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Abstract 
UML is the standard visual object modeling language which may be very useful as a 
system design communication language. However, UML as a real-time modeling 
language has limitations. It basically provides a lot of syntax, but not enough semantics. 
The UML Profile for Schedulability, Performance and Time, extends the notation and 
semantics for the real-time domain. It is supposed to overcome the limitations which are 
related to and provide suitability for modeling real-time systems. Since we are mainly 
concerned with the problem of real-time operating system scheduling, the article 
discusses the ability of UML and its profile to determine the schedulability of a planned 
piece of software. 

1 INTRODUCTION 

In real-time systems, the correctness of a computation depends not only on obtaining the 
right result, but also upon providing the result on time. Because of performance 
constraints, typically the design of real-time software is addressed jointly by hardware 
and software components and it is also supported by the features of the operating system. 
The operating system selected for those applications could be a real-time operating 
system (RTOS), specifically designed to schedule real-time tasks. In the last few years, 
real-time processing seems to be the essential part of a operating system, and the 
scheduler could be considered the most important component of a real-time system. This 
way, designing this kind of systems may be considered one of the most interesting tasks 
that a software engineer can perform. 

Object-oriented modeling is naturally fitted for capturing various characteristics and 
requirements of systems. However, the current object-oriented techniques do not provide 
the tools and proper services in order to design all the characteristics of real-time systems, 
particularly those concerning constraints (timing constraints, resource constraints...) and 
non-functional requirements (QoS, security requirements...). The Unified Modeling 
Language (UML) is an industry standard which provides notation for describing object 
oriented models. The language represents a collection of the best engineering practices 
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that have proven successful in the modeling of large and complex systems [UML03]. 
Nowadays, UML is  commonly used as a description language and is more complete than 
other languages in its support for modeling complex systems, being also suitable for 
modeling real-time systems [Björkander03], [Douglass98], [Gomaa00]. UML has been 
also used in a large number of time-critical and resource-critical systems [UMLSPT03]. 
Despite its real-time capabilities [Douglass98b], [Jigorea00], [Küster01],  [Selic98], 
UML has some limitations as well, because it lacks in notations and semantics to 
represent several aspects that are of particular concern to real-time system developers 
[Bichler02], [Lavazza01]. However, it has mechanisms for improving the design phase 
through its extensibility capabilities: the UML profile mechanism provides a way of 
specializing the concepts defined in the UML standard. The UML Profile for 
Schedulability, Performance, and Time was submitted in response to a Request for 
Proposal (RFP) to define a common, standard way in which timeliness and related 
properties could be specified. The Schedulability Modeling is a sub-profile, which is 
intended as a general base for supporting a wide variety of known and future 
schedulability analysis methods [UMLSPT03]. In order to asses UML validity and 
limitations for modeling real-time systems, in this article, we provide a concrete periodic 
task scheduling example in a RTOS. Our goal is to determine how useful UML designing 
real-time task schedulability is [Cottet02]. 

2 REAL-TIME SCHEDULING 

Real-time developers are often most concerned with meeting specific time deadlines for 
tasks. The difficulty in using an operating system for real-time programming is that it 
must be able to guarantee that the worst-case response time to give control to a process 
which needs attention is short enough for the process to handle events on time. If the 
worst-case response time of the process is greater than its deadline, then the scheduling is 
not feasible. One strategy to ensure efficient response time is to prioritize processes so 
that more important processes always receive processor attention if they need it. 

The scheduler is the part of the operating system that responds to the requests sent by 
programs, interrupts and gives control of the processor to those processes. It is the 
component that implements the scheduling algorithms and can also stand alone to act as a 
centerpiece to a program that requires moderation among many different concurrent 
tasks. In this working-mode, each task that a program must accomplish is written so that 
it can be called by the scheduler as necessary. Tasks can be ranked in priority, allowing 
the scheduler to hand control of the processor to each process in turn. 

The major factors that affect real-time system schedulability include [Saiedian04]: 
• The event occurrence pattern, whether the event is periodic or aperiodic. 
• Each event deadline, whether the deadline is less than, equal or greater than its 

period. 
• Task interaction, whether tasks need to synchronize with each other or not. 
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Due to the necessity of considering the schedulability analysis as early as possible in 
software development, its integration with the industry UML standard (schedulability 
analysis can be integrated with object-oriented design) and its schedulability extension 
(UML Profile for Schedulability, Performance, and Time) is a very important issue, 
because it may allow to detect unfeasible real-time architectures at an early stage of 
development, preventing costly design mistakes, accelerating development schedules and 
allowing developers to verify the real-time performance of the design throughout the 
software lifecycle [Martins03]. 

Real-time task model 

A real-time application is specified by means of a set of tasks. Real-time tasks are the 
basic executable entities that are scheduled; they may be periodic or aperiodic, and have 
hard (late data are bad data) or soft (late data may still be good data) real-time constraints. 
A task model is defined by its main timing parameters [Cottet02], [Liu73] (see Figure 1). 
The quality of scheduling depends on the exactness of these parameters, so their 
determination is an important aspect of real-time design. 

• r, task release time, i.e. the triggering time of the task execution request. 
• C, task worst-case computation time, when the processor is fully allocated to it. 
• D, task relative deadline, i.e. the maximum acceptable delay for its processing. 
• T, task period (valid only for periodic tasks). 
• When the task has hard real-time constraints, the relative deadline allows 

computation of the absolute deadline d = r + D. Transgression of the absolute 
deadline causes a timing fault. 

Also, when tasks are allowed to access shared resources, their access needs to be 
controlled in order to maintain data consistency. 

 
 
 
 
 
 

Figure 1. Real-time task model 

Fixed-priority algorithm: Rate Monotonic 

A scheduling algorithm is a set of rules that determine the task to be executed at a 
particular moment [Liu73]. In schedulability analysis, thread priorities are of primary 
concern. Basic on-line algorithms are designed with a simple rule that assigns priorities 
according to the temporal parameters shown in the previous subsection. If the considered 
parameter has a fixed value, i.e., request rate or deadline, the algorithm is static because 
the priority is fixed. The priorities are assigned to tasks before execution and do not 
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change over time. A basic algorithm with fixed-priority assignment is Rate Monotonic 
(RM) [Liu73]: given a set of periodic tasks, assigning the priorities according to the RM 
algorithm means that tasks with shorter periods (higher request rates) get higher 
priorities. RM scheduling is preemptive, i.e., a task can be preempted by a task with 
higher priority. Research has shown that this algorithm solves many of the issues in real-
time systems, including predictable real-time industrial computing systems [Saiedian04]. 

Priority inversion 

In most real-time systems, the tasks are not independent, they synchronize with one 
another in a mutually exclusive manner to share a resource. In preemptive scheduling, 
that is driven by fixed priority and where critical resources are protected by a mutual 
exclusion mechanism, the priority inversion phenomenon can occur [Cottet02]. 

Priority inversion is the phenomenon that causes a high priority task to be delayed 
indefinitely while awaiting a resource that has been held by a low priority task. The low 
priority task is often unable to run due to the presence of an unrelated medium priority 
task. In the situation that results, one finds that the high priority task is effectively denied 
the CPU because of the lower medium priority task. 

In order to prevent the priority inversion phenomenon, the priority inheritance 
protocol can be applied. The basic idea is to dynamically change the priority of some 
tasks. So a task τi, which is using a critical resource inside a critical section, gets the 
priority of any task τj waiting for this resource whenever the priority of task τj is higher 
than that of task τi. 

3 REAL-TIME UML 

UML is a language for expressing the constructs and the relationships of complex 
systems. UML helps in describing and designing software systems, particularly software 
systems built using the object-oriented style [Fowler03]. Although UML is mainly 
intended for general-purpose modeling, it may be also used for real-time systems 
modeling [Douglass04]. The OMG has adopted a standard way to capture timeliness, 
performance, and schedulability properties of real-time systems: UML Profile for 
Schedulability, Performance, and Time. This profile has increased the interest on using 
UML and object-oriented technology to model and implement real-time systems 
[Saiedian04]. The profile does not invent any new techniques, but offers the possibility to 
exchange timeliness properties between UML modeling tools and schedulability analysis 
tools. Since the major tools available in the market place are all based on the RM 
analysis, and the team who developed the profile had experience and expertise 
predominantly with RM analysis, the specification is basically biased towards this 
algorithm. 

The UML Profile for Schedulability, Performance, and Time uses stereotypes, 
tagged values, and constraints with specific names. Although the UML Profile for 
Schedulability, Performance, and Time predefines a number of stereotypes, tagged values 
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and constraints, the user is free to add more, whenever it clarifies of simplifies the 
analysis and design models. 

The stereotypes may extend one or more classes through extensions as part of the 
profile, and enables the use of domain specific terminology or notation. Stereotypes may 
clarify the model to domain experts trying to construct or understand the system. 
However, stereotypes are more useful when they contain special values that apply to that 
kind of stereotype: tagged values. 

A tagged value is a property name-value pair and provides the definition of the kind 
of information added to the stereotype. 

A constraint is a user-defined rule or rule of correctness. We use constraints to 
express restrictions that make sense in our particular domain. 

UML dynamic modeling 

UML dynamic modeling addresses the dynamic aspects of the system. The dynamic 
model, also referred to as behavioral model, describes how objects interact with each 
other. For our purpose, UML allows to model the traces of interactions among many 
objects working together and provide the important information required for 
schedulability analysis, which is captured in sequence or timing diagrams. We can use 
sequence diagrams and timing diagrams to describe scenarios that have timing 
requirements. 

Sequence diagrams emphasize message sequence, so the next message in time is the 
message following the current one on the diagram. Time goes down the page, but usually 
linearity is no implied; that is, further down implies later in time, but the same distance at 
different places in the diagram does not imply the same amount of time. Also, messages 
on sequence diagrams are only partially ordered, so in many cases the relative timing 
between messages is not specified. Sequence diagrams support concurrent semantics, 
which means that the relative ordering of some messages is not specified; we would 
expect that, if one event (such as sending or receiving a message) is marked below 
another one in the diagram, then the second one comes after the first one in absolute time, 
but this is true only if both events belong to the same lifeline, not if they belong to 
different lifelines; therefore, when messages begin on different lifelines, we cannot know 
which one is first in time; and, if messages terminate on different lifelines, we cannot 
assume that they are received in the same sequence as they are depicted, even when they 
are sent in that particular sequence. 

Timing diagrams were not included in UML 1.x., even though electrical engineers 
have used timing diagrams for a long time in the design of electronic state machines. A 
timing diagram is a simple representation with time along the horizontal axis and object 
state or attribute value along the vertical axis. However, timing diagrams are different 
from statecharts, even though we can see the change in state of the different lifelines, 
because statecharts specify all the reactive behavior of the classifier it is specifying, but 
not a particular scenario. In UML 2.0, they are used to show interactions when a primary 
purpose of the diagram is to reason about time. Since timing diagrams are shown against 
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a common clock (depicted with the time ruler on the diagram), messages on timing 
diagram are fully ordered. 

Run-to-completion semantics 

UML defines a run-to-completion semantics for event consumption, which imposes that 
no other event is dequeued before the processing of the previous event is fully completed. 
Events are consumed one by one. That means that the object will not accept new 
incoming events until the previous one has been fully consumed.. 

4 CASE STUDY: TASK SET SCHEDULING SHARING A CRITICAL 
RESOURCE 

The main objective of this article is to check the capabilities of UML for task scheduling 
in a RTOS. We have to determine if the proposed task set is schedulable or not using  
UML models. We therefore analyze the schedulability of an example application with the 
following characteristics: 

• Task set composed of three dependent periodic tasks τ1, τ2 and τ3. 
• Tasks τ1 and τ3 share a critical resource. 
• A task in a critical section can be preempted by a higher priority task which does 

not need the same resource. 
• Deadlines are equal to periods. 
• Preemptive fixed priority scheduling algorithm considered: Rate Monotonic 

(RM). We use descending priority values to indicate higher priority. 
In order to describe in more detail this task set and the critical sections of task τ1 and τ3, 
we add new parameters that specify the three components of Ct: 

• Ct       : task duration before entering the critical section. 
• Ct       : critical section duration. 
• Ct       : task duration after the critical section. 

Then, we have the computation time Ct = Ct   + Ct   + Ct  , so the task set is described by 
the classical parameters given in Table 1 

 
Task ri Ci Di Ti Ct Ct Ct Prior. 
τ1 0 2 6 6 1 1 0 1 
τ2 0 2 8 8 2 0 0 2 
τ3 0 4 12 12 0 4 0 3 

 
Table 1. Case study: a task set sharing a critical resource 

According to the RM algorithm, where tasks with shorter periods get higher priorities, 
task τ1 receives the highest priority and task τ3 the lowest one. 
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For simplicity, we have been considered UML run-to-completion semantics for each 
event consumption. 

The schedule obtained under the RM algorithm is illustrated in Figures 2 and 3 using 
a UML 2.0 sequence diagram and a UML 2.0 timing diagram, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Sequence diagram showing the example task set accordingly to the RM scheduling 
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Analyzing the sequence diagram, we can stereotype this diagram as <<SAsituation>> to 
use it in the context of schedulability analysis, representing a real-time situation. 

In UML 2.0, the notation for an interaction in a sequence diagram is a solid-outline 
rectangle (a rectangular frame). The five sided box at the upper left hand corner names 
the sequence diagram: keyword sd followed by the interaction name, “RM Scheduling”1. 

Each lifeline in the diagram represents an individual participant in the scenario: 
• s1:Scheduler. The stereotype <<SAscheduler>> of the UML Profile for 

Schedulability, Performance, and Time (schedulability modeling) represents a 
scheduler, in this context, a kind of resource broker2 for a execution engine (in our 
domain, a processor) that is responsible for processing acquisition requests from 
clients of the service and, based on the appropriate access control policy for that 
service, it dispenses access to the service. If a service instance is busy, then the 
reply may remain pending until access is possible. Shortly, the scheduler 
determines a schedule that allocates a set of scheduling jobs to its set of execution 
engines. The tag “SAschedulingPolicy” represents the set of rules for assigning 
processor time to a set of scheduling jobs (in our model, ‘RateMonotonic’). The 
class Scheduler has been designated as active where its instance (s1) has its own 
thread of control and can initiate control activity. The  active objects are shown 
with the new notation in UML 2.0: class box with an additional vertical bar on 
either side, instead of the thick border. 

• r1:Resource. The stereotype <<SAresource>> of the UML Profile for 
Schedulability, Performance, and Time (schedulability modeling) represents a 
kind of protected resource (e.g., a semaphore) that is accessed during the 
execution of a scheduling job. It may be shared by multiple concurrent actions 
and must be protected by a locking mechanism. The tag  “SAaccessControl” 
represents the access control policy for handling requests from scheduling jobs (in 
our model, ‘PriorityInheritance’). 

• τ1, τ2, τ3: Task. The stereotype <<SAschedRes>> of the UML Profile for 
Schedulability, Performance, and Time (schedulability modeling) represents a 
unit of concurrent execution (in our domain, a task),  which is capable of 
executing a single scenario concurrently with other concurrent units. The class 
Task has been designated as active where each of its instances (τ1, τ2  and τ3) has 
its own thread of control and can initiate control activity. 

In the general resource modeling of the UML Profile for Schedulability, Performance, 
and Time, an action is defined as a kind of scenario. Therefore, we use the stereotype 
<<SAaction>> of this profile (schedulability modeling) to characterize the behavior of 
each task in our model (we had to add some tags that there were not present in the 
<<SAaction>> stereotype of the schedulability model): 

                                                           
1 The notation within this rectangular frame comes in several forms depending on the specific diagram: 
sequence diagram, communication diagram (which was known as collaboration diagram in UML 1.x), 
interaction overview diagram (new in UML 2.0) and timing diagram (new in UML 2.0) 
2 A broker is an instance of a run-time entity responsible for controlling access to the exclusive services of a resource. 
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• SAblocking, representing the length of time that the task is blocked waiting for 
the resource. 

• SAduration (we have added this tag), representing the total duration of the action 
(assignment of processor to task). 

• SAperiod (we have added this tag, only for periodic tasks), representing the task 
period. 

• SApreempted representing the length of time that the task is preempted, when 
runnable, because the processor is allocated to a higher priority task which is 
ready to run. 

• SApriority, representing the priority of the task from the scheduling perspective. 
• SAready, representing the length of time since the task awakes (beginning of a 

period). 
• SArelDeadline, representing the desired time by which the action should be 

complete. 
• SArelease, representing the triggering time of the task execution request. 
• SAusedResource, representing the list of resources that the task uses, and time 

specifications (this is our interpretation, because the profile does not explain how 
we can represent it): ((resourceName1,durationBCS,durationCS,durationACS), 
(resourceName2,durationBCS,durationCS,durationACS),..., 
(resourceNameN,durationBCS,durationCS,durationACS)), where durationBCS is 
the task duration before entering the critical section, durationCS is the critical 
section duration, and durationACS is the task duration after the critical section. 

• SAworstCase, representing the task worst-case computation time, i.e., the longest 
period of time required for an action to complete its execution, including all the 
overheads (blocking, delay, preemption, etc.). 

We use the new metaclass in UML 2.0, TimeObservationAction, to know when a task 
awakes. A time observation action is an action that, when executed, returns the current 
value of time in the context in which it is executing. It is depicted with the keyword 
“now”. A time observation action lets us determine the absolute deadline that each task 
has to meet, shown in the diagram with time constraints. 

We use also the new metaclass in UML 2.0, StateInvariant, to show the different 
states associated to each lifeline as restrictions. A state invariant is a constraint on the 
state of a lifeline, and this constraint is evaluated during runtime. If the constraint is true 
the trace is a valid trace. It is a possible way to show the state value of a lifeline in the 
sequence diagram. For instance, the state of the resource r1 has to be “Busy” if we want to 
release it. 

Finally, we use notes to display the textual information that we want to emphasize. It 
is assumed that the task set is schedulable because there is not any element indicating a 
timing fault (i.e., the tasks do not miss their deadlines), but it is difficult to check by 
simple inspection of the diagram. 
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Figure 3 illustrates the timing diagram for the proposed scheduling. We have 
represented a longer period of time than in sequence diagram spanning over several 
scheduling cycles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Timing diagram showing the example task set accodingly to the RM scheduling 
 

Again, we stereotype the diagram <<SAsituation>> to use it in our context of 
schedulability analysis. The notation of the rectangular frame and the five sided box is the 
same as in the previous sequence diagram, but now we have different elements in the 
model. We generate the diagram with four lifelines: the resource (r1) and the three tasks 
(τ1, τ2, τ3). In this case, we ignore the scheduler (s1), because it is not necessary for 
understanding the scheduling. Since we can show the change in state of the different 
lifelines over linear time, then we can understand what is happening and there is no need 
to show the message passing. 

Task states used in the timing diagram are explained in Table 2. The resource lifeline 
has two simple states, idle or busy. The timing diagrams let us see how the states change 
over time for each lifeline and it is very useful in scheduling. Therefore, we do not need 
to use the metaclass StateInvariant as a restriction in lifelines to know the state value at a 
particular time. 

The time axis is linear so it clarifies absolute timing of events, state changes and 
relative timing between the different lifelines. Therefore, we do not need to use notes 
indicating when a task awakes (when the state of a task changes to “Ready”), and we do 
not need the stereotype <<SAaction>> representing the length of time in different actions 
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SArelDeadline=(8,’ms’),
SAperiod=(8,’ms’),
SAusedResource=

((r1,2,0,0,’ms’))}

<<SAaction>>
{SApriority=3,
SArelease=(0,’ms’),
SAworstCase=(9,’ms’),
SArelDeadline=(12,’ms’),
SAperiod=(12,’ms’),
SAusedResource=

((r1,0,4,0,’ms’))}

<<SAaction>>
{SApriority=3,
SArelease=(0,’ms’),
SAworstCase=(9,’ms’),
SArelDeadline=(12,’ms’),
SAperiod=(12,’ms’),
SAusedResource=

((r1,0,4,0,’ms’))}

sd RM scheduling

Dormant

<<
SA

sc
he

dr
es

>>
τ 3

:T
as

k

Running

Ready

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514 16 17 18 19 20 21 22

Idle

Delayed

t=now

Busy

Preempted

Dormant

Running

Ready

Delayed

Preempted

Dormant

Running

Ready

Delayed

Preempted

t2=now t4=now t6=now

{t..6+t} {t2..6+t2} {t4..6+t4} {t6..6+t6}

t3=now

{t..8+t} {t3..8+t3}

t5=now

{t5..8+t5}

{t..12+t} {t4..12+t4}

<<SAsituation>>

Blocking due to 
priority inheritance

Resource request 
and direct blocking

<<
SA

sc
he

dr
es

>>
τ 2

:T
as

k
<<

SA
sc

he
dr

es
>>

τ 1
:T

as
k

<<
SA

sr
es

ou
rc

e>
>

r 1
:R

es
or

uc
e

sd RM scheduling

Dormant

<<
SA

sc
he

dr
es

>>
τ 3

:T
as

k

Running

Ready

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1514 16 17 18 19 20 21 22

Idle

Delayed

t=now

Busy

Preempted

Dormant

Running

Ready

Delayed

Preempted

Dormant

Running

Ready

Delayed

Preempted

t2=now t4=now t6=now

{t..6+t} {t2..6+t2} {t4..6+t4} {t6..6+t6}

t3=now

{t..8+t} {t3..8+t3}

t5=now

{t5..8+t5}

{t..12+t} {t4..12+t4}

<<SAsituation>>

Blocking due to 
priority inheritance

Resource request 
and direct blocking

<<
SA

sc
he

dr
es

>>
τ 2

:T
as

k
<<

SA
sc

he
dr

es
>>

τ 1
:T

as
k

<<
SA

sr
es

ou
rc

e>
>

r 1
:R

es
or

uc
e



 
 
 
 
 
 

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 101 

as in the sequence diagram, because we can use the time axis to know it (we only use the 
stereotype <<SAaction>> to characterize the task set parameters). 

We use notes to emphasize some aspects of the schedule, for instance, when task τ2 
is blocked due to priority inheritance. 

Once more, we use the metaclass TimeObservationAction to control when a task 
awakes, and we use this time value to set the constraints (task deadlines). Now, since we 
have the time along the horizontal axis, we can check the scheduling and see that the 
schedule is feasible or not. 

 

State Description 
Dormant The task is set up. 
Ready The task awakes. 
Preempted When running, the task is preempted. 
Delayed The task is waiting for a signal or a resource. 
Running Assignment of processor to task. 

 
Table 2. Task states 

 

For our purpose, the timing diagram view is probably more adequate than the sequence 
diagram view, but the last one offers another point of view which is quite interesting as 
well. It is therefore better to use the two diagrams in order to have both views. However, 
even after having modeled and understood the schedule with the two diagrams, we can 
not assure that the schedule is feasible, i.e., the two diagrams themselves are not 
sufficient for deciding if the task set is schedulable or not: we do not know if we will 
have enough resources to perform the schedule (available processor, memory space...), 
and we should apply the mathematical feasibility model [Cottet02] to the diagrams. 
Since, in our case study, the tasks are not independent, then we have to consider a task set 
sharing resources. Thus, we have to calculate the worst-case response time for each task 
by including the blocking delay (assessment of a task response time): the utilization 
factor of the processor has to be low enough to let the task set to be scheduled, whatever 
the blocking time due to the shared resources 

5 CONCLUSIONS 

UML is intended to be a well-defined language which can be productively used with a 
wide range of different systems. UML 2.0 represents the biggest change that has 
happened yet to the UML. The new version is an incremental improvement to the UML 
1.x standards, improving the clarity of the UML for capturing architectures and 
improving its scalability. UML and the profiles provide a mechanism to model specific 
features of some domains, and although the user is free to add notation to UML diagrams 
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through the profiles, it would be very important that those contributions be part of the 
standard in order to enable the exchange of models between the different modeling tools. 
In this way, any developer could take advantage of it. 

With respect to real-time systems, UML 2.0 has introduced options to manage the 
complexity of interactions and, relating to time, the new type of diagram, timing diagram, 
provides an expressive way to detail change in value or state of the different classifiers 
and attributes. UML and the UML profile for Schedulability, Performance, and Time 
allow models where information related to time aspects may be annotated. Thus, software 
engineers may be able to specify and design their real-time systems with UML models 
which could be the formal description of the system, so that the different models could be 
analyzed in order to assure that they accomplish all the properties needed in the system. 

Timing diagrams and sequence diagrams are the two kinds of interaction diagram 
more adequate to model task scheduling. Thus, we recommend to use both diagrams 
when analyzing schedulability. A timing diagram is similar to a sequence diagram in that 
they both show scenarios of collaborations, but they are not the same at all. Although 
timing diagrams do not show any information beyond that available in annotated 
sequence diagrams, the absolute timing of events, state changes and the relative timing 
among the lifelines is clearer and more readable than on sequence diagrams, even when 
explicit timing constraints are added. 

Since deadlines are of critical importance, as opposed to  message sequence, we 
think that perhaps it is therefore better to use timing diagrams instead of sequence 
diagrams. However, each diagram provides different points of view to the same scenario 
and both could be very useful. 

However, although the resulting models are quite complete and facilitate 
communication and understanding, the diagrams themselves are not sufficient to indicate 
if we have a feasible schedule. We would need to apply the mathematical feasibility 
model to the UML diagrams. 

Also, as we mentioned before, since the UML profile for Schedulability, 
Performance, and Time is clearly biased towards rate monotonic analysis, it would be 
interesting to extend the specification to comprise cyclic scheduling. Static cyclic 
scheduling is easier to implement and will be sometimes more efficient than fixed priority 
scheduling, for instance, for control related tasks with strict requirements on small timing 
variations: reaching the same performance level with fixed priority scheduling may 
require higher sampling rates or more sophisticated control algorithms. Event handling 
could be another example where static cyclic scheduling should be recommended 
[Lonn99], [Drapper99]. 
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