UML for Behavior-Oriented Multi-Agent
Simulations

Christoph Oechslein, Franziska Kligl, Rainer Herrler, and Frank Puppe

Department for Artificial Intelligence,
University of Wiirzburg
Am Hubland, 97074 Wiirzburg

{oechslein,kluegl,herrler,puppe}@informatik.uni-wuerzburg.de

Abstract Developing multi-agent simulations seems to be rather straight
forward, as active entities in the original correspond to active agents in
the model. Thus plausible behaviors can be produced rather easily. How-
ever, for real world applications they must satisfy some requirements
concerning verification, validation and reproducibility. Using a standard
framework for designing a multi-agent model one can gain further advan-
tages like fast learnability, wide understandability and possible transfer.
In this paper we show how UML can be used to specify behavior-oriented
multi-agent models. Therefore we focus on activity graphs and the rep-
resentation of different forms of interactions in these graphs.

1 DMotivation

A multi-agent model captures the behavior of a system on the level of the active
entities and maps them onto simulated active entities. Thus, on a rather coarse
grain level of analysis, it is far more intuitive to describe the model in terms
of agents and roles, using goals or activities, than to abstract it into a set of
formulas. However, for executable simulations the concrete refinement and im-
plementation exhibits properties that are rather difficult to deal with. The step
between the model concept and the running experiment is by no way trivial:

— The modeler has to bridge the gap between top-down analysis and bottom-
up implementation.

— Concurrent interactions form a central part of multi-agent systems. However,
their concrete implementation is rather tricky.

— Complex agent behavior in sophisticated environments leads to rather large
models that are effortful to design and implement in a consistent way.

— A huge amount of parameter has to be fixed for an executable simulation.

The consequence is that tools and frameworks are essential for the applicability of
multi-agent simulation as a method for analyzing systems. The ideal framework
for modeling would be easy to learn, generates understandable representation,
provides all necessary primitives and constructors, and scales for concrete do-
mains. In addition to these methodological points, the representation of a model

based on a framework should be clear and understandable to a wide group of
people working in the same domain. This leads to the overall hope that models
in multi-agent simulation can also satisfy the strong requirements concerning
verification and validation that traditional simulation models are exposed to.

A prominent example for an already established framework is UML (” Unified
Modeling Language” [1]). Besides multiple diagram types for the specification
of structure and dynamics, UML provides with OCL (”Object Constraint Lan-
guage”) a formal language for attaching additional information, like invariants,
constraints, etc. to the graphical specification.

In the following we therefore want to introduce behavior-oriented multi-agent
models in the next section. After a short survey of existing frameworks in the
area of agent-oriented simulation and software-engineering we are presenting the
application of UML for our problem. This paper ends with a conclusion and short
sketch of further works.

2 Behavior-Oriented Multi-Agent Simulation

A multi-agent model in general can be seen as a simulated multi-agent system
that exists in a simulated environment [2]. This is a natural form of modeling, es-
pecially for societies, as active entities in the original system are also interpreted
as active ones in the model.

Existing multi-agent models focus on different aspects of a society from the
development of dependence networks based on agents beliefs to a huge amount
of massively interacting simple entities. Instead of trying to develop a plausi-
ble framework for human reasoning in interacting groups or organizations, we
restrict ourselves to models that are simple enough to be validate-able, but on
the other side capture rather sophisticated behaviors at the agent level. We call
these multi-agent models behavior-oriented as they do not focus on the internal
reasoning processes based on beliefs, goals or desires, but on the agents behavior
and the effects of their actions and interactions. This focus is motivated by our
primary application domain: the simulation of social insects; However, several
other applications show the broad applicability of our approach.

Behavior-oriented multi-agent models follow two main concepts that help to
structure the complete multi-agent simulation supporting extensive models with
non-trivial behaviors and a huge amount of entities: The agent body as a set of
sorted state variables and rule-based behavior representation that is augmented
by structures like primitive and abstract activities.

Associating task fulfilment with activities and incorporating organizational
concepts like roles additionally facilitates the development of complex society
models. Although these concepts are already implemented into a modeling and
simulation environment, called SeSAm (”Shell for Simulated Multi-Agent Sys-
tems” [3]), this framework is based on a proprietary specification language. This
leads to the problem that our work still lacks a more generally applicable method
for developing multi-agent simulations. Using a standard framework will have the

additional advantage of generating models that are more likely to be reproducible
by a modeler familiar with that standard.

Our overall goal is hereby to support the construction of models that sat-
isfy the high standards of quality — concerning validation and verification — in
standard simulation models. Using a standard framework for the step between
concept and implementation is a major part of a viable solution.

3 Related Work: Modeling Frameworks and Formalisms

There are already lots of frameworks, tools, and languages for multi agent simula-
tion. Approaches range from schemata and systems originating in the simulation
area to languages for modeling multi-agent systems developed in Distributed Ar-
tificial Intelligence (for a more complete survey, see [2]).

3.1 Existing Frameworks Developed in the Simulation Area

Multi-agent simulation can be seen as an enhancement of standard individual
oriented simulation: Agents can be taken as equipped with more sophisticated
behavior in comparison to the individuals in process-oriented models or cellular
automatons. In the line of this interpretation the approaches from agent-oriented
simulation tackle more the management of the internal processes and inter-
nal agent structures. Frameworks like AgedDEVS (”agent-oriented DEVS” [4])
or PECS (”Physis, Emotion, Cognition, Social Status” [5]) provide schemata
for the internal state structure of an agent. They are comparable to ”tradi-
tional” agent architectures [6], but refer to sets of state variables. Another
level of support can be found in modeling and simulation environments: e.g.
in AgentSheets [7] (www.agentsheets.com) and its visual programming or in
Swarm [8] (www.swarm.org) and its focus on animation and evaluation tools.
The latter tackle just the concrete implementation problem and not the gap
between concept and implementation.

3.2 From Agent-Oriented Software Engineering

Frameworks for building multi-agent systems are also a central issue in the area
of agent-oriented software-engineering. Existing schemata provide support on
different levels and for different stages of development. Methods like GAIA [9]
or MAS-CommonKADS [10] concentrate on the analysis and design task by
providing means for capturing views onto and models of the agent system in a
top-down manner. The actual implementation is not tackled; the user is directed
to use standard frameworks, like UML.

On the other hand, declarative languages and schemata for the specification
of multi-agent systems exist. These start bottom-up from the agents and their
behavior. If these specifications are executable — like in ConcurrentMetateM [11]
— these languages can be used for simulation as well. In the area of social simu-
lation, an analogous parallel rule-interpreting system, SDML (”Strictly Declar-
ative Modeling Language” [12]), was developed. However, the problem is that

these frameworks operate just on the complete agent level — there is no sup-
port for structuring actions and interactions. The behavior of the agents itself is
formulated using an unstructured set of rules.

A specification language that is meant to bridge the gap between theoretical
models and implemented systems is the Z-Framework of M. Luck et al. [13].
The Z schemata of "object”, ”agent” or ”autonomous agents” are more and
more extended to capture different forms and components of agent architectures
or organizational structures like dependence networks [14]. The major criticism
of this approach is its drawbacks in the formulation of dynamic aspects. How-
ever, the major advantage is the direct transformation into object-oriented class
structures for the single agents.

Agent-oriented software engineering in general can be seen as an extension
of object-oriented analysis, design and implementation. Thus the usage or even
enhancement of standard object-oriented techniques is a proximate idea. In the
area of social simulation a suggestion was made for a general framework for
multi-agent simulation in social science, called Massif [15]. This framework uses
(standard) UML sequence diagrams for describing interactions. Agent UML [16]
on the other side focusses on the enhancement of these sequence diagrams as they
are not apt for representing more sophisticated interaction protocols due to their
message-based structure. Agent UML provides additional means for specifying
negotiations with multiple, concurrently active participants. But for the purpose
of designing behavior-oriented multi-agent simulations standard UML is almost
satisfying, as we want to show in the following sections.

4 Using UML for Multi-Agent Simulations

4.1 Class Diagrams

A class diagram for an agent class shows the external view on this kind of agent.
The external view is divided into the accessible part of the agent memory, i.e. the
state variables that are perceivable for other agents, and the interaction methods.
The methods are named and contain its interaction partner, which for example
is the special class Environment, as arguments. Methods specifying interactions
can also be documented using the activity graph associated with that agent
class. For completely describing the interaction situation the diagrams of the
other agents, that participate in the interaction situation, are needed.

4.2 Activity Graphs

General Components An activity graph in UML shows the behavior depicted
as activity flow of objects in an object-oriented program. The main nodes in an
activity graph are actions or activities. The latter are compositions of actions.
Additionally there exist state nodes that are known from the UML state graph.
State graphs can be seen as a specialization of an activity graph and are used in
UML for describing state changes of a single object in contrast to activity changes

concerning many objects in an activity graph. Other nodes are signal receiving
and sending nodes. These nodes are important for modeling interactions and are
explained later in more detail.

Transitions between nodes are defined based any form of conditions. One
frequently used condition for a transition from an activity consists of the termi-
nation of this activity together with the activation of another state or activity.
The modeler may use a rhombus node to show that there is an explicit decision
in determining the next state or activity.

Activity Graphs for Multi-Agent Models As in the design of a multi-agent
system in general, one can use activity graphs for describing the activity flow of
one or more simulated agent classes. The transitions are conditions on external
perceptions and internal state values (also goals, desires, and intensions if the
agent architecture uses such concepts).

If there is more than one transition from a node, but the associated conditions
form a crucial part of the model, then an explicit decision node should be used.
As we observed in most of our applications, domain experts are using state-like
behaviors (e.g. the IDLE "behavior”) in their model to capture e.g. waiting.
These can be better represented by state nodes.

There exist two special nodes: the start node and the end node. The agent

starts its behavior at the start node, which entails no actions or activities and no
incoming transitions. A filled circle depicts this start node. In an analogous way
the end node is a dead end for the behavior of the agent, i.e. it has no outgoing
transitions and can be interpreted as the terminating state of the agent. The
end node is a filled circle surrounded by another unfilled circle.
This usage of UML activity graphs is straightforward, not only for describing the
modeled behavior but also for generating the executable code of this agent. How-
ever, relationships and interaction between agents have to be explicitly shown.
These involve agent-agent and agent-environment interactions. Thus a combi-
nation of activity graphs is necessary. How this is be managed is shown in the
following.

Interaction Types Until now relationships between the behavior of several
agents are hidden in activities in different graphs. In the following we are ex-
amining possible interaction types and suggest how these interactions can be
expressed in (standard) activity graphs:

In general possible interaction forms are direct or indirect (via the environ-
ment) interactions. For combining activity graphs a further distinctions is nec-
essary: whether the receiver may be another instance of the same agent class or
an instance of another agent class or a combination of these. Thus an interaction
may have one of the following forms:

a) Object flow is the prominent method for indirect interactions. One agent
creates a resource object, that is perceived by other agents, that in conse-
quence adapt their behavior due to the modified environmental configura-
tion. If a pheromone trail is implemented by pheromone resource objects,

then depositing and following of trails corresponds to exactly this kind of
interaction.

b) Agent creation is an important component of dynamic, variable structure
model. An example is the production of offsprings frequently used in biolog-
ical models.

¢) Manipulation of public instance variables is the most technical form. It ex-
hibits three subtypes: The sending agent modifies values either of itself, of a
direct receiver or an intermediary. The first kind represents some sort of in-
direct broadcast, the sender changes its shape for the agents that are able to
perceive it. Manipulating the variables of a receiver corresponds to directed
interaction. If the changes concern variables of the environment we can ob-
serve a special case. It can be both directed and broadcast-like depending
whether the environment serves as a communication medium or not.

d) The standard form of interaction is the synchronous and directed sending
and receiving of messages. This can be part of complex negotiation protocols.
A special form is broadcast communication in an explizit and synchronous
form.

These four kind of interactions can be represented in activity graphs based on
sending and receiving nodes:

Specification of Interaction in Activity Graphs UML provides a facility
for describing these interactions via signal sending and receiving nodes in activ-
ity graphs. Inserting these nodes into an activity graph is straightforward, but
additional information concerning the concrete interaction might be necessary.
Adding this enhanced specification to the sending-receiving node combination is
sophisticated and depends on the interaction type. To clarify the sender and the
receiver we draw a link between these two nodes and attach an additional node to
this link. This is an optional procedure in UML but we want to restrict ourselves
to establish a transparent representation. In detail the form of this additional
node depends on the interaction types (see figure 1 for an illustration):

a) Object flow in general is specified by signal sending and receiving nodes and
a link that is annotated by the class diagram of the ”exchanged” objects.

b) Agent creation is represented by a link between the sender node and the
start node of the new agent’s activity graph. This is a special case since no
receiver node is addressable for the created agent.

¢) For variable manipulation we propose to augment the link with a documen-
tation node that contains the necessary information about the sender, the
receiver and the involved variable. Unfortunately a documentation node in
standard UML just contains of unstructured text. An additional node type
may be more appropriate. As we are restricting ourself here to standard
UML, we postpone suggestions about additional node types to other papers.

d) Interaction via direct messages can be specified by both object flow links
or documentation annotated links. This depends on the complexity of the
message. Details of this kind of interaction are better specified using sequence
diagrams.

a) Int_era:ti onvia Ant behavior
Object Flow

Pheromone

b) Interaction via Adult behavior Larvabehavior

Object Generation ot interaction via
| —7_ cretinglava [[TT—>@) —— -

creating larva
\ r—— transform
interaction via
\.// ;creating ackilt

¢) Interactionvia Ant behavior Nest behavior
Variable Modification

interaction via
variable food
forage in nest store food

Figure 1. Specifying Different Interactions Types in UML.

4.3 Sequence Diagram

In sequence diagram the message passing between objects is described. On the x-
axis the participants of the interaction situation are listed, the y-axis is the time-
line. For direct interactions, Agent UML [16] proposes enhancements to UML
for sending a message to a few concurrently active agents. The overall aim of
Agent UML is to provide a framework for sophisticated (reusable) negotiations.
In behavior-oriented multi-agent simulations this kind of interactions may be
rarely found due to the focus on agent behavior and not on sophisticated internal
reasoning processes which are prerequisites for complex negotiation abilities.

Moreover, most of the interactions in such simulations take the form of in-
direct ones, that means the happen via coordinated changes in the environment
("stigmercy” [17]). Asynchrony and undirectedness are therefore important fea-
tures of this kind of interaction. Thus sequence diagram are not well suited.
Nevertheless, for documenting a typical path of interaction they are useful. But,
a modeler using sequence diagrams in this case should keep in mind that both,
participants and the concrete sequence of primitive interactions, are just exam-
ples and not fixed and complete specifications of protocols.

Without a specific protocol for the interactions it is useful to formulate in-
variants and constraints on the system that contains these interactions. UML
also provides a facility: OCL.

4.4 Object Constraint Language (OCL)

An often overlooked feature in UML is the possibility to augment UML diagrams
with OCL expressions. OCL (?Object Constraint Language” [18,19]) is a formal
language for expressing side effect-free constraints. A modeler can use OCL to
specify constraints and other expressions and attach them to his models, with
the aim of formalizing necessary information for e.g. testing and verifying his
simulations. OCL was introduced and added to UML because a graphical speci-
fication, like a class model, is not precise and unambiguous enough for specifying
all details. There is a need to describe additional constraints about the objects,
even more about the agents in the model. Without OCL constraints have to
be written down in natural language with the consequences of its ambiguities
and impreciseness. On the other hand, formal languages tend to be hard to read
due to their mathematical background. OCL tries to fill this gap: It is a formal
language and it is easy to read and to write. More precisely OCL can be used
for ...

— specifying invariants for classes or stereotypes,

— describing pre- and post conditions on operations and methods,

describing guards and event triggers (or transitions),

tracing associations in object graphs and

specifying constraints on operations, an operation constraint can be read as
a definition for the operation.

These application areas are specially relevant for describing indirect and asyn-
chrone interactions in a multi-agent simulation. Moreover, this kind of declar-
ative and explicit information about the interacting system as a whole and its
components is special useful since a procedural definition of interactions is lack-
ing.

One can identify two different kinds of invariants: local and global. An in-
variant for one class is called a local invariant independent from the number of
participating agents. If instances from different class are involved, we call it a
global invariant. For an example see figure 2a.

Ant Nest

energy level: double ants: List of Ants

size: double preys: List of Prey -
(Pick up Prey \

deposit trail (Pheromone)
following trail (Pheromone) precondition:

fourage (Environment) jaw->full 1= true
Energy level >0 Y fants.count > 0 N post condition
Ant.alllnstances->sum(energy level) < maxValuz ants.sum(size) + preys.sum(size) < maxSizs jaw->full = true
N
ya \
local invariants global invariants
a) Local and Global Invariants in Class Diagrams b) Pre- and Post Condition in an Activity

Figure 2. Using OCL for multi-agent model.

Another important application is the assignment of pre- and post conditions to
activities. Figure 2b shows an example. Other ways of applying OCL are also
useful. OCL is the language for formulating the conditions of the transitions in
an activity graphs described above. In an analogous way every side effect-free
computation can be specified using OCL.

Although OCL provides no completely precise semantics, it is possible to re-
strict the power of this language for making it executable. Analyzing the appli-
cability and usefulness in concrete applications of behavior-oriented multi-agent
simulations, remains a main part of our future work. We are now working on
a environment for designing and implementing executable simulations that is
based on the concepts described here.

5 Conclusion and Further Work

In this paper we examined how to use standard UML for specifying behavior-
oriented multi-agent simulations. This kind of multi-agent models are character-
ized by a focus on behavior and interactions of agents in a simulated environment.

Activity graphs are the prominent mean for formalizing behavior of many
interacting agents. In general they are used for specifying behavior, here the ac-
tivity flow of an agent or an agent class. However, in standard UML interactions
are not explicitly tackled, since they are mostly hidden in several activity nodes,
not directly connected with standard arrows. For multi-agent simulations this is
a drawback as interactions form the central part. Based on some not widely used
features in UML we presented a viable solution for the representation of interac-
tions. For this we identified four major types of interactions in behavior-oriented
multi-agent simulations. Based on sending and receiving nodes with augmented
links, all four can be specified. The augmentation consists of additional nodes:
single class diagrams or documentation nodes. The latter is a starting point for
our future work as instead of using unstructured text information, a structured
node would improve the description of the interaction.

UML provides another very important feature, namely the OCL. The formal
expression language is both, precise and unambiguous. Thus it can be used to
describe important facets of the model, to reduce the gap between modeling
language and concrete implementation.

After an extensive phase of evaluation of this suggestions using real world
applications, we want to show in our future work that using UML for multi-agent
simulations improves the quality of model description. Thus we hope that it en-
ables a modeler to build and execute multi-agent simulations with the same high
standard of validation and verification as it is propagated in standard simulation
models.

References

1. G. Booch, I. Jacobson, J. Rumbaugh, and J. Rumbaugh. The Unified Modeling
Language User Guide. The Addison-Wesley Object Technology Series. Addison
Wesley, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. F. Kligl. Multi-Agent Simulation — Concept, Tools, Application (in German).

Addison Wesley, 2001.

F. Kliigl. Activity-based Behavior Modeling and its Support for Multi-Agent Sim-
lation (in German). PhD thesis, Universitat Wiirzburg, 2000.

A. M. Uhrmacher. Object-oriented and agent-oriented simulation: Implications
for social science application. In K. G. Troitzsch, U. Mueller, G. N. Gilbert, and
J. E. Doran, editors, Social Science Microsimulation, chapter 20, pages 432—447.
Springer, 1996.

C. Urban. Pecs: A reference model for the simulation of multi-agent systems. In
R. Suleiman, K. G. Troitzsch, and G. N. Gilbert, editors, Tools and Techniques for
Social Science Simulation. Physica-Verlag, Heidelberg, 2000.

J. P. Miiller. Architectures and applications of intelligent agents: A survey. Knowl-
edge Engineering Review, 13(4):353-380, 1999.

A. Repenning. Agentsheets: an interactive simulation environment with end-user
programmable agents. In Proceedings of INTERACTION 2000, Tokyo, Japan,
2000.

N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm
simulation system: A toolkit for building multi-agent simulation.
http://www.santafe.edu/projects/swarm/, 1996.

M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented
analysis and design. In Proceedings of the 3rd Internation Conference on Au-
tonomous Agents,1999. ACM Press, 1999.

C. Iglesias, M. Garijo, and J. C. Gonzales. A survey of agent-oriented method-
ologies. In J. P. Miiller, M. Singh, and A. S. Rao, editors, Intelligent Agents V:
Proceedings of the ATAL’98, volume 1555 of LNAI Springer, 1999.

M. Fisher. Representing and executing agent-based systems. In M. Wooldridge and
N. R. Jennings, editors, Intelligent Agents: Proceedings of the ATAL’94, volume
890 of LNAI, pages 307-323. Springer, 1995.

S. Moss, H. Gaylard, S. Wallis, and B. Edmonds. Sdml: A multi-agent language
for organizational modelling. CPM-Report 16, Centre for Policy Modelling, 1997.
M. Luck, N. Griffiths, and M. d’Inverno. From agent theory to agent construc-
tion. In J. P. Miiller, M. J. Wooldridge, and N. R. Jennings, editors, Intelligent
Agents III (= Proceedings of ATAL’96), volume 1193 of Lecture Notes in Artificial
Intelligence, pages 49-63. Springer, 1997.

F. Lopez y Lopez, M. Luck, and M. d’Inverno. A framework for agent architecture,
dependence, norms and obligations. In (Pre-)Proceedings of the MAAMAW’2001,
2001.

E. Mentges. Concepts for an agent-based framework for interdisciplinary social
science simulation. Journal of Artificial Societies and Social Simulation, 2(2),
1999.

J. Odell, H. van Dyke Parunak, and B. Bauer. Extending uml for agents. In
Proceedings of Agent-Oriented Information Systems 2000, Workshop at the AAAI
2000, 2000.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence - From Natural
to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity.
Oxford University Press, Oxford, 1999.

OMG. Object Constraint Language Specification. http://www.omg.org/cgi-
bin/doc?ad/97-08-08, 1997.

J. B. Warmer and A. G. Kleppe. The Object Constraint Language : Precise Mod-
eling With Uml. The Addison-Wesley Object Technology Series. Addison Wesley,
1999.

