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Abstract. Component-based software engineering is increasingly be-
ing adopted for software development. Currently, components delivered
by component providers only include specifications of the interfaces.
This imposes significant difficulties on adequate testing of an integrated
component-based system. Without source code, many testing techniques
will not be applicable. The Unified Modeling Language (UML) has been
widely adopted in component-based software development processes. Many
of its useful tools, such as interaction diagrams, statechart diagrams, and
component diagrams, characterize the behavior of components in various
aspects, and thus can be used to help test component-based systems. In
this paper, we first analyze different test elements that are critical to test
component-based software, then we propose a group of UML-based test
adequacy criteria that can be used to test component-based software.
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1 Introduction

In his survey, Allen predicted that by the year 2003, up to 70% of all new
software-intensive systems will heavily rely on component-based software [2]. A
component-based software system often consists of a set of self-contained and
loosely coupled components that allow plug-and-play integration. The compo-
nents may have been written in different programming languages, execute on
various operational platforms, and distributed across vast geographic distances;
some components may be developed in-house, while others may be third party
or commercial off-the-shelf components (COTS), whose source code may not be
available to developers. These component-based software characteristics may fa-
cilitate fast-paced delivery of scalable and evolvable software, as well as improve



the quality of the final products. However, these characteristics also introduce
new problems for testing component-based software systems [17].

This research assumes that individual components have been thoroughly
tested by component providers. But when integrating them in a new context,
unexpected results may occur [17]. Therefore, adequate integration of reusable
components is the key to the success of a component-based software system. Test
methodologies are often categorized into two types: black box and white box.
Black box approaches, such as functional testing and random testing, do not re-
quire knowledge of the implementation details. But when applied to component-
based software, the use of black box approaches may encounter problems similar
to those found in the testing of traditional programs, for example the complex-
ity of the actual combination of functions presented in the real system. Thus,
white box approaches are often used to complement functional testing to en-
sure the quality of the programs. However, component-based software has two
properties, heterogeneity and implementation transparency (the implementation
is not available), which together make it difficult to directly apply traditional
white-box techniques to test component-based software.

To overcome these difficulties, we need to precisely represent the behavior
of components without source code. The Unified Modeling Languages (UML)
[5] is a language for specifying, constructing, visualizing, and documenting ar-
tifacts of software-intensive systems. There are several advantages to adopting
the UML. First, the UML provides high level information that characterize the
internal behavior of components, which can be processed efficiently and used
effectively when testing. Second, the UML has emerged as the industry stan-
dard for software modeling notations and diagrams are available from many
component providers. Third, the UML includes a set of models that can pro-
vide different levels of capacity and accuracy for component modeling, and thus
can be used to satisfy various needs in the real world. In the UML, collaboration
diagrams and sequence diagrams are used to represent interactions among differ-
ent objects in a component. This research used interaction diagrams to develop
interaction graphs that are used to evaluate the control flows of components.
Statechart diagrams, on the other hand, are used to characterize internal be-
haviors of objects in a component. Based on the statechart diagram, we further
refine the dependence relationships among interfaces and operations that are
derived from collaboration diagrams.

Section 2 of this paper briefly describes background of component-based en-
gineering and software testing. Section 3 introduces a test model for component-
based software, and various UML-based test elements are described in section
4. Related research in the area of testing component-based software systems is
discussed in section 5, with conclusions in section 6.



2 Background

The component-based software literature has introduced a number of new terms,
some of which are still used inconsistently. This section of the paper defines these
terms as used in this paper.

There are several definitions of software components. Szyperski and Pfister [7]
provide the distinctive nature of components from a structural perspective: A
component is “a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed inde-
pendently and is subject to composition by third parties.” Brown [4] defines a
component in a broader aspect: A component is “an independently deliverable
piece of functionality providing access to the services through interfaces.”

Interfaces are the access points of components, through which a client com-
ponent can request services declared in the interface and provided by another
component. Each interface is identified by an interface name and a unique in-
terface ID. Each interface can include multiple operations, where each operation
performs one specific service. For clarity, we assume that each interface only
includes one operation, and the references to the interface and to the operation
are identical.

We define an event as an incident in which an interface is invoked in response
to the incident. We consider only external events in which the responding entity
is external to the invoking entity. The incident may be triggered by a different
interface, through an exception or through an explicit user input (such as pushing
a button). Some exceptions and user actions that require other components
to respond may not occur in any interface of a component. To simplify our
discussion, we define a virtual interface to account for all these possible incidents.
Therefore, in general, we define an event as an invocation of an interface through
another interface.

3 Component-based Test Methodology

This section introduces a model for testing component-based software, and then
several specific criteria for generating.

3.1 A test model for component-based software

When testing component-based software systems, we assume that each individ-
ual component has been adequately tested. Therefore, the key to the success of
a reliable software system is to ensure the accuracy of interactions among the
components.

Components may interact with other components either directly or indirectly.
Direct interaction includes invocation of the interfaces exposed by the compo-
nents, an exception, or a user action triggering an event. Indirect interaction is
through a sequence of events. We define four key elements that can model the



characteristics of the interactions. These elements must be considered during
component-based testing.

Interfaces: Interfaces are the usual way to activate components. Therefore,
it is necessary during integration and system testing to test each interface in the
integrated environment at least once.

Events: Testing interfaces provides confidence that every interface that can
be invoked during run time has been exercised at least once. This scenario is
similar to the traditional test criterion that requires every function or procedure
to be tested at least once. However, an interface invoked by different components
within different contexts may have different outcomes. Thus, to observe possible
behaviors of each interface during runtime, every invocation of the interface
needs to be tested at least once. Moreover, some events that are not triggered
via interfaces may have an impact on the components, which need to be tested
as well. Therefore, every event in the system regardless of its type needs to be
covered by some test.

Context-dependence Relationships: Interfaces and events testing ensure that
every interaction between components is exercised. However, when execution
of a component-based software system involves interactions among a group of
components, the sequence of event triggering may produce unexpected outcomes.
To capture the inter-relationships among events, we define a context dependence
relationship that is similar to the control flow dependence relationship in tra-
ditional programs. An event e2 has a context-sensitive dependence relationship
with event e1 if there exists an execution path where triggering e1 will directly
or indirectly trigger e2. For a given event e, it is necessary to test e with every
event that has a context-sensitive dependence relationship with e. This allows
the tester to observe the possible impact of execution history on the outcome of
the execution of e.

Context-sensitive dependence relationships not only include direct interac-
tions, but also the indirect collaboration relationships among interfaces and
event that occur through other interfaces and events as well. Therefore, testing
context-sensitive dependence relationships may serve to identify interoperability
faults caused by improper interactions among different components.

Content-dependence Relationships: An invocation of an interface of a com-
ponent results in an invocation of a function that the component implements.
Therefore, when a function declared in an interface v1 has a data dependence
relationship with another function declared in another interface v2, the order
of invocation of v1 and v2 could impact the results. A content-dependence re-
lationship exists between two interfaces v1 and v2 if the two interfaces have a
data-dependence relationship. An interface encapsulates one or more signatures,
where each signature is a declaration of a function. When an interface is invoked,
one or more functions will be executed to perform the requested service. Thus,
the interface dependence relationship can be derived from the function depen-
dence relationship, which we have shown elsewhere to be useful information in
object-oriented class testing [6]. More precisely, a function f2 depends on a func-
tion f1 if and only if the value of a variable defined in f1 is used in f2. Therefore,



a content-dependence relationship is formally defined as follows: An interface v2

has a content-dependence relationship on interface v1 if and only if v1 contains
the signature of f1, v2 contains the signature of f2 and f2 depends on f1.

Both the direct interaction among interfaces and events, as well as the context-
dependence relationships, should be included in the control flow interactions of a
component-based system. Content-sensitive dependence, on the other hand, can
provide valuable additional information in generating test cases and detecting
faults.

3.2 UML-based integration testing for component-based software

The test model presented in the previous section has presented a way to test
component-based software. However, the implementation of the model faces a
technical challenge; how to efficiently obtain the test elements to perform test-
ing, particularly when the source code of the components is not available for
COT components. Without source code, we can obtain the specifications of in-
terfaces and events, however, the information needed for context-dependence and
content-dependence relationships is not available. These two elements are likely
to be effective in detecting component integration faults. Therefore, it is impor-
tant to develop a methodology to obtain these two elements from the available
resources other than the source code. We use the Unified Modeling Languages
(UML) [5, 11] to capture component relationships.

In this section we describe how to use the UML diagrams to precisely derive
context-dependence and content-dependence test elements. In the next section
we explore some practical issues of implementing this test model.

Context-dependence relationships When integrating components, program-
mers typically focus on how to specify component interfaces and events. But
how these interfaces and events will interact, and their potential risks to the in-
tegrated system, are usually not considered. Context-dependence relationships,
which model how interfaces and events interact, can be derived through one of
the following approaches:

1. Collaboration/sequence diagram based approach.
UML collaboration diagrams and sequence diagrams focus on interactions among
various objects within a use case (we refer to a use case as a component.) In
UML sequence diagrams, interactions are ordered by time while in collaboration
diagrams, the same information is presented with the interactions ordered in
numeric message sequence order.

Figure 1 describes a partial collaboration diagram and one sequence dia-
gram of an ATM server component. The sequence diagram only shows one of
the possible scenarios ordered by time while the collaboration combines all sce-
narios in numbered order. In Figure 1, W5, W5A, and W5B demonstrate three
alternatives that can occur after the message W4 is passed by the Withdrawal
Transaction Manager object to the ATM Account object.

With the collaboration diagrams, we can refine our context-dependence re-
lationships to be all possible sequences, as shown in Figure 1 in a collaboration
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Fig. 1. Collaboration and Sequence Diagrams of an ATM Server Component

diagram that could be possibly invoked to precisely model how interfaces and
events interact with each other.

2. Statechart based approach.
The collaboration diagram itself is not always sufficient to model behaviors
of the interactions of components. The behavior of a component can be more
precisely modeled by combining the collaboration diagram with statechart dia-
grams, which are used to describe state-dependent control objects in components.

For example, Figure 2 shows a collaboration diagram and statechart. As we
can see, the sequence “2A - 2A.1 - 2A.2, 2A.2a - 2A.3, 2A.2a.1” (2A.2 and 2A.2a
are two concurrent messages) is the only sequence that allows the user to cancel.
Nevertheless, this sequence can happen in different contexts, such as the user
canceling the current transaction after correctly inputting the PIN, or the user
canceling the current transaction after incorrectly inputting the PIN. With the
help of the statechart diagram, which is shown in Figure 2(b), we can clearly see
that the cancelation sequence needs to be validated in three different scenarios:
(1) Waiting for PIN, (2) Validating PIN and (3) Waiting for Customer Choice.

The interactions among interfaces and events can be further refined by using
the statechart diagram. Given a statechart diagram, our context-dependence re-
lationships will have to include not only all possible sequences in a collaboration
diagram, but all possible combinations of the sequences that are shown in the
statechart diagram as well.
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Fig. 2. Collaboration Diagram and Statechart for Validate PIN

Content-dependence relationships Context-dependence relationships reflect
control sequences of objects in a component with respect to single interactions
between actors and the component. Nevertheless, content-dependence relation-
ships among different interactions cannot be obtained solely from control flow
information. For example, consider Figure 3, which shows an extended ATM
server component. The component includes two interfaces - withdraw and de-
posit. Context dependence relationships may depict the interactions within each
interface, but the content-dependence relationships across the interfaces cannot
be obtained. For instance, the withdrawal interface depends on deposit inter-
face because the deposit transaction will modify the account entity, while the
withdrawal transaction will use that entity to verify whether there is enough
money in that account. Unfortunately, content-dependence relationships are not
directly specified either in the program or in any UML diagrams. To specify
the content-dependence relationships, further processing of UML diagrams is
necessary. We suggest two approaches below.

1. Collaboration diagram approach.
UML collaboration diagrams and sequence diagrams demonstrate interactions
of objects within a component. When interactions involve entity classes, col-
laboration diagrams can demonstrate the dependence relationships between two
interactions. For example, Figure 3 shows message Bj flowing into entity class
Account, and no information flows out of Account. Generally speaking, mes-
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sage Bj will update information in Account objects. We define this to be an
update message. On the other hand, messages Ai and Ai+1 flow into and out
of Account, which indicates that information of Account is retrieved. These are
called retrieve messages. Therefore, interactions that include messages Ai and
Ai+1 will depend on sequences that includes message Bj . In general, an interface
I depends on interface I

′
if and only if a message sequence invoked by I includes

an update message, and another sequence invoked by I
′
includes a corresponding

retrieve message.
2. Statechart diagram approach.

Statechart diagrams can demonstrate content dependence relationships from a
state transition point of view. The rationale lies in the fact that if interface I1

depends on I2, the state of the component is S1 after the execution of I1. When
executing interface I2, the state transitions from S1 to S2 depend on state S1

and the invocation I1. To model this type of content dependence relationships,
we eliminate dependence relations that are not effective:

– If the component remains in the original state S1 after the invocation of
I1, the dependence relationship does not affect the behavior of the software;
therefore the dependence relationship is not effective.

– From a state S, if the invocation of I2 will always bring the state to S
′
, it

does not matter if interface I1 is invoked before I2 or not. This indicates
that the state transformation is not caused by the dependence relationships.

UML-based test adequacy criteria Given the UML-based context depen-
dence relationships and content dependence relationships, the test criteria that
were provided in our test model has to be modified follows:

1. Each transition in each collaboration diagram has to be tested at least once.
2. Each valid sequence in each collaboration diagram has to be tested at least

once.
3. Each transition in each statechart diagram has to be tested at least once.
4. Each content-dependence relationship derived from each collaboration dia-

gram has to be tested at least once.



5. Each effective content-dependence relationship derived from each statechart
diagram has to be tested at least once.

4 Related Work

The research results in this paper follow a small but growing body of work
in component-based software testing. Weyuker [16] developed a set of axioms
to help determine test adequacy and used them to evaluate several program-
based testing techniques. Perry and Kaiser [14] further applied these adequacy
axioms to object-oriented software and suggested that in the presence of object-
oriented features, in particular inheritance and multiple inheritance, subclasses
and superclasses require special attention during testing. Stemming from these
studies, we developed a class testing technique [6] for testing object-oriented
classes and programs.

In component-based testing, Rosenblum [15] proposed a formal model for ad-
equate testing of component-based software, in which a “C-adequate” criterion
is defined to determine the adequacy of a test set for a given component-based
software system as well as for a single component. A number of concepts [8, 9,
18] have been proposed to analyze the characteristics of component-based soft-
ware and suggest ways to test component-based systems. Harrold et al. [9] pro-
posed a testing technique that is based on analysis of component-based systems
from component-provider and component-user perspectives. The technique was
adapted from an existing technique [10], which makes use of complete informa-
tion from components for which source code is available and partial information
from those for which source code is not available. They further extended their
work by proposing a framework that lets component providers prepare various
types of metadata such as program slicing [13]. The metadata was then used
to help test component-based systems. Ghosh and Mathur [8] discussed issues
in testing distributed component-based systems and suggested an interface and
exception coverage-based testing strategy.

The UML is increasingly being used to support the design of component-
based systems [5, 11]. Some of the UML diagrams have also been used to auto-
matically generate test cases. Offutt and Abdurazik first proposed a mechanism
that adapted state specification-based test data generation criteria to generate
test cases from UML statecharts [12]. They subsequently extended their work
to generate tests from UML collaboration diagrams [1]. Similarly, Briand and
Labiche suggested using class diagrams, collaboration diagrams, or OCL to de-
rive test requirements[3].

5 Conclusions and Future Work

This paper has presented a new model for describing component-based software
and a related approach for testing. The model uses different UML diagrams
to model the internal behavior of third party software components. When the
source is not available (as is usually the case), these behavioral descriptions



can be used as a basis for deriving tests that can help ensure the quality of
the component-based system. Our ongoing research directions on this topic are
empirical studies of comparisons of the effectiveness of our approach with other
approaches, the development of a tool to support automation of the technique,
and enhancement of the technique for resolving problems caused by distributed
characteristics such as synchronization.
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