
Vol. 5, No. 4, May–June 2006

UML Profiles for Real-Time Systems and their
Applications

Abdelouahed Gherbi and Ferhat Khendek

Electrical and Computer Engineering Department

Concordia University, Montreal, Canada

Real-time systems (RTS) have strict timing constraints and limited resources. The
satisfaction of RTS timing constraints is required for their correction. In order to
reduce the cost due to late discovery of design flaws and/or violations of timing con-
straints of RTS as well as to speed up their development to cope with time-to-market
requirements, it is important to validate, at early stages of the development process,
the functional and nonfunctional properties of RTS. In addition, RTS complexity is
continuously increasing which makes their design very challenging. UML, a graphical
object-oriented modeling language, is suitable to deal with this complexity. UML also
supports predictive, quantitative analysis through its real-time profiles. The objective
of this paper is to review the most important UML profiles for real-time from the
academia, the industry and/or standard organizations; and the research activity that
revolves around these profiles.

1 INTRODUCTION

Nowadays real-time systems are used in a wide variety of applications, including
avionics, automotive, patient monitoring, to mention just a few. A Real-time Sys-
tem (RTS) is constrained to carry out its functionality under (strict) timing con-
straints. With respect to the latter, RTS are often classified into hard or soft real-
time systems. In the former class, a missed deadline is synonymous to disastrous
consequences such as loss of life or property. Soft RTS, such as a video play back
system, tolerate some occasional deadline misses. RTS are generally embedded
within a nondeterministic and highly concurrent environment, for instance, a cruise
control system within a car. This environment generates streams of asynchronous
and concurrent events having different characteristics, i.e., periodic, sporadic etc.
RTS should react to these events timely. Consequently, RTS should be concurrent
to maximize their responsiveness as well as to use efficiently their computing re-
sources. Moreover, a RTS is generally a distributed system that takes advantage of
real-time networking facilities such as CAN buses or FDDI. Finally, RTS are often
used to monitor and/or control very critical systems which require high levels of
availability and dependability. These characteristics make RTS very complex and
their design a daunting challenge. Therefore, an adequate modeling language for
RTS should enable to manage their inherent complexity and support quantitative

Cite this document as follows: Abdelouahed Gherbi and Ferhat Khendek: UML Profiles for

Real-Time Systems and their Applications, in Journal of Object Technology, vol. 5, no. 4,
May–June 2006, pages 149–169,
http://www.jot.fm/issues/issues 2006 05/article5

http://www.jot.fm/issues/issue_2006_05/article5
http://www.jot.fm


UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

analysis in order to validate their nonfunctional properties.
The object paradigm is very effective to cope with the software complexity. The
Unified Modeling Language (UML), which is the defacto standard object-oriented
modeling language for general-purpose software, is gaining interest among the real-
time community. It is therefore interesting to consider how well UML is adapted
to the real-time context. One important feature of UML stems from its built-in
extensibility mechanisms: stereotypes, tag values and profiles. These allow to adapt
UML to fit the specificities of particular domains or to support a specific analysis.
Therefore, numerous UML profiles have been proposed in the academia, the industry
and/or by standard organizations in order to accommodate the features of real-time
software.
In this paper, we address the capabilities of UML in expressing the real-time require-
ments through some profiles specifically designed for this context. In particular,
we review the main existing real-time UML profiles and the research that revolves
around them. It is not the objective of the paper to give a comprehensive and thor-
ough description of the profiles involved but we limit ourselves to the main concepts
and show how these profiles are related to the real-time context.
The remaining part of this paper is structured as follows: In Section 2, we focus
on some of the new built-in features of UML 2.0 that fit the requirements of real-
time systems. Section 3 is devoted to the OMG UML profile for Schedulability,
Performance and Time [22] as well as the research that revolves around it in or-
der to support quantitative analysis at the design stage. In Section 4, we review
an emerging OMG profile that enables the designer to define new quality of ser-
vice requirements and their corresponding analysis. The Rational UML profile for
real-time systems, UML-RT, is considered in Section 5 whereas TURTLE profile is
considered in Section 6. Another industrial profile aiming at combining UML and
SDL is presented in Section 7. Last but not the least, we reserve Section 8 to present
succinctly other UML profiles from the literature targeting real-time systems. We
present a comparison of the main important UML profiles for real-time and discuss
some research issues in Section 9. Finally, we conclude in Section 10.

2 REAL-TIME FEATURES IN UML 2.0

UML is a graphical, object-oriented modeling language which allows to specify and
document the artifacts of software systems. UML is widely used to express the
general-purpose software design models. Real-time software presents, moreover,
some specific characteristics. In addition to the timing constraints, an important
characteristic of real-time software stems from the interaction with the environ-
ment. This interaction is inherently nondeterministic and highly concurrent. UML
2.0 presents some features that support real-time aspects [5], [10]. For example, it
supports the modeling of concurrency by providing some concepts, including active
objects, concurrent composite states and concurrent operations. In order to express
timing constraints, UML 2.0 provides two data types: Time and TimeExpression.

150 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



3 UML PROFILE FOR SCHEDULABILITY, PERFORMANCE AND TIME

Figure 1: Sequence Diagram with Timing Constraints [23]

Figure 2: Timing Diagram Example [23]

These timing statements can be used either in state diagrams or sequence diagrams
as depicted in Figure 1. Moreover, UML 2.0 introduces a new diagram called Tim-
ing Diagram to allow reasoning about time and visualize conditions or state changes
over time. Figure 2 illustrates an example of a Timing Diagram. UML is, however,
better adapted to the real-time software context through its built-in extensibility
mechanisms, particularly its profiles. The most important ones as well as the re-
search activity that these profiles drive are the focus of the following sections.

3 UML PROFILE FOR SCHEDULABILITY, PERFORMANCE AND TIME

The UML profile for real-time modeling, formally called the UML profile for Schedu-
lability, Performance and Time (UML/SPT), was adopted by the OMG in 2002 [22].
This increased the interest in the use of the object-oriented technology and UML
in particular to model and build real-time systems [26]. UML/SPT is a framework
to model quality of service, resource, time and concurrency concepts and to sup-
port predictive quantitative analysis of UML models. Actually, it provides the user
(modeler) with a set of stereotypes and tagged values in order to annotate the UML
models. Quantitative analysis (schedulability and performance analysis) can then

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 151



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

be applied to these (predictive) UML models.
The structure of the UML/SPT, as illustrated in the Figure 3, is composed of a
number of sub-profiles:

• The General Resource Model (GRM) package is the core of UML/SPT. It is
further partitioned into three packages:

– RTresourceModeling for the basic concepts of quality of service and re-
source.

– RTConcurrencyModeling for concurrency modeling.

– RTtimeModeling for time and time-related mechanisms modeling.

• The Analysis Modeling package defines the analysis sub-profiles, including:

– PAprofile for performance analysis.

– SAprofile for schedulability analysis.

Figure 3: The Structure of UML/SPT Profile

The standard UML/SPT is too large to be thoroughly covered in this paper. There-
fore, we just illustrate the features that are directly related to the real-time modeling.
The interested reader is referred to [22] for an exhaustive description of the standard.
With regard to time modeling, the sub-profile RTtimeModeling defines a metamodel
representing time, as depicted in Figure 4, and time-related mechanisms, as illus-
trated in Figure 5. The profile provides a set of stereotypes and associated tagged
values that the modeler could apply to UML modeling elements to specify time
values ≪RTtime≫, time-related mechanisms such as ≪RTclock≫, ≪RTtimer≫,

152 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



3 UML PROFILE FOR SCHEDULABILITY, PERFORMANCE AND TIME

Figure 4: Time Modeling in UML/SPT [22]

Figure 5: Timing Mechanisms In UML/SPT [22]

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 153



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

Figure 6: Sequence Diagram Annotated with UML/SPT Stereotypes[22]

Figure 7: UML/SPT Schedulability Analysis Metamodel [22]

≪RTtimeout≫ or timing constraints ≪RTdelay≫, ≪RTintervale≫. For exam-
ple, Figure 6 illustrates a UML sequence diagram modeling the behavior of an ele-
vator control system in reaction to the arrival sensor event. This sequence diagram
is annotated with UML/SPT stereotypes to model the periodicity of the event, the
timing constraints on the actions of the different components of the system etc.
The SAprofile sub-profile is designed to support schedulability analysis of UML
models. Figure 7 depicts the metamodel defined in UML/SPT for the main con-
cepts involved in the schedulability analysis: the execution engine, threads (task or
process), shared resources, external events and the response of the system to the
external events. Correspondingly to these concepts, a set of stereotypes and their
associated tagged values is defined in UML/SPT. A sample of these is presented
in the Table 1. The application of these stereotypes on a collaboration diagram is
illustrated in Figure 8.

The ability to undertake quantitative analysis at early phases of the software
development process is important to reduce the cost. Consequently, numerous re-
search activities are dedicated to the integration of software design modeling and
performance analysis [3]. In particular, UML/SPT is at the heart of many active

154 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



3 UML PROFILE FOR SCHEDULABILITY, PERFORMANCE AND TIME

Figure 8: Collaboration Diagram Annotated for Schedulability Analysis [22]

Steriotype Real-time Concept UML Model Element
≪SASituation≫ Real-time situation Collaboration, Sequence diagrams
≪SATrigger≫ Event Message, Stimilus
≪SAResponse≫ Response Method, Action
≪SAAction≫ Action Method, Stimilus, Action

≪SASchedulable≫ Task, Thread Instance, Object, Node
≪SAResource≫ Resource Instance, Class, Node
≪SAEngine≫ CPU, Processsor Object, Class, Node

Table 1: UML/SPT Common Stereotypes for Schedulability Analysis

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 155



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

research initiatives aiming at the integration of predictive quantitative analysis to
early stages of software development process. These research works could be clas-
sified into two main tracks: the performance track aiming at deriving performance
models, including queueing networks [4], layered queue networks or extended queue
networks [34], or other formalisms such as general stochastic petri nets. These mod-
els enable achieving performance analysis of UML models. The schedulability track,
on the other hand, includes many research initiatives that aim at integrating the
schedulability theory with object-oriented real-time design [16], [17], [27], and [28].
Moreover, other research activities focus on the fundamentals of modeling concepts
in UML/SPT and address its capabilities and limitations [7].

4 UML PROFILE FOR QUALITY OF SERVICE

The UML profile for modeling Quality of Service and Fault Tolerance Characteris-
tics and Mechanisms (UML/QoS) was adopted by the OMG in 2004 [24]. It is an
emerging UML profile which aims at capturing the concept of quality of service at
large. It allows the definition of an open variety of quality of service requirements
and properties [8].
We consider that UML/QoS is relevant for real-time software modeling. This is be-
cause it is introduced to complement the aforementioned UML/SPT profile. How-
ever, while UML/SPT is tailored to fit performance and schedulability analysis,
UML/QoS allows the designer to define any set of quality of service requirements
and carry out any specific analysis that could be relevant for the safety-critical as-
pect of real-time software. This was demonstrated in [6], where a quality model has
been defined to drive a dependability and performability analysis of an embedded
automation system.
In a nutshell, UML/QoS could also be used to annotate UML diagrams. In contrast
to UML/SPT, UML/QoS proposes a procedure that consists in three steps:

• Definition of QoS characteristics: The new user-defined QoS characteristics
could leverage, through specialization, the general QoS characteristics cata-
logue defined in UML/QoS. This catalogue is organized, as depicted in Fig-
ure 10, in categories Performance, Dependability, Security, Integrity,
Coherence, Throughput, Latency, Efficiency, Demand, Reliability and
Availability. In particular, Figure 9 illustrates the category that includes
the Latency QoS characteristics. The latter might be leveraged to adequate
the real time context. Notice that the QoS characteristics are templates classes
having parameters. The later have to be instantiated in the next step.

• Definition of the quality model: The QoS characteristics parameters should be
assigned actual values. This is done through the definition of quality charac-
teristics bound class and template bindings. The UML model containing the
binding information and the bound classes is called the Quality Model. An
example of a Quality Model is illustrated in Figure 11.

156 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



4 UML PROFILE FOR QUALITY OF SERVICE

Figure 9: Latency QoS Characteristics Category [24]

Figure 10: Qos Characteristics Categories Catalogue [24]

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 157



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

Figure 11: An Example of Quality Model [24]

Figure 12: UML Collaboration Diagrams Annotated with QoS [24]

158 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



5 UML-RT PROFILE

• The last step is the UML models annotation using quality of service require-
ments. This is illustrated by the Figure 12.

We believe that UML/QoS is not supported yet by a CASE tool. We are expecting,
however, that it will be investigated more in the near future because of its flexibility
in terms of analysis with respect to UML/SPT.

5 UML-RT PROFILE

UML-RT is a real-time profile developed by Rational Software [30]. It uses the UML
built-in extensibility mechanisms to capture the concepts of defined in the Real-
time Object Oriented Modeling (ROOM) Language [29]. In contrast with the two
previous profiles, UML/SPT and UML/QoS, UML-RT is not just meant to annotate
a design model with information allowing for quantitative analysis. It is a modeling
language of its own. Indeed, UML-RT allows the designer to produce models of
complex, event-driven and possibly distributed real-time systems. However, UML-
RT does not support time and timing constraints modeling. UML-RT is supported
by a CASE tool called RationalRT that allows for automatic code generation by
compiling the models and linking them with a run-time system.
UML-RT includes constructs to model the structure and the behavior of real-time
systems:

• Structure Modeling: UML-RT provides the designer with entities called
capsules, which are communicating active objects. The capsules interact by
sending and receiving messages through interfaces called ports. Furthermore,
a capsule may have an internal structure composed of other communicating
capsules and so on. This hierarchical decomposition allows the modeling of
complex systems. Figure 13 illustrates the structure model of an elevator
control system using UML-RT.

• Behavior Modeling: The behavior is modeled by an extended finite state
machine, and it is visualized using UML state diagrams. These state machines
are hierarchical since a state could be decomposed into other finite state ma-
chines. A message reception triggers a transition in the state machine. Actions
may be associated with transitions or the entry and/or the exit of a state. For
example, Figure 14 illustrates a model for the behavior of the elevator con-
troller component in the Elevator Control System depicted in Figure 13.

Similarly to the two previous UML profiles, UML-RT lacks formal foundations.
UML-RT is, however, a basis for a very active research work on schedulability anal-
ysis applied to real-time software design models. Indeed, while the CASE tool Ra-
tionalRT allows an automatic code generation, it does not take into account timing
constraints. Therefore, the research reported in [28] was a first attempt to integrate
the real-time schedulability theory with object-oriented design targeting real-time

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 159



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

Figure 13: Elevator Control System UML-RT Model

Figure 14: Finite State Machine of an Elevator Controller

160 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



6 TURTLE PROFILE

Figure 15: A TURTLE TClass Structure [1]

systems. This work showed how the fixed-priority scheduling theory could be applied
to design models using UML-RT. An other approach for a schedulability-aware map-
ping of UML-RT models to scenario-based multi-threaded implementation was re-
ported in [16], [17], and [19]. Finally, a slightly different approach to apply real-time
scheduling techniques to obtain real-time implementations from UML-RT models is
given in [13], [14], [18], and [20].

6 TURTLE PROFILE

The Timed UML and RT-LOTOS Environment, TURTLE, is a UML profile aiming
at the formal validation of complex real-time systems [1]. TURTLE uses UML’s
extensibility mechanisms to enhance UML structuring and behavioral expression
power. In addition, TURTLE has a strong formal foundations. Actually, its formal
semantics is expressed by means of a mapping to RT-LOTOS. This enables a formal
validation as well as a simulation of the UML models.
Similarly to UML-RT, TURTLE does not annotate UML models using stereotypes
but provides concepts and operators to express the model itself. TURTLE essentially
allows the description of the structure/archtecture as well as the behavior of the
system using an extension of the UML class/object and activity diagrams. The
main extensions brought by TURTLE are the following:

• Structural Extensions: TURTLE introduces the concept of TClass which
has special attributes called Gates (see Figure 15). These are used by TClass
instances, TInstances, to communicate and are specialized into InGate and
OutGate. In addition, TURTLE introduces stereotypes called composition
operators (see Figure 16). These are used to explicitly express parallelism,
synchronization, and sequence relationships between TClasses.

• Behavioral Extensions: The behavior of a TClass is expressed using ac-
tivity diagrams extended with logical and temporal operators (see Figure 17).
These operators allow expressing synchronization on gates with data exchange.
Moreover, TURTLE enables expressing temporal non-determinism and differ-
ent sorts of delays (deterministic, nondeterministic).

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 161



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

Figure 16: Some TURTLE’s Composition Operators [1]

Figure 17: TURTLE’s Temporal Operators[1]

TURTLE is supported by a toolkit composed of TTool [33] and RTL [25]. These
are used by the designer to build a design, to run the simulation and to perform a
reachability analysis for the validation of the system.
Finally, TURTLE has been recently extended to fit the requirements of distributed
and critical system. The objective is to enable the definition of components and their
deployment; and to study their properties at early stages of the software development
process. This is done using a formal definition of the deployment diagrams, which
are the most suitable for distributed architecture description. Therefore, TURTLE
has been extended to take into account deployment diagrams. The obtained profile
is called TURTLE-P [2], which addresses the concrete description of communica-
tion architectures. TURTLE-P allows the formal validation of the components and
deployment diagrams through its foundations in RT-LOTOS.

7 SDL COMBINED WITH UML

The ITU-T recommendation Z.109, SDL Combined With UML [15], is actually a
UML profile for SDL. It defines a specialization of a subset of UML and a one-to-one
mapping to a subset of SDL. Thus, Z.109 has SDL as a formal semantics. This is
intended to provide the designer with a combination of UML and SDL. We give
in the sequel just an outline of the main concepts in this recommendation. For a
comprehensive description of this profile, the reader is referred to [15]. In addition,
a more readable presentation of this recommendation along with an illustrative
example, a specification of an Automatic Teller Machine (ATM) using Z.109, can
be found in [21].
Basically, Z.109 gives a UML model for the main concepts of SDL and provides with
the corresponding stereotypes. In the following, we highlight the main concepts of
SDL in Z.109 having a corresponding stereotype:

162 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



8 OTHER PROFILES

Figure 18: UML Model of the basic SDL Concepts

• Agent An SDL system is composed of agents connected through channels. An
agent has a state machine and a internal structure composed hierarchically of
other agents. Moreover, an agent can be (its kinds) a process, a bloc or a sys-
tem. Z.109 provides the UML model representing these concepts as illustrated
in Figure 18. In particular, an agent type is mapped into a class of active
objects and its kind is stereotyped ≪system≫, ≪block≫ or ≪process≫.

• Gates and Interface: The agents communicate through gates by sending
signals or requesting a procedure, which together, the signals and procedures,
compose its interface. The latter is mapped into a UML interface and the
former are stereotyped ≪signal≫ and ≪procedure≫.

• State Machine: An SDL agent state machine is mapped to an UML state
machine.

• Package: UML packages are used to represent SDL packages.

Finally, this profile has been implemented in the Telelogic CASE tool Telelogic TAU
3.5 [32].

8 OTHER PROFILES

In addition to the aforementioned UML profiles, there are several other proposals
from the academia. These include mainly the following:

• A profile compliant to UML/SPT is presented in [12] as part of the OMEGA
project [31]. This is a framework for UML-based real-time modelling allowing
for the analysis and verification of time and scheduling aspects. In particular,
it consists of a set of timed-events primitives. The formal semantics of these
primitives is expressed in terms of timed automata with urgency.

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 163



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

• An UML profile based on an extension of OCL 2.0 metamodel for the specifica-
tion of real-time constraints in OCL is presented in [9]. The formal semantics
of this profile is given by means of a mapping to time-annotated temporal logic
formulae expressed in CTL, which allows the formal verification of properties.

9 DISCUSSION

In this section, we compare between the aforementioned profiles according to crite-
ria, including formal foundation, expressiveness and tool support. We discuss also
some of the research issues related to UML/SPT.
From the previous review, we can distinguish, with respect to the formal founda-
tion criterion, two groups of profiles: the first group includes UML/SPT, UML/QoS
and UML-RT. These profiles lack rigorous, formal foundations. In particular for
UML/SPT, this important limitation was pointed out in [11], for instance. The
second group of profiles presents some formal semantics such as RT-LOTOS for
TURTLE and SDL for Z.109.
As for the profiles expressiveness, we notice that OMG’s profiles, namely UML/SPT
and UML/QoS, introduce models for the concepts of time, resource and quality of
service characteristics respectively using stereotypes to apply annotations to UML
design models while the others; UML-RT, TURTLE and Z.109; do not express ex-
plicitly timing constraints but introduce new modeling elements and constructs such
as capsules in UML-RT, TClass in TURTLE to build the model itself.
The ultimate objective of UML profiles for real-time is to embed UML in an inte-
grated framework allowing the design, analysis and synthesis of real-time software.
This aims at reducing the cost and coping with time-to-market requirements. While
there already exist some tool support for the majority of the aforementioned profiles,
a full integrated framework is however still lacking. This is particularly true for the
OMG standard UML/SPT.
In our point of view there is a methodological problem that hinder the integration
of UML/SPT in an integrated framework for the design, the validation and the
synthesis of real-time software. Indeed, it is not specified in the standard specifi-
cation how to use the profile. The UML ”multi-view” modeling approach where
different diagrams are used to capture different perspectives of the system, and the
cross-cutting aspect of UML/SPT annotations through the UML model may lead
to a serious consistency problem. Indeed, the consistency of UML/SPT annotations
throughout the different views is not guaranteed. In addition, an effective and cor-
rect mapping of the UML/SPT annotations to a suitable model for schedulability
analysis is still lacking. We are interested in these issues in our current research.
Table 2 summarizes the comparison of the different UML profiles for real-time sys-
tems.

164 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



9 DISCUSSION

Is
su

er
T
o
ol

S
u
p
p
or

t
S
y
st

em
A

n
a
ly

si
s

E
x
p
re

ss
iv

en
es

s
F
o
rm

a
l
S
a
m

a
n
ti

cs

U
M

L
/S

P
T

In
d
u
st

ry
R

h
ap

so
d
y

(i
L
og

ix
)

ge
n
er

ic
an

d
P
ef

o
rm

a
n
ce

T
im

e,
R

es
o
u
rc

e
N

o
(O

M
G

)
R
T

S
tu

d
io

(A
rt

is
an

)
re

al
-t

im
e

sy
st

em
s

S
ch

ed
u
la

b
il
it
y

C
o
n
cu

rr
en

cy

U
M

L
/Q

O
S

In
d
u
st

ry
?

ge
n
er

ic
an

d
U

se
r-

d
efi

n
ed

Q
o
S

N
o

(O
M

G
)

re
al

-t
im

e
sy

st
em

s
C

h
a
ra

ct
er

is
ti

c

U
M

L
-R

T
In

d
u
st

ry
R

at
io

n
al

R
T

ev
en

t-
d
ri

v
en

S
ch

ed
u
la

b
il
it
y

C
a
p
su

le
s,

p
o
rt

s
N

o
IB

M
/R

at
io

n
al

re
al

-t
im

e
sy

st
em

s
A

sy
n
c

m
es

sa
g
es

T
U

R
T

L
E

A
ca

d
em

ia
T

T
o
ol

D
is

tr
ib

u
te

d
N

o
S
y
n
ch

,
P
a
ra

ll
el

e
R
T

-L
O

T
O

S
R
T

L
C

ri
ti

ca
l
S
y
st

em
s

d
el

ay
s

o
p
er

a
to

rs

Z
.1

09
In

d
u
st

ry
T
el

el
og

ic
T
el

ec
om

m
u
n
ic

at
io

n
N

o
S
D

L
co

n
ce

p
ts

S
D

L
IT

U
-T

T
au

3.
5

C
ri

ti
ca

l
S
y
st

em
s

O
M

E
G

A
-R

T
A

ca
d
em

ia
O

M
E

G
A

R
ea

l-
ti

m
e

T
im

in
g

T
im

ed
ev

en
ts

T
im

ed
a
u
to

m
a
ta

to
ol

se
t

S
y
st

em
s

S
ch

ed
u
li
n
g

w
it

h
u
rg

en
cy

O
C

L
A

ca
d
em

ia
?

ge
n
er

ic
V

er
ifi

ca
ti

o
n

R
ea

l-
ti

m
e

C
T

L
P

ro
fi
le

R
T

S
y
st

em
s

co
n
st

ra
in

ts

Table 2: UML Profiles for Real-Time Systems

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 165



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

10 CONCLUSION

The increasing complexity of nowadays ubiquitous real-time systems requires using
an adequate modeling language. UML, which is a widely used graphical object-
oriented modeling language, has proved to be effective and suitable for general-
purpose software. Is it suitable for the real-time context where the system nonfunc-
tional properties, including the timing behavior, are as important as its functional-
ity?
In this paper, we have reviewed the means that UML provides to cope with the
real-time software requirements: the UML real-time profiles. We have paid special
attention to the very active research activity that revolves around UML and its
real-time profiles, in particular the OMG’s standard UML/SPT. The latter is at the
heart of many research initiatives to integrate quantitative analysis, performance
and schedulability analysis, at early stages of the software development process.
While the model-based performance analysis has achieved some interesting results,
we observe that the schedulability analysis and its integration into a design frame-
work based on UML/SPT is still under-investigated. We are currently undertaking
a research work to establish the basis of an integrated framework for a UML/SPT-
based design modeling, schedulability analysis and implementation synthesis target-
ing embedded and real-time software systems.

Acknowledgments: This work has been partially supported by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] Ludivic Apvrille, Jean-Pierre Courtiat, Christophe Lohr, and Pierre de Saqui-
Sannes. TURTLE: A Real-Time UML Profile Supported by Formal Validation
Toolkit. IEEE Trans. Software Eng., 30(7):473–487, 2004.

[2] Ludivic Apvrille, Pierre de Saqui-Sannes, and Ferhat Khendek. TURTLE-P:
A UML Profile for the Formal Validation of Critical and Distributed Systems.
To appear in Software and Systems Modeling, Springer 2005.

[3] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Sime-
oni. Model-Based Performance Prediction in Software Development: A Survey.
IEEE Trans. Software Eng., 30(5):295–310, 2004.

[4] Simonetta Balsamo and Moreno Marzolla. Performance Evaluation of UML
Software Architectures with Multiclass Queueing Network Models. In Fifth
International Workshop on Software and Performance, Palma, Illes Balears,
Spain, July 2005.

[5] Kirsten Berkenkotter. Using UML 2.0 in Real-Time Development: A Critical
Review. In SVERTS, pages 41–54, San Francisco, USA, October 2003.

166 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



10 CONCLUSION

[6] Simona Bernardi and Dorina C. Petriu. Comparing two UML Profiles for Non-
functional Requirement Annotations: the SPT and QoS Profiles. In SVERTS,
Lisbone, Portugal, October 2004.

[7] C.M.Woodside and D.C. Petriu. Capabilities of the UML Profile for Schedula-
bility Performance and Time (SPT). In Workshop SIVOES-SPT held in con-
junction with the 10th IEEE RTAS’2004, Toronto, Canada, May 2004.

[8] Miguel A. de Miguel. General Framework for the Description of QoS in UML.
In IEEE Computer Society, editor, Sixth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’03), pages 61–70,
Hakodate, Hokkaido, Japan, May 2003.

[9] Stephan Flake and Wolfgang Mueller. A UML profile for real-time constraints
with the OCL. In Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen Cook,
editors, UML 2002 - The Unified Modeling Language. Model Engineering, Lan-
guages, Concepts, and Tools. 5th International Conference, Dresden, Germany,
September/October 2002, Proceedings, volume 2460 of LNCS, pages 179–195.
Springer, 2002.

[10] S. Gérard and F. Terrier. UML for Real: Which Native Concepts to Use, chapter
UML for Real-Time, pages 17–51. Kluwer Academic Publishers, 2003.

[11] Susanne Graf and Ileana Ober. How useful is the UML profile SPT without
semantics. In SVERTS, Lisbone, Portugal, October 2004.

[12] Susanne Graf, Ileana Ober, and Iulian Ober. Timed annotations with UML.
In SVERTS, San Francisco, USA, October 2003.

[13] Z. Gu and K. G. Shin. Synthesis of Real-Time Implementation from UML-RT
Models. In 2nd RTAS Workshop on Model-Driven Embedded Systems (MoDES
’04), Toronto, Ontario, Canada, May 2004.

[14] Zonghua Gu and Zhimin He. Real-Time Scheduling Techniques for Implemen-
tation Synthesis from Component-Based Software Models. In Accepted to ACM
SIGSOFT International Symposium on Component-Based Software Engineer-
ing (CBSE 2005), St. Louis, MO, 2005.

[15] ITU-T. SDL combined with UML. 2000. ITU-T recommandation Z.109.

[16] Saehwa Kim, Sukjae Cho, and Seongsoo Hong. Automatic Implementation of
Real-Time Object-Oriented Models and Schedulability Issues. In Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS), pages 137–141,
Rome, Italy.

[17] Saehwa Kim, Sukjae Cho, and Seongsoo Hong. Schedulability-aware Mapping of
Real-Time Object-Oriented Models to Multi-Threaded Implementations. In 7th
International Workshop on Real-Time Computing and Applications Symposium

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 167



UML PROFILES FOR REAL-TIME SYSTEMS AND THEIR APPLICATIONS

(RTCSA 2000), 12-14 December 2000, Cheju Island, South Korea, pages 7–14.
IEEE Computer Society, 2000.

[18] Sharath Kodase, Shige Wang, and Kang G. Shin. Transforming Structural
Model to Runtime Model of Embedded Software with Real-Time Constraints.
In Design, Automation and Test in Europe Conference and Exposition (DATE
2003), 3-7 March 2003, Munich, Germany, pages 20170–20175. IEEE Com-
puter Society, 2003.

[19] Jamison Masse, Saehwa Kim, and Seongsoo Hong. Tool Set Implementation for
Scenario-based Multithreading of UML-RT Models and Experimental Valida-
tion. In Proceedings of the 9th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2003), May 27-30, 2003, Toronto, Canada,
pages 70–77. IEEE Computer Society, 2003.

[20] Jeffrey R. Merrick, Shige Wang, Kang G. Shin, Jing Song, and William Milam.
Priority Refinement for Dependent Tasks in Large Embedded Real-Time Soft-
ware. In 11th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’05). IEEE Computer Society, 2005.

[21] Birger Mφller-Pedersen. SDL Combined with UML. Telektronikk, 4:36–53,
2000.

[22] OMG. UML Profile for Schedulability, Performance, and Time Specification.
Version 1.0, formal/03-09-01, September 2003.

[23] OMG. UML 2.0 Superstructure Specification. OMG Revised Final Adopted
Specification (ptc/04-10-02), October 2004.

[24] OMG. UML Profile for Modelling Quality of Service and Fault Tolerance Char-
acteristics and Mechanisms. OMG Adopted Specification, ptc/2004-06-01, June
2004.

[25] RTL. Software and Tools for Communicating Systems. http://www.laas.fr/RT-
LOTOS/.

[26] Hossein Saiedian and Srikrishnan Raguraman. Using UML-Based Rate Mono-
tonic Analysis to Predict Schedulability. IEEE Computer, 37(10):56–63, 2004.

[27] M. Saksena, P. Karvelas, and Y.Wang. Automated Synthesis of Multi-
Tasking Implementations from Real-Time Object-Oriented Models. In 3rd In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2000), pages 360–367, Newport Beach, CA, USA, March 2000. IEEE
Computer Society.

[28] Manas Saksena and Panagiota Kervelas. Designing for Schedulability: Inte-
grating Schedulability Analysis with Object-Oriendted Design. In The 12th
Euromicro Conference on Real-Time Systems, June 2000.

168 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4



10 CONCLUSION

[29] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling.
John Wiley and Sons, 1994.

[30] B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time
Systems. March 1998. Whitepaper Available from www.objectime.com.

[31] OMEGA ST. Project. http://www-omega.imag.fr/.

[32] Telelogic. Telelogic Products. http://www.telelogic.com/products/.

[33] TTool. A Toolkit for Editing and Validating TURTLE Diagrams.
http://www.eurecom.fr/ apvrille/TURTLE/index.html.

[34] Jing Xu, C.M.Woodside, and D.C.Petriu. Performance Analysis of a Software
Design using the UML Profile for Schedulability, Performance and Time. In
P.Kemper and W.Sanders, editors, Proc. of 13th International Conference on
Modelling Techniques and Tools for Computer Performace Evaluation - Perfor-
mance TOOLS’2003, volume 2794 of LNCS, pages 291–307, Sept 2003.

ABOUT THE AUTHORS

Abdelouahed Gherbi is a PhD student at the Electrical and Com-
puter Engineering Department, Concordia University, Canada. He
obtained an Engineer degree in Computer Engineering and a M. Sc.
degree in Software Engineering from the University of Constantine,
Algeria. His main research interests include UML-based modeling
and analysis of embedded and real time systems, the acceleration
of Embedded Java Virtual Machines, and the Software Security. He
can be reached at gherbi@ece.concordia.ca.

Ferhat Khendek received an Engineer degree in Computer Engi-
neering, option Software, from the University of Tizi-Ouzou, Algeria,
in 1986, the M. Sc. and Ph. D. degrees in Computer Science from
the University of Montreal in 1989 and 1995 respectively. During his
Ph. D studies, he held a research fellowship from the IBM Center
for Advanced Studies in Toronto. Currently, Ferhat Khendek is an
Associate Professor with the Electrical and Computer Engineering
Department at Concordia University. In July 2001, he has been ap-
pointed Concordia Research Chair in Telecommunication Software
Engineering. During the 2001/2002 academic year he was on a sab-
batical leave with Ericsson Research Canada. Ferhat Khendek is a
member of l’Ordre des Ingenieurs du Quebec (OIQ), Communica-
tion Society, IEEE Computer Society, and the SDL Forum Society.
He can be reached at khendek@ece.concordia.ca.

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 169

mailto:gherbi@ece.concordia.ca
mailto:khendek@ece.concordia.ca

