
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Kent, Stuart and Evans, Andy and Rumpe, Bernhard (1999) UML Semantics FAQ. In: ECOOP'99
Workshop Reader.

DOI

https://doi.org/10.1007/3-540-46589-8_3

Link to record in KAR

https://kar.kent.ac.uk/21726/

Document Version

UNSPECIFIED

UML Semantis FAQ

Stuart Kent, Andy Evans and Bernhard Rumpe:
editors on behalf of the pUML group

pUML�york.s.a.uk,
WWW home page: http://www.s.york.a.uk/puml

Abstrat. This paper reports the results of a workshop held at ECOOP'99.
The workshop was set up to �nd answers to questions fundamental to the
de�nition of a semantis for the Uni�ed Modelling Language. Questions
examined the meaning of the term semantis in the ontext of UML; ap-
proahes to de�ning the semantis, inluding the feasibility of the meta-
modelling approah; whether a single semantis is desirable and, if not,
how to set up a framework for de�ning multiple, interlinked semantis;
and some of the outstanding problems for de�ning a semantis for all of
UML.

Introdution

This paper desribes the results of a workshop held at ECOOP 1999, in Lisbon.
The aim of the workshop was to identify and answer key questions onerning the
semantis of the Uni�ed Modelling Language (UML [8℄). A list of the questions
disussed here is given below:

1. What does the term semantis mean in the ontext of UML?
2. Why is it desirable to make semantis for UML expliit? What are the dif-

ferent ways in whih a UML semantis might be made expliit?
3. Is a preise semantis desirable? For what purpose?
4. What is the urrent status of UML semantis? What are the referene do-

uments?
5. Should UML have a single semantis? Should UML have a single ore se-

mantis?
6. Is it possible to express a semantis of UML in UML (the meta-modelling

approah)?
7. Is it feasible to onstrut a semantis for all of UML? What are the main

outstanding issues?

Spei� aspets of UML were explored in attempting to answer these ques-
tions. There was broad agreement on questions 1-4; it was generally felt that
individual ontributions submitted before the workshop ould be polished in
answer to these questions. Partiipants broke out into groups to disuss the
remaining three questions. Two groups onsidered the last question by explor-
ing two spei� areas of UML, respetively: onurreny, events, and dynami
behaviour in general; and aggregation.

2 pUML group

This report is a snapshot of the state of a�airs at the time. The UML Seman-
tis FAQ will ontinue to be maintained by the pUML group, who enourage
ontributions from pratitioners and aademis interested in the UML as a stan-
dard modelling language. To this aim we are ontinuing to organise workshops
at major onferenes suh as ECOOP and OOPSLA. However, this does not
prelude other forms of ontribution: it is always possible to improve urrent
statements or add new topis. If you have any omments, or would like to o�er
alternative answers or suggest lari�ations to existing ones, then please visit
the website of the preise UML group (pUML), loated at

http://www.s.york.a.uk/puml

where an updated FAQ will be maintained.

Q1. What does the term semantis mean in the ontext of
UML?

Bernhard Rumpe, Tehnishe Universit�at M�unhen, Germany
Stuart Kent, University of Kent at Canterbury, UK
Andy Evans, University of York, UK
Robert Frane, Colarado State University, USA

Q1.1. What does the term semantis mean at all?

Today, a lot of onfusion arises from the fat that the word \semantis" itself has
many di�erent semantis! Developers tend to use the word \semantis" when
they talk about the behavior of a system they develop. This kind of usage is
almost ontraditory to the semantis in sienti� areas like Mathematis or
Logi. There, \semantis" is a synonym for \meaning" of a notation { this is
regardless of whether this notation deals with struture or behavior.

Basially, a semantis is needed if a notation (syntax) is given or newly
developed, and its meaning needs to be de�ned. Almost all approahes de�ne
the semantis of its elements by relating it to another already well understood
language.

This is omparable to natural languages. For example Chinese an be (roughly)
understood if a Chinese-English ditionary is available. Of ourse grammar, or
the de�nition of how elements of a language are modi�ed and grouped together,
also need to be mapped.

In omputer siene, the pattern is similar. A new language is given a meaning
in three steps:

1. de�ne preisely the syntax of the new language, whih haraterises all the
possible expressions of that language

2. identify a well understood language, herein alled the semantis language,
and

3. de�ne a mapping from expressions in the syntax of the new language to the
semantis language.

UML Semantis FAQ 3

The semantis language is often alled the semantis domain. The mapping
from syntax to semantis is usually intensional rather than extensional, whih
means that the mapping is not expliit, but by example. If a language is to be
automatially proessed and/or be unambiguous then the syntax, the semantis
language, and mapping from one to the other must be ompletely, preisely and
unambiguously de�ned.

Q1.2. What is speial about UML semantis?

UML does have some spei� harateristis, whih makes the task of semantis
de�nition interesting:

1. a substantial part of UML is visual/diagrammati.
2. UML is not for exeution, but for modeling, thus inorporating abstration

and underspei�ation tehniques.
3. UML is ombined of a set of partially overlapping subnotations.
4. UML is of widespread interest.

Whereas the last issue leads to the soiologially interesting question, how
to reah agreement for a semantis de�nition, the other three topis lead to
problems of a tehnial nature.

The fat that a large part of UML is diagrammati makes it somewhat more
diÆult to deal with its semantis, but it is no problem in priniple. Currently, its
semantis is explained in English: UML semantis is ambiguous and impreise.
We speak of a formal or preise semantis for UML if the semantis domain of
this translation is a formal language and { very important { the translation itself
is preisely de�ned. This goal an be ahieved, as several graphi formalisms,
like Stateharts, Petri-Nets, or dataow-diagrams have shown. The �rst step for
UML is to preisely de�ne its syntax. In the standard, this has been done by
using the meta-model approah, whih in the UML douments is mainly used
to desribe the abstrat syntax of the UML [8℄ itself. Thus a meta-model for
diagrams replaes the abstrat syntax tree of textual notations.

The usage of UML as a modeling language and not as a programming lan-
guage has an important impat that is often poorly reognized. A UML model is
an abstration of the real system to be developed. The model is used to apture
important properties, but to disregard unimportant ones. As an e�et, a UML
model typially has a set of more than one possible implementation. A seman-
tis de�nition must reet this by making the underspei�ation of the model
expliit.

Third, the UML is omposed of a set of notations that partially overlap. For
example [4℄ shows how (a subset of) the state diagram notation an be used
to express the same information that ould be expressed in terms of pre/post
onditions on operations in a lass diagram; but there are other aspets of state
diagrams whih an not. This adds an extra problem, as semantis de�nitions
for eah of the UML notations need to be onsistent with eah other. Only then
will an integrated use of these notations be feasible. To hek the onsisteny

4 pUML group

of semantis de�nitions, it is neessary either to have a ommon semanti do-
main for all of them, or to establish preise mappings between di�erent semanti
domains.

A more detailed disussion of these topis an be found in [13℄.

Q1.3. What is a UML semantis good for?

Semantis of UML is a means to understand how UML should be used, and
to ensure that when UML models are ommuniated there is a ommon shared
understanding of what they mean. On the other hand, the atual pratie of
applying UML is neessary to get a feeling for it. A semantis de�nition is a ne-
essary prerequisite, but ertainly not suÆient. Furthermore, it is not neessary
to understand the omplete language to start using it.

Semantis is a vehile for people who speak the same semanti language D

(formal or informal) to disuss ertain UML subtleties and improve the notation
and use of UML in terms of D .

Semantis an be for automating ertain tasks by mahine: for example, tools
whih an do more than simply proess syntax, suh as simulating or (partially)
exeuting models, heking models are onsistent, et.

It is important to larify the purpose of a semantis de�nition. There may
be di�erent semantis de�nitions to suit di�erent purposes: the de�nition for
explaining semantis to users of the notation may be di�erent to that required
to perform sophistiated automati proessing tasks, and both may be di�erent
to a semantis de�nition whose purpose is to demonstrate properties about the
language, suh as a measure of how expressive it is ompared to other languages.

Q1.4. Common misunderstandings about semantis

The UML douments ontain a paper alled the \Semantis of UML". However,
this paper does not fous muh on semantis, but mainly on syntati issues.
The meta-model of UML gives a preise notion of what the abstrat syntax is.
However, it urrently does not ope with semantis. Analogously, the seman-
tis of C++ an not be understood from the ontext free grammar (without
knowledge of similarly strutured languages).

Furthermore, ontext onditions are by no means semanti onditions, but
purely onstrain the syntax. They give well-formedness rules, e.g. eah variable
must be de�ned before use, without telling you what a variable is. In the UML
ase, ontext onditions are usually explained using OCL. A ontext ondition
tells us what is onstrained, not why it is onstrained. The latter is a task of the
semantis de�nition.

As explained earlier: semantis is not behavior. A strutural desription teh-
nique, like lass diagrams, need an adequate semantis in the same way as do
behavior desription tehniques.

UML Semantis FAQ 5

Q2. Is a preise semantis desirable? For what purpose?

Stuart Kent, University of Kent at Canterbury, UK
Bernhard Rumpe, Tehnishe Universit�at M�unhen, Germany
Andy Evans, University of York, UK
Robert Frane, Colarado State University, USA

Q2.1. Degrees of preision

A semantis de�nition onsists of three parts:

1. de�ne the syntax,
2. de�ne the semantis domain, and
3. de�ne the semantis mapping, as a relationship between syntax and seman-

tis domain.

The degree to whih eah of these three parts is made expliit and/or preise
may vary. Whenever a natural language, like English, is involved, we speak of
an informal semantis de�nition.

The semantis de�nition gains muh on preision, if at least its syntax is
preisely de�ned. One an distinguish between a onrete and an abstrat syn-
tax. A onrete syntax provides the rules for stating exatly how the language
will appear when written; the abstrat syntax identi�es the main onepts onto
whih the onrete syntax maps. These onepts are then given a semantis. For
example, the following equations de�ne the onrete syntax for numerals:

Charater � Digit = f000;0 10;0 20;0 30;0 40;0 50;0 60;0 70;0 80;0 90g
String � Numeral = Digit [fd _ n j d 2 Digit ^ n 2 Numeralg

The onrete syntax talks about onrete things: digits are haraters, numerals
are strings. In an abstrat syntax we would just assume that we have a set
Numeral of arbitrary tokens. The semantis would map members of this set
uniquely to the natural numbers in the (well understood) mathematial language
of arithmeti.

For UML, and other diagrammati languages, the trend has been to de�ne an
abstrat syntax. So, rather than, say, talk about boxes and lines between them
(the equivalent of digits and strings) the syntax talks about lass and assoiation.

For textual languages, a ontext free grammar (BNF) is used, though this
an be viewed as just a short hand for set theory. There is no reason why similar
tehniques ould not be used to desribe both the onrete and abstrat syntax
for diagrammati languages suh as UML. The UML standard has hosen to use
a meta-modelling approah based on lass diagrams to haraterise the abstrat
syntax of the language. The onrete syntax seems only to be de�ned by example.

A preise de�nition of the semantis domain is usually given either by ex-
pliitly de�ning the notion of \system" using mathematial terms, or by using a
formal language, like Z or Objet Z, as the semantis language. However, prei-
sion does not require the language to be mathematial in the traditional sense.

6 pUML group

Finally, to get a fully preise semantis, the semantis de�nition must also
be represented preisely. This is feasible using mathematis, as done many times
for other notations. The mappings an also be enoded in a meta-model | see
FAQ 5 for details.

An alternative way to write down the mapping is algorithmially | a reipe
for onverting expressions in the (abstrat) syntax to expressions in the seman-
tis language. This would be useful where it is intended that the mapping is to
be automated, for example where the semantis domain is an OOPL suh as
Java, and the mapping orresponds to ode generation. Unfortunately, using a
programming language as a semantis domain leads to a severe problem whih
needs to be onsidered: any model de�ned in an exeutable langauge an only
desribe one implementation and therefore annot exhibit any form of under-
spei�ation. As disussed earlier, modeling languages like UML need to allow
underspei�ation. Thus ode generation neessarily involves a seletion of one
of the possible implementations { possibly a wrong one.

Q2.2. Abstration versus preision versus detailedness

In the UML referene book [12℄ there is a detailed de�nition of the nature and
purpose of models given. Abstration is mentioned there as a key onept to
yield understandable models, onveying the essentials of a view.

Di�erent levels of abstration allow information to be revealed about the
systems on di�erent levels of detailedness. So abstration and detailedness are
omplementary { adding details makes a model less abstrat. However, the word
\preision" is ambiguous in that ontext. Sometimes it refers to the amount
of details a model has and sometimes it is used as the degree of formality the
modeling notation has. These two kinds of \preision" need to be distinguished.
\Preision of a notation" refers to the preision of the de�nition of its syntax and
semantis and is the same for all models, not to the amount of detail inluded
in the model.

Physis gives us a good example. \About 42" is a vague de�nition for a num-
ber, it is neither very detailed nor preise. One annot exatly determine whether
41.7 is inluded or not. \About 41:34" is more detailed, but still not preise. It
seems likely that 41:7 is exluded, but we annot be sure, if we don't preisely
know what \about" means. Physis gives us a preise tehnique: \42:0" deter-
mines the exat interval [41:95; 42:05℄. The notation is fully preise, but we an
make it more detailed: \42:010" is a speialization onveying [42:0095; 42:0105℄.

Of ourse this example is simple ompared to the situation with UML. How-
ever, it is important to reognize that with the UML we an speify preisely,
but still in an abstrat manner, using underspei�ation wherever appropriate.

Q2.3. Why is preision important? What do you lose?

A Benhmark A preise semantis provides an unambiguous benhmark against
whih a developer's understanding or a tool's performane an be measured:

UML Semantis FAQ 7

Does the developer use the notation in ways whih are onsistent with the se-
mantis? Does a tool generate ode as the semantis would predit, or does it
hek the onsisteny of a model in aordane with the semantis?

Mahine Proessing For a mahine to proess a language, that language must
be de�ned preisely. If it is to perform semantis-oriented tasks, then its seman-
tis must be de�ned preisely. Examples of semantis-oriented tasks are: model
simulation or (partial) exeution; heking that di�erent views on a model (lass
diagrams, invariants, state diagrams, sequene diagrams, et.) are onsistent
with one another; heking that the behaviour of a superlass is preserved in a
sublass; and so on.

Establishing properties of the syntati language Some important, but
nevertheless largely negleted, issues in de�ning semantis are wrapped up in the
question: Is the semantis mapping appropriate? Let us assume we denote the
syntati notation by N, the semantis domain D and the semantis mapping as
funtion

S : N ! D :

By de�ning S preisely, we an use mathematis to prove properties about the
syntati language. For example, let us assume ; 2 D desribes the invalid (or
non-implementable) system, then it is an important result if we an show the
following property:

for all models m 2 N it holds that S(m) 6= ;

Another test of the appropriateness of a semantis de�nition is the question
regarding what it distinguishes and what it identi�es. Is the following possible:

there are models m1;m2 2 N with m1 6= m2; but S(m1) = S(m2)

Models that only di�er in loal variables should indeed have idential semantis,
as the semantis should not rely on hidden or loal properties. On the other hand,
does the semantis distinguish models that are inherently di�erent in nature?

Of greatest interest is the transfer of re�nement, abstration, omposition and
similar tehniques from the semanti domain to the syntati domain. Assume
 denotes a re�nement relation on the semantis domain. Then it would be
interesting to de�ne transformation tehniques T : N ! N on the syntax with
the following property:

for all models m 2 N it holds that S(m) S(T (m))

If this property is ensured one and for all models, then the transformation T

an be applied, and we an be sure to get a re�nement as a result, without
dealing expliitly with the semantis anymore.

Thus representing the semantis mapping S preisely allows the notation
developer to prove properties on his/her notation and assoiated development

8 pUML group

tehniques, suh that the user of the notation later need not expliitly deal with
the semantis anymore. The syntati transformations may also be built into
automated tools to support the developer.

Having a Chinese-English translation at hand, I begin to learn Chinese words,
but also how to build useful Chinese sentenes. When I have learnt to do this
I an diretly deal with Chinese, without any translation to English anymore.
This is the ultimate goal of a semantis de�nition.

Losses De�ning a preise semantis is hard work and time onsuming. If the
only purpose of the semantis is to show developers (roughly) how to use the
notation, it ould be argued that a preise semantis is not neessary. This is
probably not (or will not be in the near future) the ase with UML.

A preise semantis an also be hard to read, espeially if it is written in a
hard to understand mathematial language. We believe this an be mitigated
in three ways: (1) develop a preise, yet rather widely agreed, semantis; (2)
develop a referene implementation of that semantis that an be used atively
by developers and tool builders to gain a deep understanding, rather like how a
programmer gets to understand a programming language by writing programs,
ompiling them (heks that their programs are syntatially and type orret)
and observing the e�ets when they are exeuted (heks their understanding
of the semantis against what atually happens); and (3) write an informal
semantis to omplement, not replae, the preise one. It is important to stress
that (3) is an exerise in explaining the semantis, it is not that e�etive in
de�ning the semantis.

Q3. What is the urrent status of UML semantis? What
are the referene douments?

Martin Gogolla, Mark Rihters and Oliver Radfelder,
University of Bremen, Germany

The urrent status of the UML semantis is that it is deribed in an informal
manner. The `UML Notation Guide' doument gives an overview on the on-
epts, and the `UML Semantis' doument presents the abstrat syntax together
with ontext-sensitive onditions in form of lass diagrams and OCL expressions.
Both douments as well as the semi-oÆial books by Booh, Rumbaugh, and Ja-
obson do not use formal tehniques for explaining the semantis.

Conerning the referene douments, when studying the UML and espeially
the UML semantis, one has to take into aount the oÆial OMG UML de�ni-
tion, espeially the `UML Notation Guide' and `UML Semantis' douments. But
the problem is that the UML is an evolving language. Therefore many versions of
these douments exist. The urrent version is version 1.3 [8℄ but there is already
a all for ontributions for version 2.0. In addition, there are also many books
and papers on the subjet, inluding the semi-oÆial ones by Booh, Rumbaugh,

UML Semantis FAQ 9

and Jaobson, espeially the `UML Referene Manual'. Beause of publiation
lead times, laziness of researhers and so on, one has to be very areful when
reading a paper or book to identify on exatly whih version of the UML it is
based.

For example, one is likely to ome up with a very di�erent semantis for
signals, depending on whether you read the UML standard or the three amigos
referene guide:

{ Signals ... have no operations.
UML Notation Guide, Version 1.3, page 3-138, line -4..-2.

{ A signal ... may have operations.
UML Referene Manual, page 428, line 3.

In our view, semantis work must only use the oÆial UML de�nition, whih
an be obtained from the OMG pages at http://www.omg.org, must try to use
the latest version possible, and must make it lear whih version has been used.
And, as an aside, the author for this doument is the OMG, not Booh, Jaobson
and Rumbaugh.

Finally, anyone working on UML semantis should look up existing work in
this area. An up-to-date bibliography is maintained at

http://www.db.informatik.uni-bremen.de/umlbib/.

Also see the pUML web pages.

Q4. Should UML have a single semantis? Should UML
have a single ore semantis?

John Howse, University of Brighton, UK
Shusaku Iida, Japan Advaned Institute of Siene and Tehnology (JAIST)
Rihard Mithell, InferData Corp, USA and University of Brighton, UK
Bernhard Rumpe, Tehnishe Universit�at M�unhen, Germany

The advantage of having a single, standard semantis for UML is that it is easier
for one person to understand another person's UML models. The advantage of
having a variety of semantis is that you an hoose what works best in your
urrent projet. We believe it is possible to support both standardisation and
variation. Therefore, we answer 'no' to the question 'should UML have a single
semantis?' The following setions elaborate on this answer. First, we explore
a world in whih variety is allowed. Then we explore how it ould be atively
supported.

Q4.1. Who an give UML a semantis?

In pratie, there are many individuals and groups who an ontribute to dis-
ussions on the semantis of UML, and many ways for them to disseminate their
proposals. Here are some:

10 pUML group

Who? Disseminate how?
OMG task groups UML douments
The three amigos Books
Tool vendors Tools
Methodologists Books, Researh papers
Development teams Shared experiene

As long as no single group or individual has ontrol of the semantis of UML,
there will be a variety of semantis for UML. Some will be more popular than
others, meaning that more people understand them and use them. Popularity
would be inuened by a number of fators, inluding:

{ the fame and power of those proposing a partiular semantis (for example,
you might pay partiular attention to proposals from an OMG group)

{ strengths and weaknesses of a partiular semantis as highlighted by sien-
ti� researh (for example, a semantis with proven aws might beome less
popular)

{ strengths and weaknesses of a partiular semantis as highlighted by prati-
al experiene (for example, you might be inuened by favourable reports
from several large projets)

{ the e�etiveness of tool support (the availability and quality of tools might
inuene your hoie).

In pratie, if variation was supported, we would expet there to be parts of UML
for whih there is widespread (but not universal) agreement on the semantis,
and other parts for whih there is less agreement.

And �nally in this setion, it is appropriate to note that UML is extensible,
through suh mehanisms as stereotypes. Modelers who introdue their own
stereotypes must de�ne the semantis of their models. Therefore, the problem
we address in the next setion must be addressed even if the UML ommunity
opts for entral ontrol of semantis.

Q 4.2. How an we support variation?

There are two parts to our answer to the question of how an we provide sup-
port for a variety of semantis for UML. The �rst onerns a style of writing
semantis. The seond onerns a way of organizing shared semanti models. For
us, supporting variation inludes both supporting the sharing of parts of UML,
when that is appropriate, and supporting di�erent variants of UML, when that
is helpful.

A semantis for a language, L, maps elements of L to some other language,
S, using a semanti funtion. The language S desribes a semanti domain. A
semanti funtion ould map elements of L to elements of S. Alternatively, a
semanti funtion ould map eah element of L to a set of elements of S, yielding
a set-based semantis, illustrated in Fig. 1.

A set based approah to de�ning semantis has a number of advantages.
First, it helps to make any underspei�ation in a UML model expliit. The

UML Semantis FAQ 11

Semantic function

A single
element of the
semantic
domain

Meaning given
by a set in the
semantic domain

A UML
construct
needing a
meaning

Super

Sub

A semantic
domain

Fig. 1. Set-based Semantis for UML

more abstrat (i.e., underspei�ed) a UML model is, the more elements (imple-
mentable systems) an be found in the set. The more detailed a model is, the
fewer elements an be found.

Seondly, a set based approah allows us to have variants of semanti de�-
nitions. For example, we ould build two di�erent semanti mappings suh that
the seond is a speialization of the �rst: for eah model, the semantis given by
the seond mapping is a subset of the semantis given by the �rst mapping.

Thus, a hierarhy of semantis de�nitions an be built, having a very gen-
eral standard semantis (whih has a lot of possible implementations), and very
speialized semantis for partiular projets.

We do expet that it will be possible to get large groups of people to agree
on a semantis for many parts of UML. How might suh agreement be onveyed,
whilst still allowing variation?We suggest that every UMLmodel has no meaning
until someone prefaes it with a de�nition of the semantis of the modeling
language (see Fig. 2). Think of the prefae as being a semanti de�nition of the
UML (hosen to be appropriate for your projet) that oneptually omes before
the model your projet is building.

Prefaes will be large douments. They ould be organized into a hierarhy of
pakages. Then a projet team ould begin with a popular pakage agreed by the
OMG that de�nes a ore of UML, and tailor it with a pakage from the vendor
of the tool they plan to use, then with a pakage that de�nes ompany-spei�
meanings to ertain parts of UML, and �nally with a pakage that de�nes the
projet's own variations.

Further details of how pakages might be used in this way an be found in
[2℄ from whih the illustrative diagram in Fig. 3 is taken.

12 pUML group

+ =

UML model preface
model with
meaning

Uh? Oh! Ah!

Fig. 2. Prefaes

OMG definition
of core UML,
version m.n

Toolsmith T's
extra

definitions

Toolsmith U's
extra

definitions

Developer D's
extra

definitions

Developer E's
extra

definitions

Project P's
extra

definitions

Project Q's
extra

definitions

These four
packages form
one preface

Fig. 3. A Hierarhy of Semantis Pakages

UML Semantis FAQ 13

Q5. Is It Possible to Express a Semantis of UML in UML
(the meta-modelling approah)?

Martin Gogolla, University of Bremen, Germany
Stuart Kent, University of Kent at Canterbury, UK
Tom Mens, Vrije Universiteit Brussel, Belgium
Mark Rihters and Oliver Radfelder, University of Bremen, Germany

Our answer to this question is: Yes, this is possible for a large part of UML. We
all this approah to de�ne the UML semantis the meta-modeling approah.

Q5.1. Why Use UML to Explain UML?

Before we show the details of this approah, we explain why we think it it useful
to express UML in terms of UML itself. If one wants to desribe the semantis of
a language Lstart, then one has to deal with at least one other language Ltarget,
whih is the language in whih the semantis is to be given. Thus in order to
understand the semantis one has to know both languages Lstart and Ltarget.

The main advantage we see in the meta-modeling approah is that people
wanting to understand the semantis of UML do not have to learn another
language Ltarget. They just see the language whose features they want to see
explained and use it for the translation. Proeeding this way, people who are
not experts in formal semantis or formal spei�ation languages will be given
the hane to reason about UML without the burden of learning another lan-
guage Ltarget.

The main danger of this approah, however, lies in the question of whether
the expressive power of UML is suitable to express its semantis. We argue that
a large part of UML an be expressed in this way but we urrently do not
know whether all UML features an be treated. On the other hand, it is also a
demanding and interesting question for us to see whih parts of UML an be
transformed into UML and whih parts not. Another danger of the approah is
the possibility that onfusion may arise beause there is only one single language:
one has to point out very learly whether one is speaking of (1) a UML element
whih is urrently being translated or (2) a UML element whih ours as the
result of the translation.

Q5.2. Central Steps of the Approah

We now show the main steps to be taken for our meta-modeling approah. The
general idea is presented in Fig. 4.

1. The �rst step to be taken is to develop the syntax of the ore meta-modelling
langauge, whih is akin to what has been dubbed the MOF, essentially a dia-
grammati modelling language for de�ning other languages (though we note
that the urrent MOF is not as preise as it should be, and muh larger
than it needs to be). It is desribed in some detail below. This language will

14 pUML group

Core Meta-modeling
Language

(Classes, roles, OCL)
Meta-Model

UML

Set theory

apply

Fig. 4. General Approah to Answer Q5

for sure inlude lass diagrams in whih lasses and binary assoiations are
allowed. As a entral desription vehile we will also use the Objet Con-
straint Language OCL. Important restritions on models must be expressed
by using OCL for lass invariants.

2. The seond step is to develop the semantis of this ore. As Fig. 4 shows, we
propose to use set theory as the basis for the semantis. For us, set theory is
the most natural hoie here, beause it is a widely aepted and the most
popular formal foundation. Of ourse there are other approahes around (like
temporal and dynami logi, algebrai spei�ation, streams, proess theory,
et.) with advaned properties, but the drawbak of these approahes are
that they are hard to learn or that there is at least an additional learning
e�ort for the average UML modeler. It is also important to note that the
ore should be kept as small as possible. It should be possible to gain an
intuitive, yet unambiguous, understanding of the language without having
to read its preise, set theoreti de�nition.

With referene to FAQ 4, the ore meta-modeling language and its semantis
onstitute a prefae.

3. The third step is to produe a meta-model desription of the set theoreti
semantis of the UML ore, using the UML ore itself. This will inlude
onepts suh as objet on�guration or snapshot, whih will ontain objets
and links, et.

4. The fourth step of the meta-modeling approah is to transform the syntax of
the omplete UML language along the lines presented in the UML semantis
doument into the UML meta-model, i.e. into an abstrat syntax. This step
onverts eah onrete syntati element into an element of the UML meta-
model.

UML Semantis FAQ 15

5. The last step is to relate the meta-model desription of the syntax to the
meta-model desription of the semantis. This an be done diretly (e.g. as
is done for the UML ore) or indiretly.

Diretly Syntati onepts are assoiated with semanti onepts. Thus
models are assoiated with snapshots and traes (sequenes of snapshots,
interspersed with ation invoations), and OCL onstraints are written
to ensure that all the semanti mapping rules are in plae, e.g. that, in a
snapshot, the number of links from an objet of lass A to objets of lass
B via assoiation ab, must lie between the ardinality bounds imposed
on ab. Or that the ordering of ation invoations in a trae math the
ordering of ations in sequene diagrams, that the transformation in
snapshots through a trae satisfy the pre and post onditions of the
ations involved, and so on. More detailed desriptions of this approah
an be found in [6, 5℄.

Indiretly Features of the meta-model haraterization of the UML ab-
strat syntax are mapped into the meta-modeling ore developed before.
A very simple example for a transformation of UML language features
into the meta-modeling ore is given by Fig. 5. This shows how expliitly
notated multipliities in lass diagrams an be transformed equivalently
into a more basi lass diagram without the mulipliities but with an
additional restriting OCL invariant. The OCL formula (using a slight
generalization of <=) requires that all instanes of lass A are onneted
to at least low and at most high objets of lass B. An example of de�ning
aspets of UML within UML an be found in [7℄

rb
A Blow..high A B

rb
*

context A inv:
low <= self.rb->size <= high

Fig. 5. Transformation of Multipliities into OCL Invariant

The grey retangles and the grey arrows in Fig. 4 indiate that both the ore
meta-model and the UML meta-model ould be extended in a bottom-up manner
so that more advaned features beome available for meta-modeling. Suh ex-
tensions ould even be iterated, i.e. there ould be extensions relying on already
de�ned extensions.

Q5.3. Features of the meta-modeling Core

In Fig. 6 we have displayed the main features of the meta-modeling ore in some
detail as a lass diagram. Roughly speaking, the upper part shows lasses respon-
sible for a generi desription of UML language elements, also alled desriptor

16 pUML group

Classifier

AssocEnd

Association

Object

LinkEnd

Link

Instance
Element

Descriptor
Element

Model
(Diagram)

Instance
(Diagram)

Package

Collaboration

Interaction

1

*

2..*

1

1

*

2..*

1

1

*

* *

*

*
* *

Fig. 6. The basis of the meta-modeling Core

elements in the UML. The lower part desribes lasses responsible for instanti-
ations of the generi elements, also alled instane elements in the UML. The
upper and lower part are linked by (binary) assoiations establishing the on-
netion between generi desriptor elements and instane elements by desribing
whih elements of the instane level belong to whih element of the generi level.
(Note that onepts of desriptor and instane element do not urrently appear
in the standard UML meta-model { we believe they must.)

For example, the upper part mentions lassi�ers (i.e. in partiular lasses)
and the lower part mentions objets. One lass in an appliation domain (e.g.
the lass Person) will be desribed by one objet of lass Classi�er. For a onrete
system state, eah Person instane, i.e. eah Person objet, will be represented
by an objet of lass Objet. The information that an instane in a onrete
system state belongs to lass Person will be provided by a link belonging to the
assoiation between InstaneElement and DesriptorElement.

Note that the meta-modeling ore only inludes very basi modeling fea-
tures (i.e. lasses, binary assoiations and the Objet Constraint Languge). The
ore does not inlude UML lass diagram language features urrently in ontro-
versial disussion (ontroversial at least from the formal semantis point of view
{ see FAQ 6) suh as aggregation and omposition.

UML Semantis FAQ 17

Q5.4. What an be Treated Niely? Where are the Problems?

The ideas presented above an be applied to a variety of UML diagram forms.
In general, we have the feeling that the approah works well for stati and
basi dynami aspets in UML, but we are unsure about the advaned dynami
aspets. The approah works for:

{ Language features of the UML ore language,
{ Pre- and postonditions formulated in OCL as part of lass diagrams,
{ Advaned lass diagram features like aggregation and omposition,
{ A subset of statehart diagrams,
{ Combinations of ertain ations in statehart diagrams like parallel ompo-

sition and onatenation, and
{ A subset of sequene and ollaboration diagrams.
{ Model (pakage) extension and re�nement (at least partially).

Areas with UML diagram features where problems are expeted and further
intensive researh must take plae are:

{ Conurreny,
{ Events and triggering,
{ Ative objets,
{ Full treatment of re�nement, and
{ Deployment.

Q6. Is it feasible to onstrut a semantis for all of UML?
What are the outstanding issues?

The �rst of these questions an only be answered onstrutively: the answer will
be unknown until a semantis for all of UML is onstruted. However, the more
that is onstruted the more on�dent we an be of a positive answer. The best
that an be done, then, at this stage, is to examine the urrent state of a�airs
[8℄, and identify the plaes where it is inomplete, ambiguous or inonsistent.
Improvements have been suggested where possible.

Q6.1. Dynami behaviour and onurreny

Roel Wieringa, University of Twente, the Netherlands
Egidio Astesiano and Gianna Reggio, Universita' de Genova, Italy
Alain Le Guenne, IRISA, Frane
Heinrih Hussman, TU Dresden, Germany
Klaas van den Berg, Pim van den Broek, University of Twente

The issues disussed below rely upon an understanding of the distintion between
ative and passive (lasses) objets. An ative objet is de�ned as one that has
its own thread of ontrol, a passive objet is de�ned as one that has not. This

18 pUML group

means, roughly, that an ative objet has its own ow of ontrol to dispath
requests sent to it. A passive objet only performs a omputation within the
thread of ontrol of an ative objet. State mahines an be de�ned for ative as
well as passive objets, that onstrain the order in whih events an be handled
by the objet.

Objets ommuniate by means of all events and signal events, in whih,
respetively, an operation is alled or an asynhronous signal is reeived. In an
operation all, the aller alls an operation of another objet, the allee. Control
passes to the allee and returns when the allee has �nished performing the
body of the alled operation. This is alled run-to-ompletion (RTC) semantis.
A shape signal is a message sent by one objet to one or more other objets.
Communiation by means of signals is asynhronous: The aller an ontinue
proessing when the signal is sent. Eah ative objet has a queue of events that
have been reeived but not yet proessed.

Event Queue on ative objets. The event queue of an ative objet may
be emptied in any order. This opens the possibility that an event in the \queue"
is never proessed by the reeiving objet. A similar problem exists for the so
alled hange events, whih are hanges in a ondition of the model: these too
may be handled any time after their ourrene, or they may never be handled.
The onept of event queue should therefore be made more preise by inluding
a fairness requirement, whih says that every event in the queue will be handled
in a �nite time after it entered the queue.

Conurreny semantis of operations. An objet may reeive several opera-
tion alls simultaneously. The UML allows the de�nition of several onurreny
semantis for eah operation. One of these is the sequential semantis, whih
does not guarantee the integrity of the objet if several alls to this operation
our simultaneolusly; another is the onurrent semantis, whih guarantees
the integrity of the objet under any number of simultaneous alls of the op-
eration. But onsider two operations of an objet, one of whih is sequential
and the other onurrent, that both update the same variable. What happens if
both are alled simultaneously? Can the onurrent operation still maintain its
guarantee if the sequential operation messes up the objet? This suggests that
the onurreny semantis should not be a property of eah operation, but of
the objet as a whole, that applies to all its operations. This is on�rmed by one
remark in the UML doumentation that seems to suggest that a passive objet
ould be implemented by a monitor (page 2-149); but nevertheless, onurreny
semantis is delared for operations rather than for the omplete objet.

Ativity states. An ativity state of an objet is a state in whih the objet
performs a non-atomi omputation. It is de�ned by entering \do: ativity" in
the statehart node of that state. Ativity states open a an of worms:

UML Semantis FAQ 19

{ Can a passive objet have ativity states? We think not. Sine a passive
objet returns ontrol after performing a transition, the ativity of suh a
state would never be performed. For non-basi states in a passive objet,
however, ativities an be de�ned: During an inter-level transition in a state
hierarhy, ativities of non-basi states may be started, and when ontrol
leaves the passive objet, these ativities are terminated.

{ A state of an ative objet may have an ativity. When is this ativity
performed? If, after a step, the objet has another event in its queue, it will
immediately proeed proessing this event. But then the ativity has no time
to run.

{ When an objet is in an ativity state, it will perform the ativity de�ned
for the state. But this ativity may update loal variables (attributes). Does
this mean that some ative objets may never be in a stable state?

{ What happens if two onurrent basi states of an ative objet are both
running ativities? Can they update the same attributes? But then ativities
should have sequential, guarded or onurreny semantis just as operations
of passive objets have.

{ Suppose a state mahine enters a hierarhy of nested states, for all of whih
ativities are de�ned. A thread an only do one thing at a time. Is the ativity
of the superstate interleaved with that of the substates? Should it terminate
before the ativities of the substates ommene?

Managing redundant and/or oniting desriptions of dynami be-
haviour. The behaviour of an operation an be spei�ed in many overlapping
ways: Transitions on State Mahines, Collaborations and assoiated Interations,
AtivityCharts, pre/post onditions, via Methods, and so on. For example, one
an implement an operation by both a method and a state mahine transition.
The UML does not prohibit this. The method body may involve updates to state
variables that onit with ations triggered by the transition. And even if the
method and the transition ations do not onit, in whih order are the ations
in the method body and along the transition exeuted? Are they interleaved?
The desription on page 2.101 of the semantis doument is extremely vague on
this.

Further, a lass may have a state mahine but still have an operation that is
de�ned by a method rather than by a state transition in the mahine. In that
ase, the state mahine does not speify the set of all possible behaviors of the
lass instanes, ontra what is said about state mahines on page 2.136, namely
that eah state mahine spei�es all possible behaviors of the model element to
whih it is attahed.

The previous observation is ompounded by the fat that one objet may
have several state mahines (page 2.136). Again, what happens if these two
state mahines have oniting behaviors?

The query attribute. A query operation is an operation that does not update
its owning objet when alled. However, the operation may be realized by a

20 pUML group

method that nevertheless modi�es the state. An obvious �x to this inonsisteny
is to require the method to be read-only with respet to the owning objet. This
annot be statially heked, but we an deal with this similarly to what has been
done in the Ada semantis de�nition, namely by alling models that violate this
onstraint \erroneous" and leaving tools free to handle these errors in whatever
way.

However, this addition is not enough, for the operation an also (even ad-
ditionally) be realized by a transition in the state mahine of the objet; and
even if no update ations are triggered by the transition, the transition auses
a hange of state and this itself is an update. A query operation should not be
de�ned by a state transition.

Q6.2. Re�nement and extension

Tom Mens, Vrije Universiteit Brussel, Belgium

Intuitively, re�nement is a mehanism that allows us to gradually add more detail
to an arbitrary software artifat. In the ase of UML, these software artifats
ould be single model elements, parts of a diagram, an entire diagram, or even
ombinations of (parts of) several diagrams.

Unfortunately, there is some onfusion about the exat meaning of the term
re�nement. Some researhers spei�ally mean the relationship between model
elements at di�erent semantis levels, suh as analysis and design. Other re-
searhers only use stepwise re�nement to gradually add detail to software ar-
tifats within the same phase. Sometimes, a ombination of both is allowed as
well. Regardless of the exat de�nition, a well-de�ned notion of re�nement is
ruial in the software engineering proess, e.g., to provide better automated
tool support for forward engineering as well as reverse engineering.

In [8℄, there are essentially four di�erent Relationships that an be used as a
re�nement mehanism: Extend, Inlude, Generalization and Abstration.

{ The �rst two relationships are only meaningful in the ontext of use ase di-
agrams. A UseCase an be an extension of another one, whih is represented
by an Extend relationship, requiring an ExtensionPoint in the UseCase that
is being extended. A UseCase an also be inluded in another one, whih is
represented by an Inlude relationship.

{ Another important relationship for expressing some kind of re�nement is
Generalization, whih is de�ned between two GeneralizableElements (the
hild and the parent). Examples of GeneralizableElements are Classi�ers,
Assoiations, Stereotypes, and Pakages. A Generalization is a taxonomi
relationship between a more general element and a more spei� element.
The more spei� element is fully onsistent with the more general element
(it has all of its properties, members, and relationships) and may ontain
additional information. Generalization is a subtyping mehanism, i.e., an
Instane of the more general GeneralizableElement may be substituted by
an Instane of the more spei� GeneralizableElement. Generalization also

UML Semantis FAQ 21

serves as an inremental modi�ation or inheritane mehanism. The om-
plete desription of a GeneralizableElement is obtained inrementally by
ombining the desriptions of all its anestors.

{ Finally, an Abstration is a speial kind of Dependeny relationship that
relates two (sets of) elements that represent the same onept at di�erent
levels of abstration or from di�erent viewpoints. If the stereotype�re�ne�
is attahed to the Abstration, it spei�es a Re�nement relationship between
model elements at di�erent semanti levels, suh as analysis and design. The
exat mapping between these di�erent levels, however, is outside the sope of
the UML semantis. Alternatively, a �realize� stereotype an be attahed
to the Abstration to model stepwise re�nement. Again, the exat mapping
of suh a Realization is not spei�ed by the UML.

Many problems an be identi�ed with the way in whih UML deals with re�ne-
ment:

Unlear distintion between Re�nement and Realization. While the
de�nition of Re�nement seems to indiate that Re�nement serves spei�ally as
a relation between di�erent semanti levels, parts of [8℄ ontradit this view. For
example, there is a detailed desription of state mahine re�nement that spei�es
how a state mahine an be re�ned stepwise by gradually adding more detail.
On the other hand, Realization seems to overlap with Re�nement, sine it also
addresses the link between di�erent semanti levels (spei�ation and implemen-
tation). To avoid this onfusion, a lear distintion should be made between the
two kinds of Abstration. For example, Re�nement ould be reserved to express
the relation between elements at the same semantis level but at di�erent levels
of detail, while Realization ould be reserved to express the relation between
elements at di�erent semantis levels.

One of the reasons for the above onfusion is that the semantis of both Re-
�nement and Realization are not spei�ed by the UML. This task is left entirely
to the user or CASE tool developer. To �nd a ommonly aepted de�nition
for re�nement and realization, it might be useful to look at existing proposals
in the literature. For example, an automati link between sequene diagrams
and stateharts is proposed in [15℄. Similarly, in the researh ommunity of mes-
sage sequene harts [11℄ (a more sophistiated variant of sequene diagrams),
attempts are being undertaken to semantially link them to use ase diagrams.

Undesired interation between subtyping & inremental modi�ation.
Beause the Generalization relationship is atually used for two ompletely dif-
ferent purposes, subtyping and inremental modi�ation, it su�ers from a lak
of orthogonality. This leads to the problem that a GeneralizableElement an
only be inrementally modi�ed by adding items to it, but not by deleting items
from it. Otherwise, the modi�ation will not be substitutable anymore for the
more general element. Nevertheless, in many situations it would also be useful
to inrementally remove items from a GeneralizableElement.

22 pUML group

The main reason for the above problem is that the UML has hosen for a
spei� variant of inheritane, namely subtype inheritane. As a result, other
interesting variants suh as implementation inheritane are exluded. In [3℄,
some strong evidene against subtype inheritane is provided. A possible so-
lution would be to separate the orthogonal aspets of Generalization (subtyping
and inheritane) into two di�erent relationships.

Lak of orthogonality between Re�nement and Generalization. Gener-
alization ould be regarded as a spei� kind of Re�nement. They are both used
to inrementally add more detail to a given element. The main di�erene is that
Generalization imposes an extra substitutability requirement. In the metamodel,
this ommonality should be reeted by de�ning Generalization as a speial kind
of Re�nement.

Extend and Inlude versus Generalization. While Extend and Inlude
are used as re�nement mehanisms for use ases, these use ases an also be
onneted by means of a Generalization relationship. The question arises whether
suh a Generalization relationship is still neessary between use ases. As an
answer to this question: the subtyping aspet of Generalization is probably still
useful for use ases, but maybe the inremental modi�ation aspet is not, sine
it an be alternatively ahieved via Extend and Inlude. In any ase, the overlap
in funtionality between Generalization, Extend and Inlude leads to a lot of
onfusion.

Unlear de�nition of Generalization. While it is more or less lear how
Generalization is de�ned for lasses and interfaes (it is desribed in natural
language in [8℄), the same is not true for other GeneralizableElements suh as
Nodes, Components, Assoiations and Pakages. [8℄ does not speify how Gen-
eralization should be de�ned for these elements.

Saleability of Generalization. The basi notion of Generalization is fairly
primitive, beause it an only be applied to single GeneralizableElements. How-
ever, by using a Generalization relationship between Pakages it beomes pos-
sible to de�ne a re�nement of more omplex software artefats, sine Pakages
an be used to group arbitrarily omplex sets of ModelElements. The question
arises whether a general meaningful and useful de�nition an be given to the
notion of Generalization between Pakages.

Re�nement of UML diagrams. UML does not speify how entire diagrams
an be re�ned or realized. For example, when is a lass diagram a re�nement of
another lass diagram? The same question holds for all other UML diagrams.
Part of the problem is that the UML metamodel does not have an expliit
representation for eah kind of UML diagram. The metalasses Collaboration,

UML Semantis FAQ 23

Interation, StateMahine and AtivityGraph an be used for representing ol-
laboration diagrams, sequene diagrams, statehart and ativity diagrams, re-
spetively. However, there is no orresponding metalass for representing a lass
diagram, objet diagram, use ase diagram, et . . . Another problem is that the
existing metalasses that represent entire UML diagrams are de�ned as diret
sublasses of ModelElement. To be able to re�ne diagrams through Generaliza-
tion, they should at least be sublasses of GeneralizableElement. An even better
idea would be to de�ne them as sublasses of Model (a sublass of Pakage that
is intended to desribe the modeled system at a ertain level of abstration and
from a spei� viewpoint). An important open problem that remains is how
Generalization (or re�nement) should be de�ned for eah kind of diagram. For
di�erent UML diagrams, re�nement needs to be de�ned in a di�erent way. State
mahine re�nement will be de�ned in a ompletely di�erent way than, say, ol-
laboration re�nement or use ase diagram re�nement. For most kinds of UML
diagrams, there is urrently no lear or ommonly aepted idea of what re�ne-
ment should look like. It might be useful to look at other approahes (formal as
well as informal) where re�nement has already been investigated. Espeially in
the area of theoretial omputer siene, there is a signi�ant number of people
working on formal re�nement tehniques for many di�erent kinds of models, and
using many di�erent kinds of underlying formalisms. Many of these ideas might
be relevant to the UML.

Q6.3. Aggregation

Andy Evans, University of York, UK
Robert Frane, Colarado State University, USA
Guy Genilloud, Swiss Federal Institute of Tehnology
Brian Henderson-Sellers, University of Tehnology, Sydney, Australia
Perdita Stevens, University of Edinburgh, UK

Aggregation has long been a thorny issue; the problem is that there seem to be
so many subtle nuanes to the onept. In UML things appear to be more lear
ut at �rst: there are, essentially, two forms, represented by the blak diamond
and white diamonds. The intention would be to partition all whole-part rela-
tionships into two distint, non-overlapping and exhaustive kinds. Furthermore,
examination of the standard suggests that the blak diamond was intended to
have preise semantis, whilst the white one was probably intended to over all
the other ases (of whole-part).

Although the semantis of the blak diamond should not be diÆult to pro-
vide (the UML standard suggests a deletion semantis, where, if the whole is
opied or destroyed, the parts are as well), a semantis for the white diamond
will open the same an of worms that have been opened in the past, whih, in
turn, may raise questions about whether the blak diamond is a useful or appro-
priate onept to treat as a speial ase. Problems with the de�nitions of UML's
blak and white diamonds are disussed further in [9℄. Attempts to tease out the

24 pUML group

various subtle aspets of whole-part are provided in e.g. [1, 16, 9℄. Attempts to
formalize suh analyses are provided in e.g. [14, 10℄.

Referenes

[1℄ F. Civello. Roles for omposite objets in objet-oriented analysis and design.
In OOPSLA'93 Conferene Proeedings, ACM SIGPLAN Noties 23:10, Otober
1993.

[2℄ S. Cook, A. Kleppe, R. Mithell, B. Rumpe, J. Warmer, and A.Wills. De�ning uml
family members using prefaes. In C. Mingins and B. Meyer, editors, Proeedings
of TOOLS Pai� 99. IEEE Press, 1999.

[3℄ W.R. Cook, W.R. Hill, and P.S. Canning. Inheritane is not subtyping. ACM
Transations on Programming Languages and Systems, pages 125{135, 1999.

[4℄ Desmond D'Souza and Alan Wills. Objets, Components and Frameworks With
UML: The Catalysis Approah. Addison-Wesley, 1998.

[5℄ A.S. Evans and S. Kent. Meta-modelling semantis of UML: the pUML approah.
In B. Rumpe and R.B. Frane, editors, 2nd International Conferene on the Uni-
�ed Modeling Language, 1999.

[6℄ Robert Geisler. Preise UML semantis through formal metamodeling. In Luis
Andrade, Ana Moreira, Akash Deshpande, and Stuart Kent, editors, Proeedings
of the OOPSLA'98 Workshop on Formalizing UML. Why? How?, 1998.

[7℄ Martin Gogolla and Mark Rihters. Equivalene rules for UML lass diagrams.
In Pierre-Alain Muller and Jean B�ezivin, editors, Proeedings of UML'98 Inter-
national Workshop, Mulhouse, Frane, June 3 - 4, 1998, pages 87{96. ESSAIM,
Mulhouse, Frane, 1998.

[8℄ Objet Management Group. UML spei�ation version 1.3. Tehnial Report
ad/99-06-08, June 1999.

[9℄ B. Henderson-Sellers and F. Barbier. Blak and white diamonds. In B. Rumpe
and R.B. Frane, editors, 2nd International Conferene on the Uni�ed Modeling
Language, 1999.

[10℄ B. Henderson-Sellers and F. Barbier. What is this thing alled aggregation? In
R. Mithell, A.C. Wills, J. Bosh, and B. Meyer, editors, TOOLS29, pages 216{
230. IEEE Computer Soiety Press, 1999.

[11℄ E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on message sequene
harts (ms'96). Tutorials at First Joint Conferene FORTE/PSTV'96, Kaiser-
slautern, Germany, Otober 1996.

[12℄ James Rumbaugh, Ivar Jaobson, and Grady Booh. The Uni�ed Modeling Lan-
guage Referene Guide. Addison-Wesley, 1998.

[13℄ Bernhard Rumpe. A note on semantis (with an emphasis on UML). In Haim
Kilov and Bernhard Rumpe, editors, Proeedings Seond ECOOP Workshop on
Preise Behavioral Semantis (with an Emphasis on OO Business Spei�ations),
pages 177{197. Tehnishe Universit�at M�unhen, TUM-I9813, 1998.

[14℄ Monika Saksena, Robert Frane, and Maria Larrondo-Petri. A haraterization of
aggregation. In C. Rolland and G. Grosz, editors, Proeedings of OOIS98, pages
11{19. Springer, 1998.

[15℄ S. Shnnberger and R.K. Keller. Algorithmi support for model transformation
in objet-oriented development. Publiations of DIRO, August 1997.

[16℄ M. Snoek and G. Dedene. Existene dependeny: the key to semanti integrity
between strutural and behavioural aspets of objet types. IEEE Trans. Software
Eng., 24(4):233{251, 1998.

