
UML for Embedded Systems Specification and Design: Motivation and
Overview

Grant Martin
Cadence Design Systems

2001 Addison Street, Third Floor, Berkeley CA 94704, U.S.A.
gmartin@cadence.com

Abstract

The specification, design and implementation of

embedded systems demands new approaches which go
beyond traditional hardware-based notations such as
HDLs. The growing dominance of software in embedded
systems design requires a careful look at the latest
methods for software specification and analysis. The
development of the Unified Modeling Language (UML),
and a number of extension proposals in the realtime
domain holds promise for the development of new design
flows which move beyond static and traditional partitions
of hardware and software. However, UML as currently
defined lacks several key capabilities. In this paper, we
will survey the requirements for system-level design of
embedded systems, and give an overview of the extensions
required to UML that will be dealt with in more detail in
the related papers. In particular, we will discuss how the
notions of platform-based design intersect with a UML
based development approach.

1. Introduction: The Nature of Embedded
Systems

Modern embedded systems have certain
characteristics that demand new approaches to their
specification, design and implementation. These
approaches must be a combination of traditional hardware
and software methods, but must seek new ways of linking
them together in order to allow designers to develop such
products rapidly and with low risk.

These systems are composed of multiple subsystems
or functional units that carry out computation and
communication using a heterogeneous set of models of
computation. These functional subsystems can be
implemented using a variety of components, both
hardware and software, composed together into flexible
platform architectures. The mapping of function to
architecture is not fixed: design space exploration allows
developers to find optimal ways of implementing functions

by analysis of a variety of alternatives in both hardware
and software domains. This emphasises both early
modelling of systems, and methods that delay commitment
to particular components or implementations to the end of
the design process.

1.1. Heterogeneous

As technology has developed, embedded systems have
moved from single function products to ones incorporating
multiple roles. The convergence of functionality from the
multiple domains of computing, signal processing of audio
and video, and wired and wireless communications have
led to increasingly complex embedded systems which
integrate subsystems reflecting a heterogeneous set of
Models of Computation (MOCs). Modelling such systems
requires a set of heterogeneous notations to reflect this:
continuous time, finite-state-machine, dataflow, discrete
event, reactive, etc. In addition to such heterogeneous
logical domains, there are also multiple physical
implementation domains in embedded systems – function
is realised through combinations of dataflow and control-
oriented software, hardware components such as
microprocessors, DSPs, analogue and mixed-signal
components, digital HW blocks, and RF, optical and
MEMS components. These heterogeneous
implementation, or ‘architectural’ choices, also need to be
modelled.

1.2. Compositional

Today’s embedded systems are not usually modelled
and implemented monolithically from scratch. Rather they
are usually compositions of subsystems, each of which
may be based on a different MOC. Each MOC, and
modelling notation, is chosen to be ‘natural’ for the
subystem domain. Both functional and architectural
descriptions of the system may be based on composition of
subsystems. With such a design strategy, the emphasis
must be equally on the validity of the composition as on
the correctness of the constituent parts.

1.3. Complexity, Driving Reuse and Synthesis

In line with the ‘convergence’ and ‘compositional’
attributes discussed earlier, modern embedded system
products are too complex to be designed from scratch.
The complexity of the embedded software for a 3G mobile
handset exceeds that of a 2G phone by at least one order of
magnitude. Complexity from composing heterogeneous
functional requirements demands more design knowledge
than many single product groups possess. All these factors
point to a strong need to maximise software and indeed
system development productivity through use of embedded
system platforms and reuse and synthesis methods driven
from system-level models [1].

1.4. System Context

As well as modelling the system from functional
requirements through executable specifications, it is
important to be able to model the context for an embedded
system – both environmental (e.g. channel characteristics
and noise scenarios for a wireless system) and user-driven
(use-cases for multi-function embedded systems).

2. Design Methodology Requirements

In a related paper in this session [2], embedded and
real-time systems design methodologies based on UML
and SDL will be discussed. Suffice it here to summarise
the basic design methodology requirements based on the
characteristics described earlier. We need a methodology
to support:

• Heterogeneous modelling of system function and
architecture, including target implementation
SW-HW platforms

• The system modelled within its use-context and
environment.

• Mapping from function to architecture in order to
support design space exploration, alternative
implementations, and reusable components

• Strong analytical and verification techniques
• Strong linkages from models through to

implementation in both SW and HW domains,
including synthesis, refinement, decomposition
and reuse approaches.

3. UML: Capabilities and Lacks

3.1. What UML has or will have

What makes UML a reasonable meta-language to
model embedded/real-time systems, and solve these kinds

of design problems? First, from the current UML (1.4)
[3,4,5], we can identify several key attributes of UML
important to embedded systems:
Heterogeneous set of notations

• A concept that the UML is not a single language,
but a set of notations, syntax and semantics to
allow the creation of families of languages for
particular applications. In other words, UML is a
‘meta-language’.

• Extension mechanisms via profiles, stereotypes,
tags, and constraints for particular applications

• Use-case modelling to describe system
environments, user scenarios, and test cases

• A large standards organisation, the Object
Modelling Group [4], which is promoting UML
among software designers and sponsoring its
evolution via task forces, working groups and the
like. OMG also promotes the development of
application-domain-specific profiles.

• Support for object-oriented system specification,
design and modelling, thus appealing to the
software community.

• Growing interest in UML from the embedded
systems and realtime community.

• Support for state-machine semantics which can be
used for modelling and synthesis

• Support for object-based structural decomposition
and refinement

However, UML is not static. It is evolving in many
directions and in particular, there are a number of activities
relevant to embedded and real-time systems:

• UML 2.0 evolution [2, 6, 7] which is looking at
functional encapsulation methods, annotations to
UML to allow modelling of real-time aspects
such as schedulability, performance and time, and
other important extensions such as dataflow.

• Plans to support SDL, used for many years in
realtime and embedded software development, as
a profile of UML 2.0 [8].

• Action semantics, driven by OMG and the Action
Semantics Consortium, which OMG wishes to
incorporate into UML 2.0, and that provide
formal underpinnings for more complete
executable specifications and synthesis.

• Model-driven architecture [4] that aims to
separate the specification of software applications
from the particular middleware ‘platform’ which
implements them. This is similar to function-
architecture codesign.

3.2. What UML Lacks and needs

Given existing UML and the evolutions promised in
UML 2.0, what are the key lacks remaining to support
embedded systems design [9]? These are:

• the platform model
• the mapping and refinement methodology to

move from one platform level to another
• the constraint definition and budgeting

methodology to complement the movement of
design from requirements to implementation, and
which provide a necessary control for
optimisation processes in design transformation
and synthesis.

4. “UML-Platform”

Some work has been done on fleshing out the
requirements to model SoC platforms in UML, and to
develop methodologies for embedded systems design
using these concepts [10]. The proposal involves several
extensions to UML and assumes that most of the current
proposals – for real-time UML and 2.0 extensions – will
be accepted and standardised. In this sense, the UML-
Platform profile describes the following extensions to
UML, as a set of stereotypes and tags:

• “uses” and “needs” stereotypes to specify
realisation relationships between applications
or platform components, and services offered
by other platform components

• a “stack” stereotype to describe hierarchical,
layered implementations of platform services

• a “peer” stereotype for components and
service offerings at the same abstraction level

• “coupling” relationships to show necessary
linkages between components

• tags to define Quality of Service (QoS)
parameters for platform services, and
application requirements. These can be
derived from specifications, mapped into
constraints, and used to select appropriate
implementations.

• defined platform layers – Application Specific
Programmable (ASP), Application
Programming Interface (API) and
Architectural (ARC) within which services can
be classified for deployment

• a method for depicting platform “extension
points” for future application requirements and
new or variant service offerings.

The notion of “UML-Platform” thus offers a base for
the mapping and refinement concepts which support the

move from a target-independent system model to an
optimised platform-based implementation. A variety of
analysis capabilities can be built using the profile, which
allow the notion of ‘software-software’ codesign, in which
function is primarily mapped onto a variety of software-
based implementations, to be supported. QoS tags allow
constraint definition, decomposition into subsystem
budgets and the effective choice of possible components
that meet overall system requirements.

Further research is planned to apply the “UML
Platform” profile to commercial SoC platform offerings,
and to extend its concepts to support complete UML-based
platform design methodologies for embedded systems.

5. Conclusions

The Unified Modelling Language is an interesting and
reasonably compelling basis for embedded system design
methodology. The current state of the language is not
complete enough to build comprehensive tools, flows and
methodologies, and the anticipated changes in 2.0,
although vital, are still not complete enough to meet all
needs. The UML-platform concept, complemented by
further work on methodology, should provide much of the
additional concepts required for a UML-based embedded
and realtime software design flow.

6. References

1. Alberto Sangiovanni-Vincentelli and Grant Martin,
“Platform-Based Design and Software Design Methodology
for Embedded Systems”, IEEE Design and Test of
Computers, Volume 18, Number 6, November-December
2001, pp. 23-33.

2. Gjalt de Jong, “A UML-Based Design Methodology for
Real-Time and Embedded Systems”, DATE 2002, March
2002.

3. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley,
1998.

4. The Object Modeling Group, URL: http://www.omg.org/.
5. Thomas Weigert, “What Really is UML?”, presentation,

October 18, 1999.
6. Bran Selic, “The Real-Time UML Standard: Definition and

Application”, DATE 2002, March 2002.
7. Bran Selic, “A Generic Framework for Modeling Resources

with UML”, IEEE Computer, June 2000, p.64-69.
8. Morgan Björkander, “Graphical Programming Using UML

and SDL”, IEEE Computer, December 2000, pp. 30-35.
9. Grant Martin, Luciano Lavagno, and Jean Louis-Guerin,

“Embedded UML: a merger of real-time UML and co-
design”, CODES 2001, Copenhagen, April 2001, pp.23-28.

10. Rong Chen, Marco Sgroi, et. al. “Embedded System Design
Using UML and Platforms”, Unpublished paper, U.C.
Berkeley, September, 2001.

http://www.omg.org/

