
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Kent, Stuart and Evans, Andy and Rumpe, Bernhard (1999) UML Semantics FAQ. In: ECOOP'99
Workshop Reader.

DOI

https://doi.org/10.1007/3-540-46589-8_3

Link to record in KAR

https://kar.kent.ac.uk/21726/

Document Version

UNSPECIFIED

UML Semanti
s FAQ

Stuart Kent, Andy Evans and Bernhard Rumpe:
editors on behalf of the pUML group

pUML�york.
s.a
.uk,
WWW home page: http://www.
s.york.a
.uk/puml

Abstra
t. This paper reports the results of a workshop held at ECOOP'99.
The workshop was set up to �nd answers to questions fundamental to the
de�nition of a semanti
s for the Uni�ed Modelling Language. Questions
examined the meaning of the term semanti
s in the
ontext of UML; ap-
proa
hes to de�ning the semanti
s, in
luding the feasibility of the meta-
modelling approa
h; whether a single semanti
s is desirable and, if not,
how to set up a framework for de�ning multiple, interlinked semanti
s;
and some of the outstanding problems for de�ning a semanti
s for all of
UML.

Introdu
tion

This paper des
ribes the results of a workshop held at ECOOP 1999, in Lisbon.
The aim of the workshop was to identify and answer key questions
on
erning the
semanti
s of the Uni�ed Modelling Language (UML [8℄). A list of the questions
dis
ussed here is given below:

1. What does the term semanti
s mean in the
ontext of UML?
2. Why is it desirable to make semanti
s for UML expli
it? What are the dif-

ferent ways in whi
h a UML semanti
s might be made expli
it?
3. Is a pre
ise semanti
s desirable? For what purpose?
4. What is the
urrent status of UML semanti
s? What are the referen
e do
-

uments?
5. Should UML have a single semanti
s? Should UML have a single
ore se-

manti
s?
6. Is it possible to express a semanti
s of UML in UML (the meta-modelling

approa
h)?
7. Is it feasible to
onstru
t a semanti
s for all of UML? What are the main

outstanding issues?

Spe
i�
 aspe
ts of UML were explored in attempting to answer these ques-
tions. There was broad agreement on questions 1-4; it was generally felt that
individual
ontributions submitted before the workshop
ould be polished in
answer to these questions. Parti
ipants broke out into groups to dis
uss the
remaining three questions. Two groups
onsidered the last question by explor-
ing two spe
i�
 areas of UML, respe
tively:
on
urren
y, events, and dynami

behaviour in general; and aggregation.

2 pUML group

This report is a snapshot of the state of a�airs at the time. The UML Seman-
ti
s FAQ will
ontinue to be maintained by the pUML group, who en
ourage

ontributions from pra
titioners and a
ademi
s interested in the UML as a stan-
dard modelling language. To this aim we are
ontinuing to organise workshops
at major
onferen
es su
h as ECOOP and OOPSLA. However, this does not
pre
lude other forms of
ontribution: it is always possible to improve
urrent
statements or add new topi
s. If you have any
omments, or would like to o�er
alternative answers or suggest
lari�
ations to existing ones, then please visit
the website of the pre
ise UML group (pUML), lo
ated at

http://www.
s.york.a
.uk/puml

where an updated FAQ will be maintained.

Q1. What does the term semanti
s mean in the
ontext of
UML?

Bernhard Rumpe, Te
hnis
he Universit�at M�un
hen, Germany
Stuart Kent, University of Kent at Canterbury, UK
Andy Evans, University of York, UK
Robert Fran
e, Colarado State University, USA

Q1.1. What does the term semanti
s mean at all?

Today, a lot of
onfusion arises from the fa
t that the word \semanti
s" itself has
many di�erent semanti
s! Developers tend to use the word \semanti
s" when
they talk about the behavior of a system they develop. This kind of usage is
almost
ontradi
tory to the semanti
s in s
ienti�
 areas like Mathemati
s or
Logi
. There, \semanti
s" is a synonym for \meaning" of a notation { this is
regardless of whether this notation deals with stru
ture or behavior.

Basi
ally, a semanti
s is needed if a notation (syntax) is given or newly
developed, and its meaning needs to be de�ned. Almost all approa
hes de�ne
the semanti
s of its elements by relating it to another already well understood
language.

This is
omparable to natural languages. For example Chinese
an be (roughly)
understood if a Chinese-English di
tionary is available. Of
ourse grammar, or
the de�nition of how elements of a language are modi�ed and grouped together,
also need to be mapped.

In
omputer s
ien
e, the pattern is similar. A new language is given a meaning
in three steps:

1. de�ne pre
isely the syntax of the new language, whi
h
hara
terises all the
possible expressions of that language

2. identify a well understood language, herein
alled the semanti
s language,
and

3. de�ne a mapping from expressions in the syntax of the new language to the
semanti
s language.

UML Semanti
s FAQ 3

The semanti
s language is often
alled the semanti
s domain. The mapping
from syntax to semanti
s is usually intensional rather than extensional, whi
h
means that the mapping is not expli
it, but by example. If a language is to be
automati
ally pro
essed and/or be unambiguous then the syntax, the semanti
s
language, and mapping from one to the other must be
ompletely, pre
isely and
unambiguously de�ned.

Q1.2. What is spe
ial about UML semanti
s?

UML does have some spe
i�

hara
teristi
s, whi
h makes the task of semanti
s
de�nition interesting:

1. a substantial part of UML is visual/diagrammati
.
2. UML is not for exe
ution, but for modeling, thus in
orporating abstra
tion

and underspe
i�
ation te
hniques.
3. UML is
ombined of a set of partially overlapping subnotations.
4. UML is of widespread interest.

Whereas the last issue leads to the so
iologi
ally interesting question, how
to rea
h agreement for a semanti
s de�nition, the other three topi
s lead to
problems of a te
hni
al nature.

The fa
t that a large part of UML is diagrammati
 makes it somewhat more
diÆ
ult to deal with its semanti
s, but it is no problem in prin
iple. Currently, its
semanti
s is explained in English: UML semanti
s is ambiguous and impre
ise.
We speak of a formal or pre
ise semanti
s for UML if the semanti
s domain of
this translation is a formal language and { very important { the translation itself
is pre
isely de�ned. This goal
an be a
hieved, as several graphi
 formalisms,
like State
harts, Petri-Nets, or data
ow-diagrams have shown. The �rst step for
UML is to pre
isely de�ne its syntax. In the standard, this has been done by
using the meta-model approa
h, whi
h in the UML do
uments is mainly used
to des
ribe the abstra
t syntax of the UML [8℄ itself. Thus a meta-model for
diagrams repla
es the abstra
t syntax tree of textual notations.

The usage of UML as a modeling language and not as a programming lan-
guage has an important impa
t that is often poorly re
ognized. A UML model is
an abstra
tion of the real system to be developed. The model is used to
apture
important properties, but to disregard unimportant ones. As an e�e
t, a UML
model typi
ally has a set of more than one possible implementation. A seman-
ti
s de�nition must re
e
t this by making the underspe
i�
ation of the model
expli
it.

Third, the UML is
omposed of a set of notations that partially overlap. For
example [4℄ shows how (a subset of) the state diagram notation
an be used
to express the same information that
ould be expressed in terms of pre/post

onditions on operations in a
lass diagram; but there are other aspe
ts of state
diagrams whi
h
an not. This adds an extra problem, as semanti
s de�nitions
for ea
h of the UML notations need to be
onsistent with ea
h other. Only then
will an integrated use of these notations be feasible. To
he
k the
onsisten
y

4 pUML group

of semanti
s de�nitions, it is ne
essary either to have a
ommon semanti
 do-
main for all of them, or to establish pre
ise mappings between di�erent semanti

domains.

A more detailed dis
ussion of these topi
s
an be found in [13℄.

Q1.3. What is a UML semanti
s good for?

Semanti
s of UML is a means to understand how UML should be used, and
to ensure that when UML models are
ommuni
ated there is a
ommon shared
understanding of what they mean. On the other hand, the a
tual pra
ti
e of
applying UML is ne
essary to get a feeling for it. A semanti
s de�nition is a ne
-
essary prerequisite, but
ertainly not suÆ
ient. Furthermore, it is not ne
essary
to understand the
omplete language to start using it.

Semanti
s is a vehi
le for people who speak the same semanti
 language D

(formal or informal) to dis
uss
ertain UML subtleties and improve the notation
and use of UML in terms of D .

Semanti
s
an be for automating
ertain tasks by ma
hine: for example, tools
whi
h
an do more than simply pro
ess syntax, su
h as simulating or (partially)
exe
uting models,
he
king models are
onsistent, et
.

It is important to
larify the purpose of a semanti
s de�nition. There may
be di�erent semanti
s de�nitions to suit di�erent purposes: the de�nition for
explaining semanti
s to users of the notation may be di�erent to that required
to perform sophisti
ated automati
 pro
essing tasks, and both may be di�erent
to a semanti
s de�nition whose purpose is to demonstrate properties about the
language, su
h as a measure of how expressive it is
ompared to other languages.

Q1.4. Common misunderstandings about semanti
s

The UML do
uments
ontain a paper
alled the \Semanti
s of UML". However,
this paper does not fo
us mu
h on semanti
s, but mainly on synta
ti
 issues.
The meta-model of UML gives a pre
ise notion of what the abstra
t syntax is.
However, it
urrently does not
ope with semanti
s. Analogously, the seman-
ti
s of C++
an not be understood from the
ontext free grammar (without
knowledge of similarly stru
tured languages).

Furthermore,
ontext
onditions are by no means semanti

onditions, but
purely
onstrain the syntax. They give well-formedness rules, e.g. ea
h variable
must be de�ned before use, without telling you what a variable is. In the UML

ase,
ontext
onditions are usually explained using OCL. A
ontext
ondition
tells us what is
onstrained, not why it is
onstrained. The latter is a task of the
semanti
s de�nition.

As explained earlier: semanti
s is not behavior. A stru
tural des
ription te
h-
nique, like
lass diagrams, need an adequate semanti
s in the same way as do
behavior des
ription te
hniques.

UML Semanti
s FAQ 5

Q2. Is a pre
ise semanti
s desirable? For what purpose?

Stuart Kent, University of Kent at Canterbury, UK
Bernhard Rumpe, Te
hnis
he Universit�at M�un
hen, Germany
Andy Evans, University of York, UK
Robert Fran
e, Colarado State University, USA

Q2.1. Degrees of pre
ision

A semanti
s de�nition
onsists of three parts:

1. de�ne the syntax,
2. de�ne the semanti
s domain, and
3. de�ne the semanti
s mapping, as a relationship between syntax and seman-

ti
s domain.

The degree to whi
h ea
h of these three parts is made expli
it and/or pre
ise
may vary. Whenever a natural language, like English, is involved, we speak of
an informal semanti
s de�nition.

The semanti
s de�nition gains mu
h on pre
ision, if at least its syntax is
pre
isely de�ned. One
an distinguish between a
on
rete and an abstra
t syn-
tax. A
on
rete syntax provides the rules for stating exa
tly how the language
will appear when written; the abstra
t syntax identi�es the main
on
epts onto
whi
h the
on
rete syntax maps. These
on
epts are then given a semanti
s. For
example, the following equations de�ne the
on
rete syntax for numerals:

Chara
ter � Digit = f000;0 10;0 20;0 30;0 40;0 50;0 60;0 70;0 80;0 90g
String � Numeral = Digit [fd _ n j d 2 Digit ^ n 2 Numeralg

The
on
rete syntax talks about
on
rete things: digits are
hara
ters, numerals
are strings. In an abstra
t syntax we would just assume that we have a set
Numeral of arbitrary tokens. The semanti
s would map members of this set
uniquely to the natural numbers in the (well understood) mathemati
al language
of arithmeti
.

For UML, and other diagrammati
 languages, the trend has been to de�ne an
abstra
t syntax. So, rather than, say, talk about boxes and lines between them
(the equivalent of digits and strings) the syntax talks about
lass and asso
iation.

For textual languages, a
ontext free grammar (BNF) is used, though this

an be viewed as just a short hand for set theory. There is no reason why similar
te
hniques
ould not be used to des
ribe both the
on
rete and abstra
t syntax
for diagrammati
 languages su
h as UML. The UML standard has
hosen to use
a meta-modelling approa
h based on
lass diagrams to
hara
terise the abstra
t
syntax of the language. The
on
rete syntax seems only to be de�ned by example.

A pre
ise de�nition of the semanti
s domain is usually given either by ex-
pli
itly de�ning the notion of \system" using mathemati
al terms, or by using a
formal language, like Z or Obje
t Z, as the semanti
s language. However, pre
i-
sion does not require the language to be mathemati
al in the traditional sense.

6 pUML group

Finally, to get a fully pre
ise semanti
s, the semanti
s de�nition must also
be represented pre
isely. This is feasible using mathemati
s, as done many times
for other notations. The mappings
an also be en
oded in a meta-model | see
FAQ 5 for details.

An alternative way to write down the mapping is algorithmi
ally | a re
ipe
for
onverting expressions in the (abstra
t) syntax to expressions in the seman-
ti
s language. This would be useful where it is intended that the mapping is to
be automated, for example where the semanti
s domain is an OOPL su
h as
Java, and the mapping
orresponds to
ode generation. Unfortunately, using a
programming language as a semanti
s domain leads to a severe problem whi
h
needs to be
onsidered: any model de�ned in an exe
utable langauge
an only
des
ribe one implementation and therefore
annot exhibit any form of under-
spe
i�
ation. As dis
ussed earlier, modeling languages like UML need to allow
underspe
i�
ation. Thus
ode generation ne
essarily involves a sele
tion of one
of the possible implementations { possibly a wrong one.

Q2.2. Abstra
tion versus pre
ision versus detailedness

In the UML referen
e book [12℄ there is a detailed de�nition of the nature and
purpose of models given. Abstra
tion is mentioned there as a key
on
ept to
yield understandable models,
onveying the essentials of a view.

Di�erent levels of abstra
tion allow information to be revealed about the
systems on di�erent levels of detailedness. So abstra
tion and detailedness are

omplementary { adding details makes a model less abstra
t. However, the word
\pre
ision" is ambiguous in that
ontext. Sometimes it refers to the amount
of details a model has and sometimes it is used as the degree of formality the
modeling notation has. These two kinds of \pre
ision" need to be distinguished.
\Pre
ision of a notation" refers to the pre
ision of the de�nition of its syntax and
semanti
s and is the same for all models, not to the amount of detail in
luded
in the model.

Physi
s gives us a good example. \About 42" is a vague de�nition for a num-
ber, it is neither very detailed nor pre
ise. One
annot exa
tly determine whether
41.7 is in
luded or not. \About 41:34" is more detailed, but still not pre
ise. It
seems likely that 41:7 is ex
luded, but we
annot be sure, if we don't pre
isely
know what \about" means. Physi
s gives us a pre
ise te
hnique: \42:0" deter-
mines the exa
t interval [41:95; 42:05℄. The notation is fully pre
ise, but we
an
make it more detailed: \42:010" is a spe
ialization
onveying [42:0095; 42:0105℄.

Of
ourse this example is simple
ompared to the situation with UML. How-
ever, it is important to re
ognize that with the UML we
an spe
ify pre
isely,
but still in an abstra
t manner, using underspe
i�
ation wherever appropriate.

Q2.3. Why is pre
ision important? What do you lose?

A Ben
hmark A pre
ise semanti
s provides an unambiguous ben
hmark against
whi
h a developer's understanding or a tool's performan
e
an be measured:

UML Semanti
s FAQ 7

Does the developer use the notation in ways whi
h are
onsistent with the se-
manti
s? Does a tool generate
ode as the semanti
s would predi
t, or does it

he
k the
onsisten
y of a model in a

ordan
e with the semanti
s?

Ma
hine Pro
essing For a ma
hine to pro
ess a language, that language must
be de�ned pre
isely. If it is to perform semanti
s-oriented tasks, then its seman-
ti
s must be de�ned pre
isely. Examples of semanti
s-oriented tasks are: model
simulation or (partial) exe
ution;
he
king that di�erent views on a model (
lass
diagrams, invariants, state diagrams, sequen
e diagrams, et
.) are
onsistent
with one another;
he
king that the behaviour of a super
lass is preserved in a
sub
lass; and so on.

Establishing properties of the synta
ti
 language Some important, but
nevertheless largely negle
ted, issues in de�ning semanti
s are wrapped up in the
question: Is the semanti
s mapping appropriate? Let us assume we denote the
synta
ti
 notation by N, the semanti
s domain D and the semanti
s mapping as
fun
tion

S : N ! D :

By de�ning S pre
isely, we
an use mathemati
s to prove properties about the
synta
ti
 language. For example, let us assume ; 2 D des
ribes the invalid (or
non-implementable) system, then it is an important result if we
an show the
following property:

for all models m 2 N it holds that S(m) 6= ;

Another test of the appropriateness of a semanti
s de�nition is the question
regarding what it distinguishes and what it identi�es. Is the following possible:

there are models m1;m2 2 N with m1 6= m2; but S(m1) = S(m2)

Models that only di�er in lo
al variables should indeed have identi
al semanti
s,
as the semanti
s should not rely on hidden or lo
al properties. On the other hand,
does the semanti
s distinguish models that are inherently di�erent in nature?

Of greatest interest is the transfer of re�nement, abstra
tion,
omposition and
similar te
hniques from the semanti
 domain to the synta
ti
 domain. Assume
 denotes a re�nement relation on the semanti
s domain. Then it would be
interesting to de�ne transformation te
hniques T : N ! N on the syntax with
the following property:

for all models m 2 N it holds that S(m) S(T (m))

If this property is ensured on
e and for all models, then the transformation T

an be applied, and we
an be sure to get a re�nement as a result, without
dealing expli
itly with the semanti
s anymore.

Thus representing the semanti
s mapping S pre
isely allows the notation
developer to prove properties on his/her notation and asso
iated development

8 pUML group

te
hniques, su
h that the user of the notation later need not expli
itly deal with
the semanti
s anymore. The synta
ti
 transformations may also be built into
automated tools to support the developer.

Having a Chinese-English translation at hand, I begin to learn Chinese words,
but also how to build useful Chinese senten
es. When I have learnt to do this
I
an dire
tly deal with Chinese, without any translation to English anymore.
This is the ultimate goal of a semanti
s de�nition.

Losses De�ning a pre
ise semanti
s is hard work and time
onsuming. If the
only purpose of the semanti
s is to show developers (roughly) how to use the
notation, it
ould be argued that a pre
ise semanti
s is not ne
essary. This is
probably not (or will not be in the near future) the
ase with UML.

A pre
ise semanti
s
an also be hard to read, espe
ially if it is written in a
hard to understand mathemati
al language. We believe this
an be mitigated
in three ways: (1) develop a pre
ise, yet rather widely agreed, semanti
s; (2)
develop a referen
e implementation of that semanti
s that
an be used a
tively
by developers and tool builders to gain a deep understanding, rather like how a
programmer gets to understand a programming language by writing programs,

ompiling them (
he
ks that their programs are synta
ti
ally and type
orre
t)
and observing the e�e
ts when they are exe
uted (
he
ks their understanding
of the semanti
s against what a
tually happens); and (3) write an informal
semanti
s to
omplement, not repla
e, the pre
ise one. It is important to stress
that (3) is an exer
ise in explaining the semanti
s, it is not that e�e
tive in
de�ning the semanti
s.

Q3. What is the
urrent status of UML semanti
s? What
are the referen
e do
uments?

Martin Gogolla, Mark Ri
hters and Oliver Radfelder,
University of Bremen, Germany

The
urrent status of the UML semanti
s is that it is de
ribed in an informal
manner. The `UML Notation Guide' do
ument gives an overview on the
on-

epts, and the `UML Semanti
s' do
ument presents the abstra
t syntax together
with
ontext-sensitive
onditions in form of
lass diagrams and OCL expressions.
Both do
uments as well as the semi-oÆ
ial books by Boo
h, Rumbaugh, and Ja-

obson do not use formal te
hniques for explaining the semanti
s.

Con
erning the referen
e do
uments, when studying the UML and espe
ially
the UML semanti
s, one has to take into a

ount the oÆ
ial OMG UML de�ni-
tion, espe
ially the `UML Notation Guide' and `UML Semanti
s' do
uments. But
the problem is that the UML is an evolving language. Therefore many versions of
these do
uments exist. The
urrent version is version 1.3 [8℄ but there is already
a
all for
ontributions for version 2.0. In addition, there are also many books
and papers on the subje
t, in
luding the semi-oÆ
ial ones by Boo
h, Rumbaugh,

UML Semanti
s FAQ 9

and Ja
obson, espe
ially the `UML Referen
e Manual'. Be
ause of publi
ation
lead times, laziness of resear
hers and so on, one has to be very
areful when
reading a paper or book to identify on exa
tly whi
h version of the UML it is
based.

For example, one is likely to
ome up with a very di�erent semanti
s for
signals, depending on whether you read the UML standard or the three amigos
referen
e guide:

{ Signals ... have no operations.
UML Notation Guide, Version 1.3, page 3-138, line -4..-2.

{ A signal ... may have operations.
UML Referen
e Manual, page 428, line 3.

In our view, semanti
s work must only use the oÆ
ial UML de�nition, whi
h

an be obtained from the OMG pages at http://www.omg.org, must try to use
the latest version possible, and must make it
lear whi
h version has been used.
And, as an aside, the author for this do
ument is the OMG, not Boo
h, Ja
obson
and Rumbaugh.

Finally, anyone working on UML semanti
s should look up existing work in
this area. An up-to-date bibliography is maintained at

http://www.db.informatik.uni-bremen.de/umlbib/.

Also see the pUML web pages.

Q4. Should UML have a single semanti
s? Should UML
have a single
ore semanti
s?

John Howse, University of Brighton, UK
Shusaku Iida, Japan Advan
ed Institute of S
ien
e and Te
hnology (JAIST)
Ri
hard Mit
hell, InferData Corp, USA and University of Brighton, UK
Bernhard Rumpe, Te
hnis
he Universit�at M�un
hen, Germany

The advantage of having a single, standard semanti
s for UML is that it is easier
for one person to understand another person's UML models. The advantage of
having a variety of semanti
s is that you
an
hoose what works best in your

urrent proje
t. We believe it is possible to support both standardisation and
variation. Therefore, we answer 'no' to the question 'should UML have a single
semanti
s?' The following se
tions elaborate on this answer. First, we explore
a world in whi
h variety is allowed. Then we explore how it
ould be a
tively
supported.

Q4.1. Who
an give UML a semanti
s?

In pra
ti
e, there are many individuals and groups who
an
ontribute to dis-

ussions on the semanti
s of UML, and many ways for them to disseminate their
proposals. Here are some:

10 pUML group

Who? Disseminate how?
OMG task groups UML do
uments
The three amigos Books
Tool vendors Tools
Methodologists Books, Resear
h papers
Development teams Shared experien
e

As long as no single group or individual has
ontrol of the semanti
s of UML,
there will be a variety of semanti
s for UML. Some will be more popular than
others, meaning that more people understand them and use them. Popularity
would be in
uen
ed by a number of fa
tors, in
luding:

{ the fame and power of those proposing a parti
ular semanti
s (for example,
you might pay parti
ular attention to proposals from an OMG group)

{ strengths and weaknesses of a parti
ular semanti
s as highlighted by s
ien-
ti�
 resear
h (for example, a semanti
s with proven
aws might be
ome less
popular)

{ strengths and weaknesses of a parti
ular semanti
s as highlighted by pra
ti-

al experien
e (for example, you might be in
uen
ed by favourable reports
from several large proje
ts)

{ the e�e
tiveness of tool support (the availability and quality of tools might
in
uen
e your
hoi
e).

In pra
ti
e, if variation was supported, we would expe
t there to be parts of UML
for whi
h there is widespread (but not universal) agreement on the semanti
s,
and other parts for whi
h there is less agreement.

And �nally in this se
tion, it is appropriate to note that UML is extensible,
through su
h me
hanisms as stereotypes. Modelers who introdu
e their own
stereotypes must de�ne the semanti
s of their models. Therefore, the problem
we address in the next se
tion must be addressed even if the UML
ommunity
opts for
entral
ontrol of semanti
s.

Q 4.2. How
an we support variation?

There are two parts to our answer to the question of how
an we provide sup-
port for a variety of semanti
s for UML. The �rst
on
erns a style of writing
semanti
s. The se
ond
on
erns a way of organizing shared semanti
 models. For
us, supporting variation in
ludes both supporting the sharing of parts of UML,
when that is appropriate, and supporting di�erent variants of UML, when that
is helpful.

A semanti
s for a language, L, maps elements of L to some other language,
S, using a semanti
 fun
tion. The language S des
ribes a semanti
 domain. A
semanti
 fun
tion
ould map elements of L to elements of S. Alternatively, a
semanti
 fun
tion
ould map ea
h element of L to a set of elements of S, yielding
a set-based semanti
s, illustrated in Fig. 1.

A set based approa
h to de�ning semanti
s has a number of advantages.
First, it helps to make any underspe
i�
ation in a UML model expli
it. The

UML Semanti
s FAQ 11

Semantic function

A single
element of the
semantic
domain

Meaning given
by a set in the
semantic domain

A UML
construct
needing a
meaning

Super

Sub

A semantic
domain

Fig. 1. Set-based Semanti
s for UML

more abstra
t (i.e., underspe
i�ed) a UML model is, the more elements (imple-
mentable systems)
an be found in the set. The more detailed a model is, the
fewer elements
an be found.

Se
ondly, a set based approa
h allows us to have variants of semanti
 de�-
nitions. For example, we
ould build two di�erent semanti
 mappings su
h that
the se
ond is a spe
ialization of the �rst: for ea
h model, the semanti
s given by
the se
ond mapping is a subset of the semanti
s given by the �rst mapping.

Thus, a hierar
hy of semanti
s de�nitions
an be built, having a very gen-
eral standard semanti
s (whi
h has a lot of possible implementations), and very
spe
ialized semanti
s for parti
ular proje
ts.

We do expe
t that it will be possible to get large groups of people to agree
on a semanti
s for many parts of UML. How might su
h agreement be
onveyed,
whilst still allowing variation?We suggest that every UMLmodel has no meaning
until someone prefa
es it with a de�nition of the semanti
s of the modeling
language (see Fig. 2). Think of the prefa
e as being a semanti
 de�nition of the
UML (
hosen to be appropriate for your proje
t) that
on
eptually
omes before
the model your proje
t is building.

Prefa
es will be large do
uments. They
ould be organized into a hierar
hy of
pa
kages. Then a proje
t team
ould begin with a popular pa
kage agreed by the
OMG that de�nes a
ore of UML, and tailor it with a pa
kage from the vendor
of the tool they plan to use, then with a pa
kage that de�nes
ompany-spe
i�

meanings to
ertain parts of UML, and �nally with a pa
kage that de�nes the
proje
t's own variations.

Further details of how pa
kages might be used in this way
an be found in
[2℄ from whi
h the illustrative diagram in Fig. 3 is taken.

12 pUML group

+ =

UML model preface
model with
meaning

Uh? Oh! Ah!

Fig. 2. Prefa
es

OMG definition
of core UML,
version m.n

Toolsmith T's
extra

definitions

Toolsmith U's
extra

definitions

Developer D's
extra

definitions

Developer E's
extra

definitions

Project P's
extra

definitions

Project Q's
extra

definitions

These four
packages form
one preface

Fig. 3. A Hierar
hy of Semanti
s Pa
kages

UML Semanti
s FAQ 13

Q5. Is It Possible to Express a Semanti
s of UML in UML
(the meta-modelling approa
h)?

Martin Gogolla, University of Bremen, Germany
Stuart Kent, University of Kent at Canterbury, UK
Tom Mens, Vrije Universiteit Brussel, Belgium
Mark Ri
hters and Oliver Radfelder, University of Bremen, Germany

Our answer to this question is: Yes, this is possible for a large part of UML. We

all this approa
h to de�ne the UML semanti
s the meta-modeling approa
h.

Q5.1. Why Use UML to Explain UML?

Before we show the details of this approa
h, we explain why we think it it useful
to express UML in terms of UML itself. If one wants to des
ribe the semanti
s of
a language Lstart, then one has to deal with at least one other language Ltarget,
whi
h is the language in whi
h the semanti
s is to be given. Thus in order to
understand the semanti
s one has to know both languages Lstart and Ltarget.

The main advantage we see in the meta-modeling approa
h is that people
wanting to understand the semanti
s of UML do not have to learn another
language Ltarget. They just see the language whose features they want to see
explained and use it for the translation. Pro
eeding this way, people who are
not experts in formal semanti
s or formal spe
i�
ation languages will be given
the
han
e to reason about UML without the burden of learning another lan-
guage Ltarget.

The main danger of this approa
h, however, lies in the question of whether
the expressive power of UML is suitable to express its semanti
s. We argue that
a large part of UML
an be expressed in this way but we
urrently do not
know whether all UML features
an be treated. On the other hand, it is also a
demanding and interesting question for us to see whi
h parts of UML
an be
transformed into UML and whi
h parts not. Another danger of the approa
h is
the possibility that
onfusion may arise be
ause there is only one single language:
one has to point out very
learly whether one is speaking of (1) a UML element
whi
h is
urrently being translated or (2) a UML element whi
h o

urs as the
result of the translation.

Q5.2. Central Steps of the Approa
h

We now show the main steps to be taken for our meta-modeling approa
h. The
general idea is presented in Fig. 4.

1. The �rst step to be taken is to develop the syntax of the
ore meta-modelling
langauge, whi
h is akin to what has been dubbed the MOF, essentially a dia-
grammati
 modelling language for de�ning other languages (though we note
that the
urrent MOF is not as pre
ise as it should be, and mu
h larger
than it needs to be). It is des
ribed in some detail below. This language will

14 pUML group

Core Meta-modeling
Language

(Classes, roles, OCL)
Meta-Model

UML

Set theory

apply

Fig. 4. General Approa
h to Answer Q5

for sure in
lude
lass diagrams in whi
h
lasses and binary asso
iations are
allowed. As a
entral des
ription vehi
le we will also use the Obje
t Con-
straint Language OCL. Important restri
tions on models must be expressed
by using OCL for
lass invariants.

2. The se
ond step is to develop the semanti
s of this
ore. As Fig. 4 shows, we
propose to use set theory as the basis for the semanti
s. For us, set theory is
the most natural
hoi
e here, be
ause it is a widely a

epted and the most
popular formal foundation. Of
ourse there are other approa
hes around (like
temporal and dynami
 logi
, algebrai
 spe
i�
ation, streams, pro
ess theory,
et
.) with advan
ed properties, but the drawba
k of these approa
hes are
that they are hard to learn or that there is at least an additional learning
e�ort for the average UML modeler. It is also important to note that the

ore should be kept as small as possible. It should be possible to gain an
intuitive, yet unambiguous, understanding of the language without having
to read its pre
ise, set theoreti
 de�nition.

With referen
e to FAQ 4, the
ore meta-modeling language and its semanti
s

onstitute a prefa
e.

3. The third step is to produ
e a meta-model des
ription of the set theoreti

semanti
s of the UML
ore, using the UML
ore itself. This will in
lude

on
epts su
h as obje
t
on�guration or snapshot, whi
h will
ontain obje
ts
and links, et
.

4. The fourth step of the meta-modeling approa
h is to transform the syntax of
the
omplete UML language along the lines presented in the UML semanti
s
do
ument into the UML meta-model, i.e. into an abstra
t syntax. This step

onverts ea
h
on
rete synta
ti
 element into an element of the UML meta-
model.

UML Semanti
s FAQ 15

5. The last step is to relate the meta-model des
ription of the syntax to the
meta-model des
ription of the semanti
s. This
an be done dire
tly (e.g. as
is done for the UML
ore) or indire
tly.

Dire
tly Synta
ti

on
epts are asso
iated with semanti

on
epts. Thus
models are asso
iated with snapshots and tra
es (sequen
es of snapshots,
interspersed with a
tion invo
ations), and OCL
onstraints are written
to ensure that all the semanti
 mapping rules are in pla
e, e.g. that, in a
snapshot, the number of links from an obje
t of
lass A to obje
ts of
lass
B via asso
iation ab, must lie between the
ardinality bounds imposed
on ab. Or that the ordering of a
tion invo
ations in a tra
e mat
h the
ordering of a
tions in sequen
e diagrams, that the transformation in
snapshots through a tra
e satisfy the pre and post
onditions of the
a
tions involved, and so on. More detailed des
riptions of this approa
h

an be found in [6, 5℄.

Indire
tly Features of the meta-model
hara
terization of the UML ab-
stra
t syntax are mapped into the meta-modeling
ore developed before.
A very simple example for a transformation of UML language features
into the meta-modeling
ore is given by Fig. 5. This shows how expli
itly
notated multipli
ities in
lass diagrams
an be transformed equivalently
into a more basi

lass diagram without the mulipli
ities but with an
additional restri
ting OCL invariant. The OCL formula (using a slight
generalization of <=) requires that all instan
es of
lass A are
onne
ted
to at least low and at most high obje
ts of
lass B. An example of de�ning
aspe
ts of UML within UML
an be found in [7℄

rb
A Blow..high A B

rb
*

context A inv:
low <= self.rb->size <= high

Fig. 5. Transformation of Multipli
ities into OCL Invariant

The grey re
tangles and the grey arrows in Fig. 4 indi
ate that both the
ore
meta-model and the UML meta-model
ould be extended in a bottom-up manner
so that more advan
ed features be
ome available for meta-modeling. Su
h ex-
tensions
ould even be iterated, i.e. there
ould be extensions relying on already
de�ned extensions.

Q5.3. Features of the meta-modeling Core

In Fig. 6 we have displayed the main features of the meta-modeling
ore in some
detail as a
lass diagram. Roughly speaking, the upper part shows
lasses respon-
sible for a generi
 des
ription of UML language elements, also
alled des
riptor

16 pUML group

Classifier

AssocEnd

Association

Object

LinkEnd

Link

Instance
Element

Descriptor
Element

Model
(Diagram)

Instance
(Diagram)

Package

Collaboration

Interaction

1

*

2..*

1

1

*

2..*

1

1

*

* *

*

*
* *

Fig. 6. The basis of the meta-modeling Core

elements in the UML. The lower part des
ribes
lasses responsible for instanti-
ations of the generi
 elements, also
alled instan
e elements in the UML. The
upper and lower part are linked by (binary) asso
iations establishing the
on-
ne
tion between generi
 des
riptor elements and instan
e elements by des
ribing
whi
h elements of the instan
e level belong to whi
h element of the generi
 level.
(Note that
on
epts of des
riptor and instan
e element do not
urrently appear
in the standard UML meta-model { we believe they must.)

For example, the upper part mentions
lassi�ers (i.e. in parti
ular
lasses)
and the lower part mentions obje
ts. One
lass in an appli
ation domain (e.g.
the
lass Person) will be des
ribed by one obje
t of
lass Classi�er. For a
on
rete
system state, ea
h Person instan
e, i.e. ea
h Person obje
t, will be represented
by an obje
t of
lass Obje
t. The information that an instan
e in a
on
rete
system state belongs to
lass Person will be provided by a link belonging to the
asso
iation between Instan
eElement and Des
riptorElement.

Note that the meta-modeling
ore only in
ludes very basi
 modeling fea-
tures (i.e.
lasses, binary asso
iations and the Obje
t Constraint Languge). The

ore does not in
lude UML
lass diagram language features
urrently in
ontro-
versial dis
ussion (
ontroversial at least from the formal semanti
s point of view
{ see FAQ 6) su
h as aggregation and
omposition.

UML Semanti
s FAQ 17

Q5.4. What
an be Treated Ni
ely? Where are the Problems?

The ideas presented above
an be applied to a variety of UML diagram forms.
In general, we have the feeling that the approa
h works well for stati
 and
basi
 dynami
 aspe
ts in UML, but we are unsure about the advan
ed dynami

aspe
ts. The approa
h works for:

{ Language features of the UML
ore language,
{ Pre- and post
onditions formulated in OCL as part of
lass diagrams,
{ Advan
ed
lass diagram features like aggregation and
omposition,
{ A subset of state
hart diagrams,
{ Combinations of
ertain a
tions in state
hart diagrams like parallel
ompo-

sition and
on
atenation, and
{ A subset of sequen
e and
ollaboration diagrams.
{ Model (pa
kage) extension and re�nement (at least partially).

Areas with UML diagram features where problems are expe
ted and further
intensive resear
h must take pla
e are:

{ Con
urren
y,
{ Events and triggering,
{ A
tive obje
ts,
{ Full treatment of re�nement, and
{ Deployment.

Q6. Is it feasible to
onstru
t a semanti
s for all of UML?
What are the outstanding issues?

The �rst of these questions
an only be answered
onstru
tively: the answer will
be unknown until a semanti
s for all of UML is
onstru
ted. However, the more
that is
onstru
ted the more
on�dent we
an be of a positive answer. The best
that
an be done, then, at this stage, is to examine the
urrent state of a�airs
[8℄, and identify the pla
es where it is in
omplete, ambiguous or in
onsistent.
Improvements have been suggested where possible.

Q6.1. Dynami
 behaviour and
on
urren
y

Roel Wieringa, University of Twente, the Netherlands
Egidio Astesiano and Gianna Reggio, Universita' de Genova, Italy
Alain Le Guenne
, IRISA, Fran
e
Heinri
h Hussman, TU Dresden, Germany
Klaas van den Berg, Pim van den Broek, University of Twente

The issues dis
ussed below rely upon an understanding of the distin
tion between
a
tive and passive (
lasses) obje
ts. An a
tive obje
t is de�ned as one that has
its own thread of
ontrol, a passive obje
t is de�ned as one that has not. This

18 pUML group

means, roughly, that an a
tive obje
t has its own
ow of
ontrol to dispat
h
requests sent to it. A passive obje
t only performs a
omputation within the
thread of
ontrol of an a
tive obje
t. State ma
hines
an be de�ned for a
tive as
well as passive obje
ts, that
onstrain the order in whi
h events
an be handled
by the obje
t.

Obje
ts
ommuni
ate by means of
all events and signal events, in whi
h,
respe
tively, an operation is
alled or an asyn
hronous signal is re
eived. In an
operation
all, the
aller
alls an operation of another obje
t, the
allee. Control
passes to the
allee and returns when the
allee has �nished performing the
body of the
alled operation. This is
alled run-to-
ompletion (RTC) semanti
s.
A shape signal is a message sent by one obje
t to one or more other obje
ts.
Communi
ation by means of signals is asyn
hronous: The
aller
an
ontinue
pro
essing when the signal is sent. Ea
h a
tive obje
t has a queue of events that
have been re
eived but not yet pro
essed.

Event Queue on a
tive obje
ts. The event queue of an a
tive obje
t may
be emptied in any order. This opens the possibility that an event in the \queue"
is never pro
essed by the re
eiving obje
t. A similar problem exists for the so

alled
hange events, whi
h are
hanges in a
ondition of the model: these too
may be handled any time after their o

urren
e, or they may never be handled.
The
on
ept of event queue should therefore be made more pre
ise by in
luding
a fairness requirement, whi
h says that every event in the queue will be handled
in a �nite time after it entered the queue.

Con
urren
y semanti
s of operations. An obje
t may re
eive several opera-
tion
alls simultaneously. The UML allows the de�nition of several
on
urren
y
semanti
s for ea
h operation. One of these is the sequential semanti
s, whi
h
does not guarantee the integrity of the obje
t if several
alls to this operation
o

ur simultaneolusly; another is the
on
urrent semanti
s, whi
h guarantees
the integrity of the obje
t under any number of simultaneous
alls of the op-
eration. But
onsider two operations of an obje
t, one of whi
h is sequential
and the other
on
urrent, that both update the same variable. What happens if
both are
alled simultaneously? Can the
on
urrent operation still maintain its
guarantee if the sequential operation messes up the obje
t? This suggests that
the
on
urren
y semanti
s should not be a property of ea
h operation, but of
the obje
t as a whole, that applies to all its operations. This is
on�rmed by one
remark in the UML do
umentation that seems to suggest that a passive obje
t

ould be implemented by a monitor (page 2-149); but nevertheless,
on
urren
y
semanti
s is de
lared for operations rather than for the
omplete obje
t.

A
tivity states. An a
tivity state of an obje
t is a state in whi
h the obje
t
performs a non-atomi

omputation. It is de�ned by entering \do: a
tivity" in
the state
hart node of that state. A
tivity states open a
an of worms:

UML Semanti
s FAQ 19

{ Can a passive obje
t have a
tivity states? We think not. Sin
e a passive
obje
t returns
ontrol after performing a transition, the a
tivity of su
h a
state would never be performed. For non-basi
 states in a passive obje
t,
however, a
tivities
an be de�ned: During an inter-level transition in a state
hierar
hy, a
tivities of non-basi
 states may be started, and when
ontrol
leaves the passive obje
t, these a
tivities are terminated.

{ A state of an a
tive obje
t may have an a
tivity. When is this a
tivity
performed? If, after a step, the obje
t has another event in its queue, it will
immediately pro
eed pro
essing this event. But then the a
tivity has no time
to run.

{ When an obje
t is in an a
tivity state, it will perform the a
tivity de�ned
for the state. But this a
tivity may update lo
al variables (attributes). Does
this mean that some a
tive obje
ts may never be in a stable state?

{ What happens if two
on
urrent basi
 states of an a
tive obje
t are both
running a
tivities? Can they update the same attributes? But then a
tivities
should have sequential, guarded or
on
urren
y semanti
s just as operations
of passive obje
ts have.

{ Suppose a state ma
hine enters a hierar
hy of nested states, for all of whi
h
a
tivities are de�ned. A thread
an only do one thing at a time. Is the a
tivity
of the superstate interleaved with that of the substates? Should it terminate
before the a
tivities of the substates
ommen
e?

Managing redundant and/or
on
i
ting des
riptions of dynami
 be-
haviour. The behaviour of an operation
an be spe
i�ed in many overlapping
ways: Transitions on State Ma
hines, Collaborations and asso
iated Intera
tions,
A
tivityCharts, pre/post
onditions, via Methods, and so on. For example, one

an implement an operation by both a method and a state ma
hine transition.
The UML does not prohibit this. The method body may involve updates to state
variables that
on
i
t with a
tions triggered by the transition. And even if the
method and the transition a
tions do not
on
i
t, in whi
h order are the a
tions
in the method body and along the transition exe
uted? Are they interleaved?
The des
ription on page 2.101 of the semanti
s do
ument is extremely vague on
this.

Further, a
lass may have a state ma
hine but still have an operation that is
de�ned by a method rather than by a state transition in the ma
hine. In that

ase, the state ma
hine does not spe
ify the set of all possible behaviors of the

lass instan
es,
ontra what is said about state ma
hines on page 2.136, namely
that ea
h state ma
hine spe
i�es all possible behaviors of the model element to
whi
h it is atta
hed.

The previous observation is
ompounded by the fa
t that one obje
t may
have several state ma
hines (page 2.136). Again, what happens if these two
state ma
hines have
on
i
ting behaviors?

The query attribute. A query operation is an operation that does not update
its owning obje
t when
alled. However, the operation may be realized by a

20 pUML group

method that nevertheless modi�es the state. An obvious �x to this in
onsisten
y
is to require the method to be read-only with respe
t to the owning obje
t. This

annot be stati
ally
he
ked, but we
an deal with this similarly to what has been
done in the Ada semanti
s de�nition, namely by
alling models that violate this

onstraint \erroneous" and leaving tools free to handle these errors in whatever
way.

However, this addition is not enough, for the operation
an also (even ad-
ditionally) be realized by a transition in the state ma
hine of the obje
t; and
even if no update a
tions are triggered by the transition, the transition
auses
a
hange of state and this itself is an update. A query operation should not be
de�ned by a state transition.

Q6.2. Re�nement and extension

Tom Mens, Vrije Universiteit Brussel, Belgium

Intuitively, re�nement is a me
hanism that allows us to gradually add more detail
to an arbitrary software artifa
t. In the
ase of UML, these software artifa
ts

ould be single model elements, parts of a diagram, an entire diagram, or even

ombinations of (parts of) several diagrams.

Unfortunately, there is some
onfusion about the exa
t meaning of the term
re�nement. Some resear
hers spe
i�
ally mean the relationship between model
elements at di�erent semanti
s levels, su
h as analysis and design. Other re-
sear
hers only use stepwise re�nement to gradually add detail to software ar-
tifa
ts within the same phase. Sometimes, a
ombination of both is allowed as
well. Regardless of the exa
t de�nition, a well-de�ned notion of re�nement is

ru
ial in the software engineering pro
ess, e.g., to provide better automated
tool support for forward engineering as well as reverse engineering.

In [8℄, there are essentially four di�erent Relationships that
an be used as a
re�nement me
hanism: Extend, In
lude, Generalization and Abstra
tion.

{ The �rst two relationships are only meaningful in the
ontext of use
ase di-
agrams. A UseCase
an be an extension of another one, whi
h is represented
by an Extend relationship, requiring an ExtensionPoint in the UseCase that
is being extended. A UseCase
an also be in
luded in another one, whi
h is
represented by an In
lude relationship.

{ Another important relationship for expressing some kind of re�nement is
Generalization, whi
h is de�ned between two GeneralizableElements (the

hild and the parent). Examples of GeneralizableElements are Classi�ers,
Asso
iations, Stereotypes, and Pa
kages. A Generalization is a taxonomi

relationship between a more general element and a more spe
i�
 element.
The more spe
i�
 element is fully
onsistent with the more general element
(it has all of its properties, members, and relationships) and may
ontain
additional information. Generalization is a subtyping me
hanism, i.e., an
Instan
e of the more general GeneralizableElement may be substituted by
an Instan
e of the more spe
i�
 GeneralizableElement. Generalization also

UML Semanti
s FAQ 21

serves as an in
remental modi�
ation or inheritan
e me
hanism. The
om-
plete des
ription of a GeneralizableElement is obtained in
rementally by

ombining the des
riptions of all its an
estors.

{ Finally, an Abstra
tion is a spe
ial kind of Dependen
y relationship that
relates two (sets of) elements that represent the same
on
ept at di�erent
levels of abstra
tion or from di�erent viewpoints. If the stereotype�re�ne�
is atta
hed to the Abstra
tion, it spe
i�es a Re�nement relationship between
model elements at di�erent semanti
 levels, su
h as analysis and design. The
exa
t mapping between these di�erent levels, however, is outside the s
ope of
the UML semanti
s. Alternatively, a �realize� stereotype
an be atta
hed
to the Abstra
tion to model stepwise re�nement. Again, the exa
t mapping
of su
h a Realization is not spe
i�ed by the UML.

Many problems
an be identi�ed with the way in whi
h UML deals with re�ne-
ment:

Un
lear distin
tion between Re�nement and Realization. While the
de�nition of Re�nement seems to indi
ate that Re�nement serves spe
i�
ally as
a relation between di�erent semanti
 levels, parts of [8℄
ontradi
t this view. For
example, there is a detailed des
ription of state ma
hine re�nement that spe
i�es
how a state ma
hine
an be re�ned stepwise by gradually adding more detail.
On the other hand, Realization seems to overlap with Re�nement, sin
e it also
addresses the link between di�erent semanti
 levels (spe
i�
ation and implemen-
tation). To avoid this
onfusion, a
lear distin
tion should be made between the
two kinds of Abstra
tion. For example, Re�nement
ould be reserved to express
the relation between elements at the same semanti
s level but at di�erent levels
of detail, while Realization
ould be reserved to express the relation between
elements at di�erent semanti
s levels.

One of the reasons for the above
onfusion is that the semanti
s of both Re-
�nement and Realization are not spe
i�ed by the UML. This task is left entirely
to the user or CASE tool developer. To �nd a
ommonly a

epted de�nition
for re�nement and realization, it might be useful to look at existing proposals
in the literature. For example, an automati
 link between sequen
e diagrams
and state
harts is proposed in [15℄. Similarly, in the resear
h
ommunity of mes-
sage sequen
e
harts [11℄ (a more sophisti
ated variant of sequen
e diagrams),
attempts are being undertaken to semanti
ally link them to use
ase diagrams.

Undesired intera
tion between subtyping & in
remental modi�
ation.
Be
ause the Generalization relationship is a
tually used for two
ompletely dif-
ferent purposes, subtyping and in
remental modi�
ation, it su�ers from a la
k
of orthogonality. This leads to the problem that a GeneralizableElement
an
only be in
rementally modi�ed by adding items to it, but not by deleting items
from it. Otherwise, the modi�
ation will not be substitutable anymore for the
more general element. Nevertheless, in many situations it would also be useful
to in
rementally remove items from a GeneralizableElement.

22 pUML group

The main reason for the above problem is that the UML has
hosen for a
spe
i�
 variant of inheritan
e, namely subtype inheritan
e. As a result, other
interesting variants su
h as implementation inheritan
e are ex
luded. In [3℄,
some strong eviden
e against subtype inheritan
e is provided. A possible so-
lution would be to separate the orthogonal aspe
ts of Generalization (subtyping
and inheritan
e) into two di�erent relationships.

La
k of orthogonality between Re�nement and Generalization. Gener-
alization
ould be regarded as a spe
i�
 kind of Re�nement. They are both used
to in
rementally add more detail to a given element. The main di�eren
e is that
Generalization imposes an extra substitutability requirement. In the metamodel,
this
ommonality should be re
e
ted by de�ning Generalization as a spe
ial kind
of Re�nement.

Extend and In
lude versus Generalization. While Extend and In
lude
are used as re�nement me
hanisms for use
ases, these use
ases
an also be

onne
ted by means of a Generalization relationship. The question arises whether
su
h a Generalization relationship is still ne
essary between use
ases. As an
answer to this question: the subtyping aspe
t of Generalization is probably still
useful for use
ases, but maybe the in
remental modi�
ation aspe
t is not, sin
e
it
an be alternatively a
hieved via Extend and In
lude. In any
ase, the overlap
in fun
tionality between Generalization, Extend and In
lude leads to a lot of

onfusion.

Un
lear de�nition of Generalization. While it is more or less
lear how
Generalization is de�ned for
lasses and interfa
es (it is des
ribed in natural
language in [8℄), the same is not true for other GeneralizableElements su
h as
Nodes, Components, Asso
iations and Pa
kages. [8℄ does not spe
ify how Gen-
eralization should be de�ned for these elements.

S
aleability of Generalization. The basi
 notion of Generalization is fairly
primitive, be
ause it
an only be applied to single GeneralizableElements. How-
ever, by using a Generalization relationship between Pa
kages it be
omes pos-
sible to de�ne a re�nement of more
omplex software artefa
ts, sin
e Pa
kages

an be used to group arbitrarily
omplex sets of ModelElements. The question
arises whether a general meaningful and useful de�nition
an be given to the
notion of Generalization between Pa
kages.

Re�nement of UML diagrams. UML does not spe
ify how entire diagrams

an be re�ned or realized. For example, when is a
lass diagram a re�nement of
another
lass diagram? The same question holds for all other UML diagrams.
Part of the problem is that the UML metamodel does not have an expli
it
representation for ea
h kind of UML diagram. The meta
lasses Collaboration,

UML Semanti
s FAQ 23

Intera
tion, StateMa
hine and A
tivityGraph
an be used for representing
ol-
laboration diagrams, sequen
e diagrams, state
hart and a
tivity diagrams, re-
spe
tively. However, there is no
orresponding meta
lass for representing a
lass
diagram, obje
t diagram, use
ase diagram, et
 . . . Another problem is that the
existing meta
lasses that represent entire UML diagrams are de�ned as dire
t
sub
lasses of ModelElement. To be able to re�ne diagrams through Generaliza-
tion, they should at least be sub
lasses of GeneralizableElement. An even better
idea would be to de�ne them as sub
lasses of Model (a sub
lass of Pa
kage that
is intended to des
ribe the modeled system at a
ertain level of abstra
tion and
from a spe
i�
 viewpoint). An important open problem that remains is how
Generalization (or re�nement) should be de�ned for ea
h kind of diagram. For
di�erent UML diagrams, re�nement needs to be de�ned in a di�erent way. State
ma
hine re�nement will be de�ned in a
ompletely di�erent way than, say,
ol-
laboration re�nement or use
ase diagram re�nement. For most kinds of UML
diagrams, there is
urrently no
lear or
ommonly a

epted idea of what re�ne-
ment should look like. It might be useful to look at other approa
hes (formal as
well as informal) where re�nement has already been investigated. Espe
ially in
the area of theoreti
al
omputer s
ien
e, there is a signi�
ant number of people
working on formal re�nement te
hniques for many di�erent kinds of models, and
using many di�erent kinds of underlying formalisms. Many of these ideas might
be relevant to the UML.

Q6.3. Aggregation

Andy Evans, University of York, UK
Robert Fran
e, Colarado State University, USA
Guy Genilloud, Swiss Federal Institute of Te
hnology
Brian Henderson-Sellers, University of Te
hnology, Sydney, Australia
Perdita Stevens, University of Edinburgh, UK

Aggregation has long been a thorny issue; the problem is that there seem to be
so many subtle nuan
es to the
on
ept. In UML things appear to be more
lear

ut at �rst: there are, essentially, two forms, represented by the bla
k diamond
and white diamonds. The intention would be to partition all whole-part rela-
tionships into two distin
t, non-overlapping and exhaustive kinds. Furthermore,
examination of the standard suggests that the bla
k diamond was intended to
have pre
ise semanti
s, whilst the white one was probably intended to
over all
the other
ases (of whole-part).

Although the semanti
s of the bla
k diamond should not be diÆ
ult to pro-
vide (the UML standard suggests a deletion semanti
s, where, if the whole is

opied or destroyed, the parts are as well), a semanti
s for the white diamond
will open the same
an of worms that have been opened in the past, whi
h, in
turn, may raise questions about whether the bla
k diamond is a useful or appro-
priate
on
ept to treat as a spe
ial
ase. Problems with the de�nitions of UML's
bla
k and white diamonds are dis
ussed further in [9℄. Attempts to tease out the

24 pUML group

various subtle aspe
ts of whole-part are provided in e.g. [1, 16, 9℄. Attempts to
formalize su
h analyses are provided in e.g. [14, 10℄.

Referen
es

[1℄ F. Civello. Roles for
omposite obje
ts in obje
t-oriented analysis and design.
In OOPSLA'93 Conferen
e Pro
eedings, ACM SIGPLAN Noti
es 23:10, O
tober
1993.

[2℄ S. Cook, A. Kleppe, R. Mit
hell, B. Rumpe, J. Warmer, and A.Wills. De�ning uml
family members using prefa
es. In C. Mingins and B. Meyer, editors, Pro
eedings
of TOOLS Pa
i�
 99. IEEE Press, 1999.

[3℄ W.R. Cook, W.R. Hill, and P.S. Canning. Inheritan
e is not subtyping. ACM
Transa
tions on Programming Languages and Systems, pages 125{135, 1999.

[4℄ Desmond D'Souza and Alan Wills. Obje
ts, Components and Frameworks With
UML: The Catalysis Approa
h. Addison-Wesley, 1998.

[5℄ A.S. Evans and S. Kent. Meta-modelling semanti
s of UML: the pUML approa
h.
In B. Rumpe and R.B. Fran
e, editors, 2nd International Conferen
e on the Uni-
�ed Modeling Language, 1999.

[6℄ Robert Geisler. Pre
ise UML semanti
s through formal metamodeling. In Luis
Andrade, Ana Moreira, Akash Deshpande, and Stuart Kent, editors, Pro
eedings
of the OOPSLA'98 Workshop on Formalizing UML. Why? How?, 1998.

[7℄ Martin Gogolla and Mark Ri
hters. Equivalen
e rules for UML
lass diagrams.
In Pierre-Alain Muller and Jean B�ezivin, editors, Pro
eedings of UML'98 Inter-
national Workshop, Mulhouse, Fran
e, June 3 - 4, 1998, pages 87{96. ESSAIM,
Mulhouse, Fran
e, 1998.

[8℄ Obje
t Management Group. UML spe
i�
ation version 1.3. Te
hni
al Report
ad/99-06-08, June 1999.

[9℄ B. Henderson-Sellers and F. Barbier. Bla
k and white diamonds. In B. Rumpe
and R.B. Fran
e, editors, 2nd International Conferen
e on the Uni�ed Modeling
Language, 1999.

[10℄ B. Henderson-Sellers and F. Barbier. What is this thing
alled aggregation? In
R. Mit
hell, A.C. Wills, J. Bos
h, and B. Meyer, editors, TOOLS29, pages 216{
230. IEEE Computer So
iety Press, 1999.

[11℄ E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on message sequen
e

harts (ms
'96). Tutorials at First Joint Conferen
e FORTE/PSTV'96, Kaiser-
slautern, Germany, O
tober 1996.

[12℄ James Rumbaugh, Ivar Ja
obson, and Grady Boo
h. The Uni�ed Modeling Lan-
guage Referen
e Guide. Addison-Wesley, 1998.

[13℄ Bernhard Rumpe. A note on semanti
s (with an emphasis on UML). In Haim
Kilov and Bernhard Rumpe, editors, Pro
eedings Se
ond ECOOP Workshop on
Pre
ise Behavioral Semanti
s (with an Emphasis on OO Business Spe
i�
ations),
pages 177{197. Te
hnis
he Universit�at M�un
hen, TUM-I9813, 1998.

[14℄ Monika Saksena, Robert Fran
e, and Maria Larrondo-Petri. A
hara
terization of
aggregation. In C. Rolland and G. Grosz, editors, Pro
eedings of OOIS98, pages
11{19. Springer, 1998.

[15℄ S. S
hnnberger and R.K. Keller. Algorithmi
 support for model transformation
in obje
t-oriented development. Publi
ations of DIRO, August 1997.

[16℄ M. Snoe
k and G. Dedene. Existen
e dependen
y: the key to semanti
 integrity
between stru
tural and behavioural aspe
ts of obje
t types. IEEE Trans. Software
Eng., 24(4):233{251, 1998.

