was to merge all UMIs within the network, retaining only the

UMI with the highest counts. For this method, the number of net-

works formed at a given locus is equivalent to the estimated num-

ber of uniquemolecules. This is similar to themethodused by Bose

et al. (2015) where UMIs with an edit distance of 2 or less were con-

sidered to originate from an identical molecule. We refer to this

method as cluster. This method is expected to underestimate the

number of unique molecules, especially for complex networks.

We therefore developed the adjacency method, which attempts

to correctly resolve the complex networks by using the node

counts. The most abundant node and all nodes connected to it

are removed from the network. If this does not account for all

the nodes in the network, the next most abundant node and its

neighbors are also removed. This is repeated until all nodes in

the network are accounted for. In the method, the total number

of steps to resolve the network(s) formed at a given locus is equiv-

alent to the number of estimated unique molecules. This method

allows a complex network to originate from more than one UMI,

althoughUMIswith an edit distance of twowill always be removed

in separate steps. The excess of UMIs pairs with an edit distance of

two observed in the iCLIP data sets indicate that some of these

UMIs are artifactual. Reasoning that counts for UMIs generated

by a single sequencing error should be higher than those generated

by two errors and UMIs resulting from errors during the PCR am-

plification stage should have higher counts than UMIs resulting

from sequencing errors, we developed a final method, directional.

We generated networks from the UMIs at a single locus, in which

directional edges connect nodes a single edit distance apart when

na≥ 2nb− 1, where na and nb are the counts of node a and node

b. The entire directional network is then considered to have origi-

nated from the node with the highest counts. The ratio between

the final counts for the true UMI and the erroneousUMI generated

from a PCR error is dependent upon which PCR cycle the error oc-

curs and the relative amplification biases for the two UMIs, but

should rarely be less than twofold. The −1 component was includ-

ed to account for strings of UMIs with low counts, each separated

by a single edit distance for which the 2n threshold alone is too

conservative. Thismethod allows UMIs separated by edit distances

greater than one to be merged so long as the intermediate UMI is

also observed, and with each sequential base change from the

most abundant UMI, the count decreases. For this method, the

number of directional networks formed is equivalent to the esti-

mated number of unique molecules.

Comparing methods with simulated data

To compare the accuracy of the proposed methods, we simulated

the process of UMI amplification and sequencing for UMIs at a sin-

gle locus and varied the simulation parameters (Methods). To ex-

amine the accuracy of the five methods, we computed two

metrics: the log2-fold difference between the estimate and ground

truth log2[(estimate− truth)/truth] and the coefficient of variation

(CV) (standard deviation/mean) across 10,000 iterations. Increas-

ing UMI length or sequencing depth results in a linear increase

in the degree of overestimation for unique and percentile (Fig. 2A,

B), since increasing either parameter linearly increases the total

amount of UMI sequence that may harbor errors. In contrast, the

estimates from the network-based methods remain relatively sta-

ble, with directional showing the highest accuracy and lowest var-

iance. We also simulated the effect of including a very long UMI

(up to 50 bp) as there may be occasions where it is preferable to

concatenate aUMIwith another barcode, such as a sample barcode

or cell barcode in single-cell RNA-seq, leading to longer barcodes.

We noted that the network-based methods showed reduced accu-

racy for very long barcodes (Supplemental Fig. S2A). Investigating

further, we found this was correlated with an increase in UMIs

with two errors in which the single error intermediate was not ob-

served, as detected by counting the number of networks that did

not contain any of the initial UMIs prior to PCR and sequencing

(Supplemental Fig. S2B). In order to resolve this inherent problem

with very long UMIs, we modified the network-based methods so

that edges joined nodes with an edit distance less than or equal to

2. This considerably decreased the number of networks without

any initial UMIs and improved the accuracy of the network-based

methods for very long UMI sequences (Supplemental Fig. S2A,B).
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Increased sequencing error rate leads to an exponential over-

estimation for unique and percentile (Fig. 2C), with a 1.3-fold over-

estimation observed with an error rate of 0.01, compared to <1.05-

fold for the network based methods. Increasing the rate of errors

during the PCR step had a similar impact (Supplemental Fig. S2C).

However, this was only observed when the rate of DNA poly-

merase errors was simulated as >0.001, considerably higher than

reported error rates for even nonrecombinant Taq DNA polymer-

ase (Rittié and Perbal 2008; Whalen et al. 2016), confirming se-

quencing errors are likely to be the primary source of UMI

errors. Increasing the number of PCR cycles or modifying the am-

plification bias had little impact on the relative accuracy of the

methods (Supplemental Fig. S2D,E). Increasing the number of ini-

tial UMIs reduced the accuracy of the network-based methods;

however, even with 100 initial 8-bp UMIs at a single locus, the

network methods remained the most accurate (Supplemental

Fig. S2F).

Although the network methods performed very similarly,

directional consistently yielded more accurate and less variable es-

timates. For example, when the sequencing depth was increased

to 400 reads, the average estimates were 19.92, 19.94, and 19.99

(truth = 20), respectively, for cluster, adjacency, and directional

methods, and the CVs were 0.0167, 0.0144, and 0.0099. We ob-

served no difference between percentile and unique undermost con-

ditions tested. Increasing the number of reads sequencedper initial

UMI, wewere able to see an improvement in accuracy for percentile

relative to uniquewhen sequencing error rates are between 1 × 10−3

and 1 × 10−5; however, even under this specific parameterization,

the network-based methods are more accurate (Supplemental

Fig. S2G).

In summary, under simulation conditions, the directional

method outperforms all other methods; however, adjacency

and cluster perform equally well under simulation conditions

that are expected to reflect a well-designed and well-executed

experiment.

Implementation

To implement our methods within the framework of removing

PCR duplicates from BAM alignment files, we developed a com-

mand line tool set, UMI-tools, with two commands, extract and

dedup. extract takes the UMI from the read sequence contained in

a FASTQ read sequence and appends it to the read identifier so it

is retained in the downstream alignment. extract expects the

UMIs to be contained at the same location in each read. Where

this is not the case, e.g., with sequencing techniques such as

inDrop-seq (Klein et al. 2015), the user will need to extract the

UMI sequence from the read sequence and append it to the read

identifier. dedup takes an alignment BAM file, identifies reads

with the same genomic coordinates as potential PCR duplicates,

and removes PCR duplicates using the UMI sequence according

to the method chosen. Time requirements for running dedup

depend on number of input reads, length of UMI, and level of

duplication. Memory requirements depend on the number of out-

put reads. On a desktop with a Xeon E3-1246 CPU, it takes ∼220

sec and ∼100 MB RAM to process a 32-million-read single-end in-

put file with 5-bp UMIs to ∼700,000 unique alignments. Inputs

with longer UMIs may take significantly longer.

Comparing methods with iCLIP data

We next sought to examine the effect of these methods on real

data, starting with the previouslymentioned iCLIP data, which in-

cludes 3–6 replicates for nine proteins (Müller-McNicoll et al.

2016). For replicate 1, the distribution of the average edit distance

between UMIs present at each genomic locus showed enrichment

for single-edit distance relative to a null distribution from random

sampling, taking into account the genome-wide distribution of

UMIs (Fig. 3A). For all samples, application of the directionalmeth-

od resulted in an edit distance distribution resembling the null,

whereas using the percentile method made little or no difference.

The same was also true of other replicates of this data set or other

Figure 2. Comparison of methods with simulated data. In each panel, all but one of the simulation parameters are held constant, with the remaining
parameter varied as shown on the x-axis. (A) UMI length. (B) Sequencing depth. (C) Sequencing error rate. The left plots show the accuracy of quantifi-
cation, presented as the log2-transformed normalized difference between the estimate and ground truth. The right plots show the coefficient of variation
(standard deviation/mean). The dashed red line represents the value used for this parameter in all other simulations. The dashed gray line represents perfect
accuracy. The unique and percentile methods give identical results with the parameters shown here and are hence overplotted.
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data sets (Supplemental Fig. S2). In some cases, a residual enrich-

ment of positions with an average edit distance of 2 was observed,

but this was also reduced in most cases.

We reasoned that if the directional method removed PCR du-

plicates more accurately, the reproducibility between replicates

should be improved. To test this, we turned to a previously defined

measure of iCLIP reproducibility (König et al. 2010). Briefly, we

identified in each sample the bases with two ormore tagsmapping

at that position and askedwhat percentage had a tag present in one

ormore other replicates for that pull down.We limited the analysis

to the first three replicates for each protein. In each case, after de-

duplication with the directional method, bases with two or more

tags were more reproducible (Fig. 3B), with the difference being

very large in some cases (e.g., 21% vs. 59% of bases reproducible

for SRSF7 replicate 1). In contrast, the percentile method was little

different from unique (Supplemental Fig. S3).

In order to measure reproducibility of their data, Müller-

McNicoll et al. (2016) measured the Spearman’s rank correlation

between the numbers of significant tags in each exon across the ge-

nome. We repeated this calculation with data processed, using ei-

ther the unique or directional method, and compared the average

Spearman’s correlation between each sample and other replicates

of the same pull down. In all cases, we see an improvement in

the correlation between replicates of the same pull down when

data are processed using the directionalmethod (Fig. 3C). As expect-

ed, the degree of improvement for a particular samplewas correlat-

ed with the enrichment of positions with an average edit distance

of 1 (R2= 0.4) (Supplemental Fig. S3). Thus our method substan-

tially improves the reproducibility of replicates in this iCLIP

experiment.

Comparing methods with single-cell RNA-seq data

To further demonstrate the utility of our network-based method,

we applied it to two differentiation single-cell RNA-seq data sets:

the first reported use of UMIs in a single-cell RNA-seq experiment

seeking to describe a developmental pathway (Soumillon et al.

2014), referred to here as SCRB-seq, and a recently reported sin-

gle-cell RNA-seq utilizing droplet-barcoding (Klein et al. 2015), re-

ferred to here as inDrop-seq. As before, network-based methods

show a marked improvement in the distribution of edit distances

over the percentile method and the unique method (Fig. 4A).

Figure 3. UMI-tools improves reproducibility between iCLIP replicates. (A) Average edit distances between UMIs with the same alignment coordinates.
Genomic positions with a single UMI are not shown. (Null) Null expectation from random sampling of UMIs, taking into account the genome-wide dis-
tribution of UMIs. Only the first replicate of the data set is shown for each pull down. (B) iCLIP reproducibility as represented by the percentage of positions
with more than two tags also cross-linked in at least one of two other replicates. (C ) Spearman’s rank correlation between the numbers of significant tags in
each exon.
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Improvements are generally less pronounced than observed with

the iCLIP data, likely due to a lower maximum read depth in sin-

gle-cell RNA-seq. To demonstrate that this improvement in the

edit distance led to an improved accuracy in transcript abundance

estimates, we used the ERCC spike-ins. The naïve use of UMIs to

identify PCR duplicates with the unique method improved the

per-cell correlation between ERCC concentration and counts,

compared to quantification without considering PCR duplicates

(median coefficients were 0.86 and 0.89, respectively). As expect-

ed, the correlation was further improved using the directional

method (median coefficient = 0.91) (Fig. 4B).

We applied hierarchical clustering to the SCRB-seq gene ex-

pression data using the unique method and observed the Day 0

andDay 14 cells separated relatively well (Fig. 4C). However, seven

cells clusteredwith cells of thewrong time point, reflecting either a

failure to commit to differentiation or misclassification event due

to noise in the expression estimates. With the directional method,

this was reduced to five cells, suggesting that failure to account for

UMI errors can lead to misclassification in single-cell RNA-seq.

Applying hierarchical clustering to the inDrop-seq gene expres-

sion estimates, we observed that 44/2717 (1.6%) of cells clustered

with cells from another time point when using the uniquemethod.

Biological variation in the progression of differentiation may ex-

plain Day 2, Day 4, and Day 7 misclassification events. However,

19/44 events involved undifferentiatedmES cells, suggesting these

misclassification eventswere the result of

low-accuracy quantification estimates

(Fig. 4D). With the application of the

directionalmethod, the rate ofmisclassifi-

cation was reduced to 0.9%, and striking-

ly, all the mES cells were correctly

classified. These results indicate that ap-

plication of the directional method im-

proves the quantification estimates and

can improve classification by hierarchi-

cal clustering.

Discussion

UMIs can be utilized across a broad range

of sequencing techniques; however, bio-

informaticmethods to leverage the infor-

mation from UMIs have yet to be

standardized. In particular, others have

noted the problem of UMI errors, but

the solutions applied are varied (Islam

et al. 2014; Bose et al. 2015). The adjacen-

cy and directionalmethodswe set out here

are, to our knowledge, novel approaches

to remove PCR duplicates when using

UMIs. By comparing these methods to

previous methods with simulated data,

we observed that our methods are superi-

or at estimating the true number of

unique molecules. Of the three net-

work-based methods, directional was the

most robust over the simulation condi-

tions and should be preferred. We note

that the performance of all network-

based methods will decrease as the num-

ber of aligned reads at a genomic locus

approaches the number of possible UMIs; however, this is an in-

trinsic issue with UMIs and not one that can be solved computa-

tionally post-sequencing. For this reason, we recommend all

experiments to useUMIs of at least 8 bp in length and to use longer

UMIs for higher sequencing depth experiments. The simulations

also indicated that very long UMIs actually decrease the accuracy

of quantification when not accounting for UMI errors, since the

UMIs are more likely to accumulate errors. For experiments utiliz-

ing long UMIs, network-based methods therefore show an even

greater performance relative to the unique method. The simula-

tions provide an insight into the impact on quantification accura-

cy and indicate that application of an error-aware method is even

more important with higher sequencing depth. This is perhaps

most pertinent for single-cell RNA-seq, as cost decreases continue

to drive higher sequencing depths.

The analysis of iCLIP and single-cell RNA-seq and data sets es-

tablished that UMI errors are present in all of the data sets tested

and that quantification accuracy could therefore be improved by

modeling these errors during the de-duplication step. The frequen-

cy of UMI indels was far less thanUMI errors, suggesting onlymin-

imal gains would be achieved by also considering UMI indels. We

observed an improved distribution of edit distances for all samples

when using network-based methods to detect PCR duplicates, al-

though theoretical reasoning and empirical evidence suggests

that the extent of the errors depends on the quality of the

Figure 4. UMI-tools improves accuracy and clustering in single-cell RNA-seq. (A) Average edit distances
betweenUMIswith the same alignment coordinates following removal of PCR duplicates using themeth-
ods indicated on the x-axis. Genomic positions with a single UMI are not shown. (Null) Null expectation
from random sampling of UMIs, taking into account the genome-wide distribution of UMIs; (top) SCRB-
seq; (bottom) inDrop-seq. (B) Distribution of Pearson correlation coefficients between log ERCC concen-
tration and log counts for raw reads (UMIs ignored) and unique and directional methods. (C,D)
Hierarchical clustering based on the gene expression estimates obtained using unique and directional.
Color bars represent differentiation stage. (C) SCRB-seq. (D) inDrop-DSeq. The red arrow indicates
mES cells clustering with Day 4 cells.
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sequencing base calls and the sequencing depth, as confirmed by

the simulations.

Modeling UMI errors yielded improvements in single-cell

RNA-seq sample clustering, demonstrating the value of consider-

ing UMI errors. Because iCLIP aims to identify specific bases

bound by RNA binding proteins, data sets have a high level of

PCR duplication. The effects of UMI errors are therefore particular-

ly strong, creating the impression of reproducible cross-linking

sites within a replicate but not between replicates; for example,

only 21% of positions with two or more tags in SRSF7 replicate

1 had any tags in replicates 2 or 3 when naïve de-duplication

was used, but this increased to 59% when the directional method

was used (Fig. 3B). Application of the network-based methods in-

creases the correlation between replicates in all cases, with larger

differences in samples in which PCR duplication was higher.

From the results of the simulation and real data analyses, we rec-

ommend the use of an error-aware method to identify PCR dupli-

cates whenever UMIs are used.

We provide our methods within the open-source UMI-tools

software (https://GitHub.com/CGATOxford/UMI-tools) (Supple-

mental File 1), which can easily be integrated into existing pipe-

lines for analysis of sequencing techniques utilizing UMIs.

Methods

Simulation

To simulate the effects of errors on UMI counts, an initial number

of UMIs were generated at random, with a uniform random prob-

ability of amplification [0.8–1.0] assigned to each initial UMI. To

simulate a PCR cycle, eachUMIwas selected in turn and duplicated

according to its probability of amplification. Polymerase errors

were also added randomly at this stage, and any resulting new

UMI sequences assigned new probabilities of amplification.

Following multiple PCR cycles, a defined number of UMIs were

randomly sampled tomodel the sampling of reads during sequenc-

ing (“sequencing depth”), and sequencing errors were introduced

at a given probability, with all errors (e.g., A→ T, C→G) being

equally likely. The number of true UMIs within the sampled UMIs

was thenestimated fromthe final pool ofUMIsusing eachmethod.

To test the performance of the methods under a variety of

simulation parameters, each parameter was varied in turn. The fol-

lowing values are the range of the parameter values tested with the

value used for all other simulations in parentheses: sequencing

depth 10–400 (100), number of initial UMIs 10–100 (20), UMI

length 6–16 (8), DNA polymerase error rate 1 × 10−3–1 × 10−7

(1 × 10−5), sequencing error rate 1 × 10−1–1 × 10−5 (1 × 10−3), num-

ber of PCR cycles 4–12 (6), and minimum amplification probabil-

ity 0.1–1 (0.8). The maximum amplification probability was set

at 1, with the probability of amplification for each UMI drawn

from a uniform distribution.

Real data

Re-analysis of the iCLIP and single-cell RNA-seq data was per-

formed with in-house pipelines following the methods described

in the original publication with exceptions as highlighted below.

Pipelines are available at https://GitHub.com/CGATOxford/UMI-

tools_pipelines and as Supplemental File 2.

iCLIP

Raw sequencewas obtained from the EuropeanNucleotideArchive

(accessions SRP059277 and ERR039854) (Tollervey et al. 2011;

Müller-McNicoll et al. 2016). Raw sequences were processed to

move the UMI sequences to the read name using “umi_tools ex-

tract”. Sample barcodes were verified and removed, and the adapt-

er sequence was removed from the 3′ end of reads using the reaper

tool from the Kraken package (version 15-065) (Davis et al. 2013)

with parameters “-3p-head-to-tail 2 -3p-prefix 6/2/1”. Reads were

mapped to the same genome as the original publication (mm9

for SRSF data set, hg19 for the TDP43 data set) using Bowtie version

v1.1.2 (Langmead et al. 2009) with the same parameters as the

original publications (-v 2 -m 10 -a).

We measured the rate at which UMIs might represent indel

mutations by noting that an indel in the UMI sequence would

cause the final base of the presumed UMI to match the genomic

base at position −1 relative to the mapping location of the read.

Thus, we examined each UMI at a particular position and tested

for the presence of a UMI that would correspond to a 1-bp deletion

existing at the following base. We compared this to the situation

when the UMIs at the following base were randomized, respecting

the number of UMIs at the position and the genome-wide usage of

each UMI. Enrichment was defined as the count at the unrandom-

ized positions compared to the count at the randomized positions.

We calculated this metric for one replicate of each pull down

from SRP059277. See the Examining_indels notebook in the UMI-

tools_pipelines repository (Supplemental File 2).

Mapped reads were de-duplicated using “umi_tools dedup”

using each of the possible methods and edit distance distribution

produced using the “–output-stats” option. For the clustermethod,

only the “–further-stats” option was used to output statistics on

the distribution of network topology types.

Significant bases were produced by comparing tag count

height at each position compared to randomized profiles (König

et al. 2010), and bases with FDR < 0.05 retained.

Coverage over exons was calculated by collapsing Ensembl 67

transcripts. Where exons overlapped, they were restricted to their

intersection, and the number of reads mapped to significant bases

were counted for each exon. Exons that contained no tags in any

sample were removed (König et al. 2010). Spearman’s ρ between

all pairwise combinations of replicates of pull downs for the

same protein were calculated and averaged for each replicate.

Reproducibility between replicates was calculated as per

König et al. (2010). Bases with a depth greater than two were iden-

tified in the sample in question, and then the fraction of these bas-

es that had one or more tags in other replicates was calculated.

Single-cell RNA-seq

For both data sets, rawdatawas downloaded fromGene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo). For the SCRB-

seq data (GSE53638) (Soumillon et al. 2014), a single Day

0 (SRR1058003) and Day 14 (SRR1058023) sample were ob-

tained. For the inDrop data (GSE65525) (Klein et al. 2015), the

mouse ES cells sample 1 (SRR1784310), mouse ES cells LIF-, 2 d

(SRR1784313), mouse ES cells LIF-, 4 d (SRR1784314), and mouse

ES cells LIF-, 7 d (SRR1784315) samples were obtained. FASTQ files

were extracted using the SRA toolkit. The sequence read filtering,

preparation, and alignment differed for the two data sets. In

both cases, one of the paired end reads contained adapter barcodes

and UMI, and the other read pair contained sequence for align-

ment. In addition, with the inDrop data, the position of the UMI

within the read varied depending on the length of the cell barcode.

For this reason, for both data sets, the UMIs had to be extracted

from the reads with bespoke code rather than using UMI-tools

extract.

For SCRB-seq samples, the UMIwas extracted from read 2 and

appended onto the read identifier of read 1 to generate a single-end

FASTQ. Reads were filtered out if any of the following conditions
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were not met: Phred sequence quality of all cell barcode bases ≥10

and all UMI bases ≥30 and cell barcode matched expected cell bar-

codes. A reference transcriptome was built comprising all human

protein-coding genes (Ensembl v75, hg19) and the ERCC spike-

ins. Because expression quantification was being performed at

the gene level, overlapping transcripts from the same gene were

merged so that each gene contained a single transcript covering

all exons from all transcripts. Reads were aligned to the reference

transcriptome using BWA Aln (Li and Durbin 2009) with the fol-

lowing parameters: “-l 24 –k 2” to set seed length to 24 bp, andmis-

matches allowed in the seed to two.

For inDrop samples, the cell barcode and UMI were extracted

from read 1, and read 2 was written out to a single-end FASTQ file

with the cell barcode incorporated into the file name and the UMI

appended to the read identifier. Only reads containing the adapter

sequence (allowing two mismatches) were retained. For each sam-

ple, only reads containing one of the n most abundant cell bar-

codes were retained, where n was the number of cells in a given

sample. The resulting single-end reads were filtered using Trimmo-

matic v0.32 (Bolger et al. 2014) with the following options

—“LEADING:28 SLIDINGWINDOW:4:20MINLEN:19”—to remove

bases with Phred quality scores below 28 from the 5′ end, scan the

reads in 4-bp sliding windows and trimwhen average quality score

falls below 20, and retain all reads at least 19 bp in length following

trimming. Our alignment procedure is a deviation from the meth-

odusedbyKlein et al. (2015), which involved alignment of reads to

a reference transcriptome containing all transcripts (e.g., not col-

lapsed into one gene model), reporting up to 200 alignments per

read, and dealingwithmultimapping alignments in a downstream

step. As this method was not compatible with our de-duplication

method, we took a simpler approach. A reference transcriptome

was built comprising all mouse protein-coding genes (Ensembl

v78, mm10) plus ERCC spike-ins. Because expression quantifica-

tionwas being performed at the gene level, overlapping transcripts

from the same geneweremerged so that each gene contained a sin-

gle transcript covering all exons from all transcripts. Reads were

aligned to the reference transcriptome with Bowtie v1.1.2 (Lang-

mead et al. 2009) with the following options—“-n1 -l 15 -M 1

–best –strata”—to allow one mismatch, set seed length to 15 bp,

and report only one alignment where multiple “best” alignments

were found. The seed length and mismatch parameters were the

same as the Klein et al. (2015) alignment method.

Following alignment, de-duplication was performed with

UMI-tools dedup with unique, percentile, and directional used in

turn. Both data sets were generated with sequencing methods

that generate reads with different alignment coordinates from

the same initial DNA fragment (SCRB-seq, CEL-Seq). De-duplica-

tion was therefore performed with the “–per-contig” option so

that the UMI and the contig (in this case, gene) rather than the ex-

act alignment coordinates were used to identify duplicate reads.

The “–stats-output” and “–further-stats” options were used to gen-

erate summary statistics for the alignment files before and after de-

duplication. Gene expression was quantified by counting the

number of remaining reads per gene following de-duplication.

Exploratory gene expression analysis

PCA was performed in R (R Core Team 2015) using the prcomp

function. Hierarchical clustering was performed in R using the

hclust function, and heatmaps were generated using the heatmap.2

function from the gplots package. Clustering was performed using

the distance measure (1 − Spearman’s correlation coefficient), and

clustering method “ward.D2”. Because many genes show very low

expression in the SCRB-seq data, the top 100 most highly ex-

pressed genes were selected for clustering.

Software availability

UMI-tools is available from PyPI (package: umi_tools) and conda

(channel: https://conda.anaconda.org/toms; package: umi_tools)

or GitHub (https://GitHub.com/CGATOxford/UMI-tools). Analyses

conducted in this manuscript used version 0.2.6 (archived on

Zenodo as https://doi.org/10.5281/Zenodo.165403 and in Supple-

mental File 1). Analyses were performed using automated Python

pipelines. iCLIP specific analyses were completed using the

iCLIPlib Python library (Supplemental File 2; I Sudbery, in

prep.). Figures were created by Python pipelines or in Jupyter

notebooks using the ggplot2 package (Wickham 2009) unless

otherwise noted. All pipelines, notebooks, and other code, along

with configuration files used, are available from the GitHub repos-

itory (https://GitHub.com/CGATOxford/UMI-tools_pipelines), ar-

chived on Zenodo (https://doi.org/10.5281/zenodo.215974), and

in Supplemental File 2.
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