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Abstract The Patagonian Andes represents a unique natural laboratory to study surface deformation in

relation to deep slab dynamics. In the sector comprised between latitudes 41°30′ and 43°S, new apatite

(U-Th)/He ages indicate a markedly different unroofing pattern between the “broken foreland” area

(characterized by Late Cretaceous to Paleogene exhumation) and the adjacent Andean sector to the west,

which is dominated by Miocene-Pliocene exhumation. These unroofing stages can be confidently ascribed to

inversion tectonics involving reverse fault-related uplift and concomitant erosion. Late Cretaceous-Paleogene

shortening and exhumation are well known to have affected also the thrust belt sector of the study area

during a prolonged stage of flat-slab subduction. Therefore, the different ages of near-surface unroofing

documented in this study suggest coupling of the deformation between the thrust belt and its foreland

during periods of flat-slab subduction (e.g., during Late Cretaceous-Paleogene times) and dominant

uncoupling during periods of steep-slab subduction and rollback, even when these are associated with high

convergence rates (i.e., > 4 cm/yr), as those documented in Miocene times for the Patagonian Andes.

1. Introduction

The process of far-field stress propagation from the orogen to the foreland plate is well known to occur and

has been invoked to explain distributed weak strain recorded in large foreland sectors ahead of the thrust

front [e.g., Geiser and Engelder, 1983]. However, modes of deformation in the foreland domain are domi-

nantly of localized rather than distributed type. This is interpreted to be due to the fact that the continental

lithosphere of the foreland plate is generally cooler and stronger with respect to that of the orogen, which is

characterized by a warmer lithosphere and therefore a weaker rheology [Butler and Mazzoli, 2006]. In the

Andes, basement shortening associated with strong inversion and uplift of the axial zone of the Permo-

Triassic rift in the Eastern Cordillera of Peru, although being accommodated by localized shear involving

widespread reactivation (at lower greenschist facies conditions) of inherited mesoscopic fractures, has been

documented to represent a process of distributed strain at the orogen scale [Mazzoli et al., 2009]. This pro-

cess has been invoked to explain internal straining of basement blocks in order to accommodate thick-

skinned Andean shortening (e.g., in the Malargüe fold and thrust belt of Argentina, at latitudes 34–36°S)

[Mescua et al., 2012]. Similarly, in the external Western Alps, the Variscan basement has been documented

by Bellahsen et al. [2012] to have accommodated Alpine shortening by distributed slip along greenschist

facies shear zones. According to these authors, although no significant reactivation of the inherited

Jurassic normal faults took place there, the inherited synrift basins localized thick-skinned shortening due

to the weakening associated with both the presence of less competent basin fills (that were disharmonically

folded) and the P-T conditions experienced during crustal shortening. On the other hand, in the foreland litho-

sphere, localized deformation at the kilometer scale may be accommodated by inherited brittle structures

that represent preferential zones of weakness [Holdsworth et al., 2001]. In this instance, positive inversion tec-

tonics involving major reverse fault reactivation of deep-rooted discrete structures, particularly rift-related

normal faults, is favored [Ziegler, 1987; Coward, 1994; Ziegler et al., 1995; Lacombe and Mouthereau, 2002;

Butler andMazzoli, 2006] and has beenwidely documented for the so-called “broken foreland” of the northern

Patagonian Andes [Humphreys, 2009; Ramos and Folguera, 2009; Folguera and Ramos, 2011; Orts et al., 2012,

2015; Gianni et al., 2015a].
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Classically, shortening is assumed to migrate ahead of the thrust front, progressively involving foreland

domains that previously experienced flexure-related stretching [e.g., Tavani et al., 2015]. However, the situa-

tion is much more complex for the northern Patagonian fold and thrust belt and its foreland analyzed in this

study (Figure 1a). Being located in the overriding plate of the Andean subduction system, this whole retroarc

sector is interpreted to have experienced alternating shortening and upper plate extension during stages of

flat- and steep-slab subduction, respectively [Ramos and Folguera, 2009; Folguera and Ramos, 2011; Orts et al.,

2012, 2015]. More in general, several orogenic cycles of mountain building and subsequent extensional

dismembering associated with periods of shallowing and steepening of the subducting plate have been

recognized in recent years in the Andes [Kley et al., 1999; Haschke et al., 2002; Kay and Coira, 2009; Ramos

et al., 2014]. These processes have been especially well documented for the southern Central Andes of

Argentina and Chile between 34° and 37°S, where a complete cycle from crustal thickening and mountain

building to extensional collapse has been unraveled and related to changes in the subduction geometry

[Ramos et al., 2014]. On the other hand, the tectonic evolution of the Patagonian Andes further south is much

less well known. Although a recent paper by Echaurren et al. [2016] provided important constraints based on

the analysis of syntectonic strata, the degree of coupling versus uncoupling of the deformation between the

thrust belt and its foreland during alternating stages of shallow underthrusting (i.e., flat-slab subduction) and

of foundering of the subducting plate (i.e., slab rollback) needs to be further investigated. As a matter of fact,

shortening and extension in the retroarc sector may vary not only in time (i.e., with major “cycles” of

mountain building and orogenic collapse, respectively) but also in space, due to the variable transmission

of horizontal compressive stress away from the orogen. Low-temperature (low-T) thermochronological sys-

tems are ideally suited for reconstructing thermal histories of rocks in the uppermost part of the crust

because they record time and rates of cooling related to exhumation of the first kilometers of the crust.

Presently, a rather extensive apatite fission track and apatite (U-Th)/He (AHe) dating database is available

for the axial part of the orogen [Thomson et al., 2010; Guillaume et al., 2013; Folguera et al., 2015]. However,

such type of data are completely lacking from the broken foreland area. Yet this has experienced major tec-

tonic events during Andean orogenesis [Echaurren et al., 2016]. In this study, we integrate field structural

observations with new AHe data in the Esquel-Gastre area (located at latitudes 41°30′–43°S) in order to

analyze and compare the exhumation patterns from the frontal part of the orogen and from the adjacent

foreland sector and then use them to gain new insights into the timing and modes of coupling versus

uncoupling of the deformation between the northern Patagonian fold and thrust belt and its foreland.

2. Geological Setting

The southern Andes is a roughly linear orogenic belt produced by the convergence between the Nazca and

Antartic plates beneath the South American plate. The building of the present-day orogen has been inter-

preted as a result of a series of shortening pulses that took place since the Late Cretaceous [Folguera and

Ramos, 2011]. Despite the general along-strike continuity of the mountain belt, its internal tectonic segmen-

tation is marked by the variable position of themagmatic arc and of the deformation front in the retroarc area

to the east. Thus, this plate margin results in a more complex configuration with respect to the simplified

notion of “Andean-type” subduction system proposed in the past literature [e.g., Gutscher, 2002]. Marked var-

iations in convergence rates have been calculated from continuous-GPS measurements and NUVEL-1 models

along the chain. These measurements unraveled relatively high convergence rates (between 6 and 7 cm/yr)

in the Nazca-South America sector and lower ones (less than 2 cm/yr) where the Antarctic plate sinks beneath

South America [Gripp and Gordon, 1990; DeMets et al., 1990; Kendrick et al., 1999].

The area of this study is located between latitudes 41°30′ and 43°S, where the Andean orogen is constituted

by a series of morphotectonic elements including, from west to east [e.g., Orts et al., 2015] (Figures 1b and 2),

(i) the Coastal Cordillera, (ii) the Chilean Central Valley, (iii) the northern Patagonian Cordillera, and (iv) the

foreland. The Carboniferous-Triassic units of the Coastal Cordillera, which were deformed during the

Gondwanian orogenic cycle, are partly covered by Mesozoic-Cenozoic strata [Thomson and Hervé, 2002;

Willner et al., 2004; Orts et al., 2015]. The Chilean Central Valley, representing the forearc region, hosts a series

of Eocene to Quaternary basins filled by volcaniclastic, marine, and continental deposits [González, 1989;

Radic et al., 2009]. This area was affected by intense subsidence interpreted as resulting from subduction

erosion in early Miocene times (~17Ma), leading to a Pacific-derived transgression with the deposition of

deep marine sediments [Encinas et al., 2012]. The northern Patagonian Cordillera includes large Quaternary

Tectonics 10.1002/2016TC004225
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Figure 1. (a) Present tectonic setting of North and Central Patagonia, showing administrative provinces, major tectonic fea-
turesof the region, and locationof Figure1b. Yellowshadedareas representdeformedforelandsectors; CAB:CañadónAsfalto
Basin, CTJ: Chile Triple Junction. (b) Structural sketch map showingmainmorphotectonic units and structures of the Andes
and adjacent foreland between 40° and 44°S, sampling sites of this study, and location of the geological map of Figure 3.
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stratovolcanoes representing the recent volcanic arc [Stern, 2004] and underlying Neogene-Mesozoic volca-

niclastic successions. These, in turn, rest on top of the North Patagonian Batholith, which is a ~ 2000 km

long and 120 km wide (on average) plutonic body parallel to the Pacific coastline, with associated smaller

satellite intrusions spread along both western and eastern Andean slopes [Orts et al., 2015, and references

therein]. North to the Chilean Triple Junction, the North Patagonian Batholith includes Middle Jurassic to

Miocene rocks of calc-alkaline composition [Castro et al., 2011; Pankhurst et al., 1999] intruding the

Figure 2. Stratigraphic correlations, main magmatic bodies, and tectonic regimes characterizing the various morphostruc-
tural domains of the study area.

Tectonics 10.1002/2016TC004225
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Upper Paleozoic basement. In this sector the Liquiñe-Ofqui Fault Zone is a major transpressional intra-arc

fault system (Figure 1b) that accommodates the oblique convergence between the Nazca and South

America plates and along which most of the Quaternary volcanism and faulting develop [Hervé, 1994;

Cembrano et al., 1996; Rosenau et al., 2006; Vargas Easton et al., 2013]. This is an ~ 1000 km long strike-slip fault

characterized by dextral motion during the Cenozoic, when it was active within the arc roots in a thermally

weakened crust [Cembrano et al., 1996; Lavenu and Cembrano, 1999; Thomson et al., 2010], and by previous

left-lateral motion during the Mesozoic, when it favored the emplacement of the Patagonian Cordilleran

Batholith [Cembrano et al., 1996; Castro et al., 2011]. East of the Liquiñe-Ofqui Fault Zone, the northern

Patagonian Cordillera is characterized by a thick-skinned style of thrusting. During Cretaceous-late

Paleogene and Neogene shortening phases [Giacosa et al., 2005; Homovc et al., 2011; Orts et al., 2012;

Ramos, 1981; Ramos and Cortés, 1984], this type of deformation produced the exhumation of the North

Patagonian Batholith and of the igneous-metamorphic basement. Thick-skinned thrusting is related with

the reverse fault reactivation of preexisting normal faults and is accompanied by basin inversion [Giacosa

and Heredia, 2004a]. Reactivated normal faults were originally related with two main extensional stages in

the study area: (i) an Early to Middle Jurassic preorogenic stage, accompanied by the accumulation of

volcano-sedimentary units in the northern Patagonian Cordillera (Piltriquitrón Formation and equivalents),

where interbedded tuff and sedimentary strata were dated as ~197–192Ma old by U/Pb zircon dating

[Orts et al., 2012; Spalletti et al., 2010] and (ii) an Oligocene to early Miocene intraorogenic stage associated

with the occurrence of the El Maiténmagmatic belt [Rapela et al., 1988]. The latter would be related to a regio-

nal episode of intra-arc extension affecting the whole Southern Central Andes [Charrier et al., 2002; Godoy

et al., 1999; Jordan et al., 2001; Radic et al., 2002]. Across the northern Patagonian Andes, these volcanic rocks,

interbedded with marine and continental sedimentary rocks [Cazau et al., 1989; Ramos, 1982], have been

related to extensional processes, based on geochemistry and structural evidence [Aragón et al., 2011;

Bechis and Cristallini, 2006; Bechis et al., 2014; Giacosa and Heredia, 2004b; Rapela et al., 1988]. This extensional

stage has been unraveled also in the foreland by Mancini and Serna [1989].

Early Cretaceous volcanics of calc-alkaline affinity, forming the Divisadero Group [Skármeta and Charrier,

1976; Ramos, 1981; Rapela et al., 1988; Suárez et al., 1996; Suárez and De La Cruz, 2001], cover Jurassic succes-

sions and older intrusive rocks in the eastern parts of the northern Patagonian Cordillera. The frontal eastern

foothill area, also termed “Precordilleran System” [e.g., Orts et al., 2015], is dominated by Paleozoic basement

intruded by the Early Jurassic Subcordilleran Plutonic Belt [Gordon and Ort, 1993]. These rocks are covered by

roughly coeval volcano-sedimentary successions that were deposited in a NNE trending intra-arc extensional

system [Giacosa and Heredia, 2004b; Orts et al., 2012]. In this region, two Cenozoic magmatic belts developed,

related to extensional intraorogenic events [Giacosa and Heredia, 2004a]. The Paleocene to Eocene Pilcaniyeu

magmatic belt is characterized by bimodal volcanic rocks ranging from predominant rhyolithic ignimbrite

facies to subordinate andesites and basalts [Mazzoni et al., 1991; Rapela et al., 1988]. To the east, the pre-

viously mentioned El Maitén magmatic belt (late Oligocene-early Miocene) is characterized by widespread

outcrops of andesites and dacitic ignimbrites with subordinate basaltic lava flows and rhyolitic ignimbrites.

These two magmatic belts are affected by Cenozoic folds [Ramos et al., 2011; Morabito and Ramos, 2012;

Bilmes et al., 2013]. Tertiary shortening is particularly well documented by both foreland basin and wedge-

top basin synorogenic deposits, which preserve progressive unconformities and effectively record depocen-

ter migration during the Miocene [Ramos et al., 2011; Orts et al., 2012; Bilmes et al., 2013; Echaurren et al.,

2016]. The overlying flat-lying Pliocene-Pleistocene volcanics, classifying as alkali basalts, basanites, and

trachybasalts, indicate a within-plate environment that differs from previous Andean arc-magmatic rocks

[Massaferro et al., 2006].

The north Patagonian foreland to the east is dominated by a landscape of faulted basement blocks and

intramontane depressions filled by Neogene-Quaternary clastic and volcanic deposits [Bilmes et al., 2013;

Echaurren et al., 2016]. One of these Neogene-Quaternary depressions, i.e. the Gastre Basin, retraces the

Mesozoic rift-related Cañadón Asfalto Basin [Coira et al., 1975; Dalla Salda and Franzese, 1987; Bilmes,

2012]. The boundaries of this basin follow regional NW and NNE trending lineaments [Coira et al., 1975].

The pre-Jurassic basement of the Cañadón Asfalto Basin consists of granitoids and metamorphic rocks of

Carboniferous to Triassic age [Duhart et al., 2002; Pankhurst et al., 2006; von Gosen, 2009] grouped into

several lithostratigraphic units. The Cushamen Formation [Volkheimer, 1964] and the Calcatapul Formation

[Proserpio, 1978] are part of a metamorphic basement that was intruded by plutonic bodies of the El Platero

Tectonics 10.1002/2016TC004225
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Formation [Volkheimer, 1964], the Mamil Choique Formation [Ravazzoli and Sesana, 1977] and the Lipetrén

Formation [Ravazzoli and Sesana, 1977]. The Jurassic-Lower Cretaceous Cañadón Asfalto extensional basin

included nonmarine, normal fault-bounded isolated depocenters that were partially inverted during the

Cretaceous [Allard et al., 2011; Folguera and Ramos, 2011]. In the study area, the infill of the Cañadón Asfalto

Basin includes the Early Jurassic Las Leoneras and Lonco Trapial Fms. (radiometrically dated using the zircon

Pb/U method by Cúneo et al. [2013]) and the Toarcian to Middle-Late Jurassic Cañadón Asfalto Formation

(Pb/U ages of 178.8� 0.1Ma and 157.4� 0.6Ma) [Cúneo et al., 2013]. The Cañadón Asfalto Basin has an

economic relevance because it hosts the epithermal world-class polymetallic Ag + Pb (Cu, Zn) Navidad

deposit, with resources of 19.670 t Ag; 1,320,000 t Pb; and significant contents of Cu and Zn in eight

separate to semicontinuous deposits [Williams, 2010]. The Jurassic to Lower Cretaceous succession is

unconformably overlain by the Upper Cretaceous to Paleocene marine and continental deposits of the

Paso del Sapo and Lefipán Fms. [Lesta and Ferello, 1972]. These units, representing the record of the

Campanian-Danian transgression [Spalletti and Dalla Salda, 1996], are covered by an Eocene volcanic

succession [Cazau et al., 1989] including andesites, dacites, and rhyolites of the Huitrera Formation

[Ravazzoli and Sesana, 1977]. Stratigraphically overlying Neogene-Quaternary continental deposits are pre-

served within tectonic depressions (such as the Gastre Basin) and, to a lesser extent, on top of the uplifted

fault-bounded blocks.

3. Structural Constraints From the Gastre-Navidad Area

The map-scale structure of the Gastre-Navidad area (Figures 3a and 4) is dominated by high-angle faults.

Pre-Mesozoic units record internal deformation produced by NE-SW shortening, accompanied by lower

greenschist facies metamorphism [von Gosen and Loske, 2004]. Map-scale folds are locally well developed

in the Mesozoic-Tertiary successions, particularly in the Cañadón Asfalto Fm. Examples of outcrop structural

features from the Cañadón Asfalto Fm are shown in Figure 5, while orientation data are provided in Figure 6.

The Cañadón Asfalto Fm. is affected by two sets of faults, striking dominantly NW-SE and NE-SW (Figures 6a

and 6b), often recording a synsedimentary/syndiagenetic extensional activity documented by sediment

thickness variations across the faults, disruption of not yet completely lithified beds (Figures 5a and 5b),

and carbonate sediment filling of dilatant structures (hybrid dilation/shear fractures). About 30% of these

faults—arguably syndiagenetic in origin—preserve kinematic indicators in the form of striae and/or mineral

(dominantly calcite) shear fibers on slickenside surfaces. When slickenlines were present, their pitch has been

measured together with sense of shear. These data (Figure 6c) have been used to obtain information on the

strain field controlling the development of the fault set, using the P-B-T technique [Angelier and Mechler,

1977]. The P-B-Tmethod, based on plane orientation, slip orientation, and kinematics of each single fault, fur-

nishes the three principal axes of strain: P (direction of maximum shortening), T (direction of maximum

stretching), and B (intermediate axis, orthogonal to the P-T plane). In order to calculate the orientation of each

strain axis, this method uses a common defined fracture angle θ for all fault-slip data. P-B-T axes were

determined using FaultKin v.7.4.3 software [Marrett and Allmendinger, 1990; Allmendinger et al., 2012], which

utilizes the right dihedra geometrical method of paleostress analysis of Angelier and Mechler [1977] and

Pfiffner and Burkhard [1987] (for small-offset faults such as those analyzed in this study, and accepting the

Wallace-Bott hypothesis that the slip is parallel to the resolved shear stress [Wallace, 1951; Bott, 1959], the

obtained strain axes can be assumed to approximate infinitesimal strain and therefore to represent

paleostressprincipal axes). Theanalysisunraveledanextensional tectonic regimecharacterizedbyasubvertical

P axis and a subhorizontal, SW-NE trending T axis (Figure 6d).

Figure 3. (a) Geological map of the study area (based on Ardolino et al. [2009], Lizuaín [2009], Lizuaín and Silva Nieto [2011], Orts et al. [2012], Bilmes et al. [2013], and
Orts et al. [2015], integrated with our own field mapping). New apatite (U-Th)/He ages from our samples (G01 to G22; error of 10% at 1σ has to be considered for AHe
ages) are shown together with published apatite fission track (AFT) ages [from Thomson et al., 2010]. Shortening directions were obtained based on the analysis of the
layer-parallel shortening-related structural assemblage (consisting of pressure solution cleavage, veins, and conjugate faults). (b) Cross sections [from Bilmes et al.,
2013; Orts et al., 2015; Echaurren et al., 2016], showing projected low-temperature thermochronometric data. As pointed out by the original authors of these geo-
logical sections, the structure is dominated by reverse-slip reactivation of preexisting normal faults. Depending on the degree of tectonic inversion, faults may show
variable reverse/normal fault separation at different stratigraphic levels. The thickness of the stratigraphic units can also change between footwall and hanging wall
blocks of original, synsedimentary normal faults.
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Hydrothermal veins, up to tens of centimeters thick and mainly composed of barite (Figure 5c), also occur as

dominant NW-SE and NE-SW striking sets (Figures 6e and 6f). This whole composite fault-vein system appears

to control the mineralization in the ore deposit of Navidad, which can be confidently ascribed to the

Mesozoic (Jurassic), as already suggested by Williams [2010].

The analysis of bedding data from the Cañadón Asfalto Fm. indicates that this is dominated by subhorizontal

to gentle dips, although folding is clearly recorded by the distribution of poles to bedding (Figures 6g and

6h). Bedding attitudes record folding of the Cañadón Asfalto Fm. around a subhorizontal statistical axis at

a regional scale. The analysis of bedding distribution around single folds (e.g., Esperanza Syncline and

Esperanza Anticline in Figure 4) shows how adjacent individual structures may be characterized by slightly

different mean axial trends (Figures 6i–6l). These folds are clearly the result of shortening of the sedimentary

succession, as testified by tectonic stylolites (i.e., spaced pressure solution cleavage) at a high angle to bed-

ding in limestones (Figure 5f), the bedding-cleavage intersection being roughly parallel to the local fold axis.

Calcite-filled extension veins occur perpendicular to the tectonic styolites. The two sets of shortening and

extension structures show mutually crosscutting relationships, indicating that they are essentially coeval.

Small normal faults also strike parallel to the extension veins. The tension gashes are parallel to the acute

bisector of conjugate normal faults, thus suggesting that these features form part of a single structural asso-

ciation. The whole cleavage-vein-normal fault structural assemblage records mutually orthogonal horizontal

maximum (σ1) and minimum (σ3) compression during layer-parallel shortening preceding fold amplification,

a stress configuration that is typical of prethrusting foreland shortening [Tavani et al., 2015] and is also con-

sistent with the evidence of syncontractional, perpendicular extension in the foreland of the Patagonian

Andes at a more regional scale [Gianni et al., 2015a]. The layer-parallel shortening-related structural

Figure 4. (a) Geological map of the Navidad Project (modified after Williams [2010]), showing location of samples collected in the ore deposit area and (white box)
that of the satellite image reporting bedding data gathered in the (b) folded zone of Navidad.
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assemblage has been used to obtain shortening directions for various sites within the study area (displayed in

Figure 3a). Although bedding data are somewhat dispersed (Figures 6g–6l), individual folds are relatively

simple, subcylindrical [Ramsay and Huber, 1987] structures accompanied by a single generation of related

cleavage. Therefore, variable fold trends appear not to be the result of superposed folding events. Rather,

it may envisaged that shortening of the Cañadón Asfalto Basin occurred by buttressing of the sedimentary

Figure 5. Examples of outcrop structures from the Cañadón Asfalto Fm. (a) Jurassic minor fault showing silicified fault core
testifying hydrothermal circulation (Navidad area). (b) Detail of fault hanging wall from Figure 5a, showing folded and
partially disrupted laminated bed. (c) Barite-bearing hydrothermal veins (Navidad area). (d) NW dipping fold limb in Upper
Jurassic limestone beds (about 30 km WSW of Gastre). (e) Outcrop of Upper Jurassic limestone beds on NW dipping fold
limb of Figure 5d, showing NW striking calcite-filled extension veins (blue arrows) normal to bedding and minor normal
faults (red arrows) at a high angle to bedding. (f) Detail of previous outcrop, showing NE striking spaced pressure solution
cleavage surfaces (arrowed) normal to bedding.
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infill against basement blocks representing the footwall of Mesozoic rift-related normal faults, thus resulting

in variable fold trends being controlled by the inherited, complex basin architecture. This style of shortening

and the related variability of maximum shortening directions (Figure 3a) are consistent with the tectonic

inversion already documented for this foreland sector, which is termed broken foreland because of this type

of deformation dominated by double-vergent structures controlled by the reactivation of preexisting normal

faults [e.g., Folguera and Ramos, 2011; Orts et al., 2012, 2015] (refer to the cross sections in Figure 3b).

4. Apatite (U-Th)/He Thermochronometry

In order to analyze and compare the tectonic evolution and exhumation of the frontal part of the east vergent

northern Patagonian Andes and of the adjacent foreland, a transect has been selected from the eastern slope

of the Cordillera to the area of the Gastre Basin (reaching a longitude of ~ 68.5°W), thereby including the

Navidad silver deposit.

4.1. Materials and Methods

Collected samples can be included into two main groups (see Table 1 for details). A first group comprises the

samples gathered from the foreland area. Samples G01, G02, G04, G07, G08, G10, G11, G12, G15, and G17

were collected from basement rocks cropping out in uplifted fault blocks bounding the Gastre Basin

(Figure 3a). These granitoid samples are from the Lipetren Fm. (Lower Paleozoic) and the Mamil Choique

Figure 6. Orientation data (lower hemisphere, equal area projections of poles to planes drawn using Stereonet v.9.5.1 software) [Allmendinger et al., 2012; Cardozo
and Allmendinger, 2013] for the Gastre area. All contours are drawn using the Kamb method with intervals at 2σ and significance level of 3σ. (a) Extensional faults
showing evidence of synsedimentary/syndiagenetic activity. (b) Contour plot of data shown in Figure 6a. (c) Subset of the fault population plotted in Figure 6a,
showing faults preserving slickenlines (arrows) and reliable shear sense indicators. Fault plane solution obtained by kinematic analysis performed with FaultKin
v.7.4.3 software [Marrett and Allmendinger, 1990; Allmendinger et al., 2012] is also shown (grey shaded “beach ball”). (d) Contours of P (blue) and T (red) axes obtained
from the kinematic analysis shown in Figure 6c. (e) Hydrothermal veins. (f) Contour plot of data shown in Figure 6e. (g) Bedding in the Cañadón Asfalto Fm. (h)
Contour plot of data shown in Figure 6g. (i) Bedding from the Esperanza Syncline (refer to Figure 3). (j) Contour plot of data shown in Figure 6i. (k) Bedding from the
Esperanza Anticline (refer to Figure 3). (l) Contour plot of data shown in Figure 6k. For diagrams in Figures 6g, 6i, and 6k, the best fit great circle approximating data
distribution is shown, together with its pole (π) representing the statistical fold axis.
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Fm. (Permo-Triassic). Samples G5, G6, G9, G13, and G14 were collected from the Cañadón Asfalto Fm. (Upper

Jurassic). In particular, samples G6 and G14 are from the ore deposit district of Navidad. A second group of

samples (G18, G19, G20, G21, and G22) includes those gathered in the western part of the study area, from

the Leleque and El Maiten Ranges, constituting the frontal part (i.e., the so-called Precordillera System) of

the northern Patagonian Andes.

(U-Th)/He (AHe) ages have been obtained from carefully selected apatite grains with a minimum width of

60μm, which have been measured along the two axes on two faces and then placed into a Niobium basket.

One to three replicates have been analyzed per sample. Sphere equivalent radius, weight, and ejection fac-

tors have been determined, assuming a homogeneous distribution of U and Th in apatite, using dedicated

software [Gautheron and Tassan-Got, 2010; Ketcham et al., 2011; Gautheron et al., 2012]. The Niobium baskets

have been heated twice using a diode laser at 1030� 50°C for 5min, allowing for total He degassing and to

check the presence of He trapped in small inclusions (see Fillon et al. [2013] for more details). After He extrac-

tion, Nb baskets were placed into a single-used polypropylene vials. Apatite grains were dissolved for 3 h at

70°C in a 50μL HNO3 5N¬ solution containing a known content of 235U, 230Th, and 149Sm, and additional

50μL HNO3 5N and then filled with 0.9mL of ultrapure MQ water. The final solution was measured for U,

Th, and Sm concentrations by quadrupole inductively coupled plasma (ICP)-quadrupole mass spectrometry

(CCT Thermo-Electron at LSCE (Gif/Yvette; France). The analysis was calibrated using external age standards,

including Limberg Tuff and Durango apatites. A mean AHe age of 16.0� 1.4Ma and 31.1� 2.1Ma has been

measured for the Limberg Tuff and yellow Durango apatite, which are in agreement with published data (i.e.,

16.8� 1.1Ma and 31.0� 1.0) [Kraml et al., 2006; McDowell et al., 2005]. An error at 10% at 1σ should be con-

sidered, reflecting the sum of ejection factor FT correction and standard dispersion. The HeFTy software

[Ketcham, 2005] was used to generate an inverse thermal modeling based on AHe data of four representative

samples (G07, G13, G15, and G22), in order to test plausible thermal histories. We chose three samples

belonging to the broken foreland area, for which there is a complete lack of low-T thermochronological stu-

dies, and one from the Precordillera. Two to three AHe replicates were used for each modeled sample. The

RDAAM model of Flowers et al. [2009] was adopted for the calibration of kinetic parameters, and Ketcham

et al. [2011] was considered for the approximation of stopping distances. However, similar results would have

been obtained by the use of the damage and annealingmodel from Gautheron et al. [2009]. Surface tempera-

ture was assumed to be 10°C. The only constrains used were the following: (i) temperatures between 0 and

Table 1. Sample Location (With Formation and Stratigraphic Age)

Sample Name

Coordinates

Elevation Lithology Formation Stratigraphic AgeLatitude Longitude

G01 42°11′34″ 69°09′56″ 1134 Granite Lipetren (Permo-)Triassic
G02 42°15′57″ 69°24′31″ 929 Granite Mamil Choique Lower Paleozoic to Lower Permian
G03 42°20′17″ 69°22′32″ 958 Granite Lipetren (Permo-)Triassic
G04 42°23′16″ 69°31′19″ 997 Granite Mamil Choique Lower Paleozoic to Lower Permian
G05 42°22′10″ 69°37′45″ 963 Conglomerate Cañadón Asfalto Upper Jurassic
G06 42°26′40″ 68°46′49″ 1150 Arkose Cañadón Asfalto Upper Jurassic
G07 42°33′35″ 69°00′14″ 1070 Granite Mamil Choique Lower Paleozoic to Lower Permian
G08 42°33′50″ 69°00′15″ 1043 Granite Mamil Choique Lower Paleozoic to Lower Permian
G09 42°24′47″ 69°46′56″ 995 Arkose Cañadón Asfalto Upper Jurassic
G10 42°05′43″ 69°46′30″ 1060 Granite Mamil Choique Lower Paleozoic to Lower Permian
G11 42°18′41″ 70°02′12″ 999 Granite dyke Mamil Choique Lower Paleozoic to Lower Permian
G12 42°02′07″ 70°17′57″ 976 Granite Mamil Choique Lower Paleozoic to Lower Permian
G13 42°22′25″ 69°36′14″ 973 Sandstone Cañadón Asfalto Upper Jurassic
G14 42°25′31″ 68°50′05″ 1177 Sandstone Cañadón Asfalto Upper Jurassic
G15 42°35′10″ 68°48′46″ 1103 Granite Mamil Choique Lower Paleozoic to Lower Permian
G16 42°35′18″ 69°44′05″ 534 Sandstone Passo del Sapo Upper Cretaceous
G17 41°42′43″ 69°37′09″ 1275 Granite Mamil Choique Lower Paleozoic to Lower Permian
G18 42°55′50″ 71°15′38″ 617 Granite Subcordilleran Plutonic Belt Lower Jurassic
G19 42°48′23″ 71°39′39″ 576 Granitoid Batolite Patagonico Upper Cretaceous
G20 42°23′05″ 71°14′43″ 663 Granite Leleque Upper Jurassic
G21 42°10′02″ 71°21′26″ 616 Granodiorite Subcordilleran Plutonic Belt Lower Jurassic
G22 42°01′49″ 71°34′34″ 275 Granite Batolite Patagonico Upper Cretaceous
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20°C during the depositional age for the sedimentary sample (G13) and (ii) temperatures between 0 and 20°C

for basement samples (G07 and G15), corresponding to their near-surface exposure during Triassic times

(marked by an unconformity followed by the deposition of the volcano-sedimentary succession of the

Garamilla Fm.). No constraints were imposed for sample G22, as its intrusion age is much older than the

recorded AHe age.

4.2. Results and Thermal Modeling

The determined AHe data for each replicate are reported in Table 2. AHe ages and effective uranium content

(eU=U+ 0.24 Th) present a broad distribution ranging from 2.0� 0.2 to 282.3� 25.4Ma and eU range from

low to quite high values (3 to 159 ppm). Most of the samples gave ages that will be considered in the

Table 2. Apatite (U-Th-Sm)/He Analytical Dataa

Sample Name Rs (μm) Weight (μg) FT
4He (nncc/g) U (ppm) Th (ppm) 147Sm (ppm) eU (ppm) Th/U

Raw AHe
Age (Ma)

Corrected AHe
Age (Ma)

G01-02 38 1.7 0.64 481,259.6 91 31 151 98 0.3 40.0 62.1� 5.6
G02-02 41 1.8 0.72 159,254.4 18 59 82 32 3.3 40.6 56.5� 5.1
G02-03 35 0.9 0.66 70,897.9 9 20 486 14 2.2 33.0 49.9� 4.5
G04-01 53 3.8 0.79 204,917.2 21 22 66 27 1 62.7 79.9� 7.2
G04-02 41 1.4 0.71 257,276.9 32 33 97 40 1 51.9 73.6� 6.6
G04-03 44 1.6 0.68 729,467.2 83 96 17 105 1.2 57.3 83.8� 7.5
G05-01 50 2.9 0.79 268,589.4 45 46 75 56 1 39.5 50.2� 4.5
G05-03 46 1.8 0.75 116,142.7 43 20 65 47 0.5 20.1 26.9� 2.4
G06-03 55 3.5 0.78 70,495.9 22 19 66 27 0.9 21.6 27.7� 2.5
G07-01 52 2.6 0.73 1,256,944.8 134 3 152 135 0 76.5 104.6� 9.4
G07-02 43 2.2 0.68 473,128.2 65 3 106 66 0.1 58.8 86.7� 7.8
G07-03 55 3.4 0.75 1,587,006.9 159 9 66 161 0.1 81.4 109.2� 9.8
G08-01 39 1.9 0.69 113,056 15 8 133 17 0.5 51.4 74.5� 6.7
G08-03 31 0.9 0.65 245,288.5 26 11 155 29 0.4 66.9 103.3� 9.3
G09-01 32 0.5 0.57 260,075.3 33 89 933 54 2.7 35.1 61.4� 5.5
G09-02 33 0.9 0.63 124,150 19 50 141 31 2.7 32.3 51.6� 4.6
G09-03 43 1.6 0.68 149,903.5 19 67 58 36 3.4 34.6 51.1� 4.6
G10-01 90 15.2 0.86 207,920.9 14 7 48 16 0.5 106.5 123.8� 11.1
G10-02 77 8.8 0.85 172,830.1 17 6 29 19 0.3 75.1 88.7� 8.0
G10-03 60 4.5 0.79 163,455.5 18 7 83 19 0.4 67.6 85.2� 7.7
G11-02 38 1.3 0.69 89,896.4 17 22 98 23 1.2 31.8 46.4� 4.2
G11-03 43 1.6 0.72 40,621 8 3 114 9 0.4 34.1 47.5� 4.3
G12-01 53 3.9 0.78 170,929.5 15 17 104 19 1.1 71.4 91.2� 8.2
G12-02 52 3.3 0.76 348,509.6 50 13 159 53 0.3 53.3 70.2� 6.3
G13-02 58 3.9 0.8 239,706.7 27 40 51 37 1.5 53.3 66.8� 6.0
G13-03 70 7 0.82 28,134.2 3 15 79 7 4.4 30.0 36.4� 3.3
G14-01 58 3.9 0.79 291,854.3 35 83 61 56 2.4 43.3 55.0� 4.9
G14-03 54 4.1 0.77 357,806.4 64 74 89 82 1.2 36.1 46.9� 4.2
G15-01 38 0.9 0.63 180,970.1 10 44 204 21 4.4 67.2 106.1� 9.5
G15-02 41 4.1 0.77 26,296.8 3 11 52 5 4.3 39.2 51.0� 4.6
G15-03 45 1.6 0.69 65,107.3 5 23 135 11 4.3 44.9 65.4� 5.9
G17-03 35 1.1 0.65 206,061 25 13 126 28 0.5 58.1 88.9� 8.0
G18-02 47 2.5 0.73 42,608.5 103 83 208 123 0.8 2.8 3.9� 0.4
G19-02 42 1.8 0.71 20,037.8 26 95 249 49 3.6 3.3 4.6� 0.4
G19-03 39 1.3 0.69 11,635.1 53 61 236 68 1.1 1.4 2.0� 0.2
G20-01 42 1.5 0.67 20,451.3 11 50 164 23 4.7 7.2 10.6� 1.0
G20-02 36 0.9 0.68 12,081.7 13 33 140 21 2.5 4.5 6.7� 0.6
G20-03 51 3.3 0.73 5,681.2 6 24 85 12 3.8 3.7 5.0� 0.5
G21-01 20 0.9 0.61 41,763.5 51 25 152 57 0.5 5.9 9.8� 0.9
G21-02 37 1.1 0.64 32,364.8 38 30 237 45 0.8 5.8 9.1� 0.8
G21-03 44 1.9 0.73 16,467.8 23 14 79 26 0.6 5.1 7.0� 0.6
G22-02 45 1.5 0.69 33,055.7 84 185 70 129 2.2 2.1 3.1� 0.3
G22-03 46 2 0.73 19,459.8 45 109 127 71 2.4 2.2 3.1� 0.3

a
FT is the ejection correction factor and Rs is the sphere equivalent radius of hexagonal crystal with the same surface/volume ratio, which are both determined

by using a dedicated code [Gautheron and Tassan-Got, 2010; Ketcham et al., 2011; Gautheron et al., 2012]. AHe ages are corrected for the FT factor and an error at 1σ
is considered.
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following discussion. On the other hand, a few replicates have been rejected because they yielded critically

high Th/U values, probably due to U or Th-rich (i.e., uraninite or thorite) undetectable inclusions.

The data set presents two different AHe age trends, with a sample group (G18 to 22, sampled along the

Precordillera mountain front) characterized by “young” ages (~2 to 10Ma) and a second one (G1 to 17,

sampled in the foreland) characterized by “old” ages (reaching ~110Ma; Table 2).

The foreland samples, from both Permian-Triassic plutonic rocks and Mesozoic continental sediments of the

Cañadón Asfalto Formation, present for a few replicates some dispersion in AHe ages that depends on factors

affecting He diffusion kinetics (eU content and crystal size; Figure 8b). This AHe age dispersion reflects a long

permanence in the He-Partial Retention Zone (HePRZ). In those conditions, He diffusivity can be different for

each grain, implicating closure temperatures ranging from 40 up to 120°C [Reiners and Farley, 2001;

Gautheron et al., 2009; Flowers et al., 2009; Djimbi et al., 2015]. Based on the AHe data, it may be inferred that

the samples from the foreland area stayed in the HePRZ since at least ~110Ma, with a final exhumation phase

at ~30–50Ma. More information could be extracted from thermal modeling performed using the HeFTy

software. Figure 7 shows the possible scenarios of thermal paths experienced by samples G07 and G15

(Mamil Choique Fm.), G13 (Cañadón Asfalto Fm.), and G22 (North Patagonian Batholith). The first two samples

consist of Paleozoic basement rocks that, based on stratigraphic constraints [Lizuaín and Silva Nieto, 2011],

probably experienced burial since ~250Ma. These two samples show similar path envelopes characterized

by a long residence in the HePRZ (between 40 and 80°C), and possibly below it, followed by slow exhumation

since ~120Ma (Figures 7a and 7c). The Cañadón Asfalto sample (G13) experienced a shorter residence after

its burial, with subsequent exhumation starting at ~100Ma (Figure 7b). All these modeled samples do

not show any evidence of more recent substantial reheating. On the other hand, the thrust belt samples

(G18 to G22), collected from Early Jurassic magmatic rocks of the Subcordilleran Plutonic Belt, show a

more recent exhumation phase between 10Ma and 2Ma, as indicated also by the thermal modeling

performed for sample G22 (Figure 7d).

Figure 7. Thermal modeling (performed with the HeFTy software) [Ketcham, 2005] for foreland samples (a) G07,
(b) G13, and (c) G15, and (d) Precordilleran sample G22. Good path envelope (supported by the data) and best fitting path
are indicated with dark grey areas and a black solid line, respectively. (e) Table summarizing measured age, modeled age,
and goodness of fit (GOF) for each considered grain. Age GOF provides an indication of the fit between observed and
predicted data (values close to 1 are best).
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The long permanence in the HePRZ of some samples is confirmed by the age-elevation relationships (AER;

Figure 8a). A first group of data cluster around 650m of elevation and are characterized by ages younger than

10Ma. A second subset of ages are localized at elevations between ~ 900 and 1250m and are characterized by

very dispersed ages, spanning from 30 to 120Ma. The main difference between these two groups of ages can

be ascribed to the time spent by the samples in the HePRZ: a rapid cooling though this zone characterized the

Precordilleran samples, while a prolonged residence is recorded by the broken foreland samples. In other

words, the analyzed foreland area represents a paleo-HePRZ that was brought to surface by exhumation.

5. Discussion

The foreland sector at the latitudes of our study area exposes Late Paleozoic to Jurassic successions that were

affected by rifting during Jurassic times [e.g., Folguera and Ramos, 2011]. Synsedimentary normal faults and

hydrothermal veins, also controlling themineralization in the Navidad ore deposit, provide a structural record

Figure 8. (a) Age-elevation relationships (AERs) for AHe data; samples used for thermal modeling are highlighted. (b) AHe
ages plotted against effective uranium concentration (eU = [U] + 0.235 × [Th]).
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of such Mesozoic extension in the

study area (refer to Figures 5 and 6).

Subsequent shortening of this fore-

land sector has been widely docu-

mented [e.g., Folguera and Ramos,

2011; Bilmes et al., 2013; Gianni et al.,

2015a, 2015b; Echaurren et al., 2016]

and has resulted in the folds affecting

the succession of the Cañadón

Asfalto Basin analyzed in this study

(refer to the section on structural

data). The new AHe ages obtained

in this study, being consistently

younger than stratigraphic age of

the sampled units (Tables 1 and 2),

provide evidence for burial condi-

tions sufficient to completely reset

the AHe system that is in the range

of 2.5–3.5 km (see below). Indeed,

the presence of a few thousands of

meters of burial is consistent with

tectonic stylolite formation and

folding of competent units of the

Cañadón Asfalto succession (refer to

Figures 5 and 6). Had such folding

occurred during the Miocene, the

removal of the overlying burial would

be recorded by recent (i.e., Miocene

or younger) AHe ages. Yet AHe ages

obtained in this study point to a Late Cretaceous to Paleogene major tectonic inversion and exhumation

stage, in agreement with a regional shortening stage that has been documented for the whole Patagonian

Andes and its foreland, which lasted from circa 125Ma to circa 56Ma at the latitudes of this study [Gianni

et al., 2015b]. The plate-scale extent of this major shortening stage is testified by fault reactivation and mild

inversion occurring in Cretaceous times over various parts of the foreland area, as far as the Atlantic offshore

[Continanzia et al., 2011;Micucci et al., 2011]. This suggests that the Cretaceous-Eocene inversion has been by

far the dominant shortening event in the Gastre foreland sector and that the role and extent of Miocene

inversion [e.g., Bilmes et al., 2013] are rather subordinate. The reduced role of Miocene inversion is in good

agreement with a recent study by Gianni et al. [2015b], who suggested that the latest stages of Andean defor-

mation and broken foreland reactivation during the Neogene (19.0–14.8Ma) proposed by Bilmes et al. [2013]

may have not been as strong as the Cretaceous-Paleogene event. Moreover, slightly tilted and locally gently

folded 21.0 to 16.1Ma old Miocene sediments documented by Bilmes et al. [2013] are unconformable with

respect to intensely shortened Cañadón Asfalto strata that lower down in the succession, and the inferred

reverse faults involving Miocene sediments drawn by the same authors in the Gastre area display vertical

separations of a few hundreds of meters at most. Indeed, normal faulting appears to have mostly controlled

the development of the various depocenters—including Miocene ones—in the Gastre area, whose structure

has been consistently interpreted by von Gosen and Loske [2004] as “the result of (several stages of) downfault-

ing of different blocks that led to the formation of distinct young basins.” On the other hand, preserved Late

Cretaceous apatite fission track ages in the northern Patagonian Andes [Thomson et al., 2010] (Figure 3a)

confirm that the regional Cretaceous-Paleogene shortening stage produced exhumation over the entire

thrust belt-foreland system at these latitudes, despite being partially obliterated by Neogene rejuvenation

of thrusting and unroofing in the frontal part of the thrust belt sector of the study area.

The AHe ages obtained from the thrust belt sector of the study area, ranging from 8.2� 0.9Ma to 2.4� 0.2Ma,

are consistent with the regional Neogene exhumation event described by Folguera and Ramos [2011]. AHe

ages are generally younger than apatite fission track ages available for the study area (Figures 3a and 3b), thus

Figure 9. Interpretative cartoon. (a) Uncoupling of the deformation: steep-
slab subduction and rollback at high convergence rate produce shortening,
tectonic inversion and exhumation in the fold-thrust belt but little or no
shortening in the foreland area. (b) Coupling of the deformation: flat-slab
subduction produces shortening, tectonic inversion and exhumation over
both the fold-thrust belt and the foreland area, leading to the development
of the broken foreland.
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being fully consistent with published thermochronological results. These two thermochronological methods

provide information related to depths from 2.5 to 5 km, assuming geothermal gradient values of 20–25°

C km�1 [Jordan et al., 1989; Coughlin et al., 1998; Carrapa et al., 2008; Collo et al., 2011; Dávila and Carter,

2013] and well-established closure temperatures for the two systems [Ketcham, 1999; Gautheron et al., 2009;

Flowers et al., 2009;Djimbi et al., 2015]. Therefore, our data provide an effective record of the previously uncon-

strained final stages of exhumation in the study area. The integration of our AHe data with published apatite

fission track ages indicates that, in the thrust belt sector of the studyarea, exhumation from4.5 to6.0 kmdepths

started mainly during the Middle Miocene and continued through the uppermost 2.5–3.5 km of the crust

mostly in Late Miocene to Pliocene times. Exhumation rates can be roughly estimated at 0.3 km/Myr for the

Middle Miocene and then they raised at about 1.5 km/Myr. The recorded exhumation in the frontal part

of the east vergent orogen correlates well with the Neogene shortening event well documented for this

area [Ramos et al., 2011; Folguera and Ramos, 2011; Orts et al., 2012, 2015; Echaurren et al., 2016]. Taking into

account the relatively simple tectonic setting of the outer Patagonian Andes and the lack of major

structures (e.g., low-angle extensional detachments) that could control exhumation, this process is best

interpreted as a result of thrust-related rock uplift and coeval erosion (that is known to have occurred at

a rate of ~1 km/Myr since the Late Miocene at 41–42°S) [Glodny et al., 2006, and references therein].

Therefore, AHe ages are likely to record reverse fault activity—and related hanging wall uplift—in the study

area. If this is the case, the exhumation pattern revealed by the projected cooling ages onto the cross sec-

tions of Figure 3b points to a lack of systematic sequential propagation of the deformation in the frontal

part of the thrust belt. This is consistent with the thick-skinned tectonic inversion style of deformation

widely documented for the Patagonian Andes [e.g., Folguera and Ramos, 2011; Orts et al., 2012, 2015]. By

such style of crustal shortening, reverse faulting is controlled by the reactivation of inherited structures

rather than progressively younger thrust propagation in the footwall of previously developed thrusts.

Therefore, within the general framework of eastward growth of the Andean fold and thrust belt documented

by the analysis of synorogenic sediments [Ramos et al., 2011; Morabito and Ramos, 2012; Orts et al., 2012;

Echaurren et al., 2016], individual fault activity and related block uplift are likely to vary irregularly both in

space and time. The complex interactions between local block uplift and erosion may result in an irregular

unroofing pattern such as that shown in Figure 3a, which, however, is bracketed in time by the overall

duration of a bulk regional shortening event (of Middle Miocene to Pliocene age in our instance).

Exhumation in the thrust belt sector of the study area appears to be related with an eastward migration of the

magmatic arc between 15 and 11Ma, marked by a series of satellite magmatic bodies throughout the eastern

Andean side; this was accompanied by enlargement and deepening of the foreland basin, associated with

the highest shortening rates recorded for this segment of the Patagonian Andes [Orts et al., 2015]. More to

the south, between 45° and 48°S, Guillaume et al. [2013] interpreted a Miocene-Pliocene acceleration of exhu-

mation, also unraveled by Thomson et al. [2001], as driven by mantle flow associated with slab window open-

ing. There, the shortening stage started at around 32Ma and ceased at 16–14Ma [Lagabrielle et al., 2004].

During this period, close to the Chile Triple Junction, the South Chile Ridge did not enter the subduction zone

and exhumation was only linked to the approach of the ridge close to the subduction zone [Lagabrielle et al.,

2004]. At 16–14Ma, ridge subduction started south of 52°S and opening of a slab window marked the end of

the shortening event. At the Chile Triple Junction, a slab window developed at around 5–3Ma, inducing

extensional deformation [Scalabrino et al., 2010, 2011] and probably thermal doming-linked exhumation. On

the other hand, a different explanation for Pliocene exhumation recorded more to the north (around 30°S)

was provided by Fosdick et al. [2015], who related exhumation to out-of-sequence thrusting produced by a

change in stress regime during Pampean flat-slab subduction.

The variability of deformation along the strike of the Andes has been related to the alternation of flat and

steep slab segments [e.g., Jordan et al., 1983]. For the Central Andes, a large number of studies analyzed

the sedimentary, magmatic, and structural evidence of past changes in the subduction configuration [e.g.,

Allmendinger et al., 1997; Orts et al., 2015, and references therein]. Orogeny in mid-Cretaceous times affected

most of the South American margin, possibly being controlled by an acceleration of the continent motion

during its westward drifting [Somoza and Zaffarana, 2008]. However, recently, Gianni et al. [2015b], using

Maloney et al. [2013] data to reconstruct the average trench normal convergence and absolute velocity of

the South American plate from 140Ma to the present, pointed out close spatial and temporal relations

among deformation of the broken foreland sector, development of the Chubut Group Basin, magmatic arc
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migration, and a series of mid-ocean ridge collisions. All of these processes appear to have converged to

enhance orogeny, as indicated by the synorogenic sedimentation described by Gianni et al. [2015b], with

regional shortening being accompanied by vast—though discontinuously distributed—deformation over

the whole South American plate from the Andes to the offshore area of the Atlantic passive margin [Gianni

et al., 2015b].

The onset of shortening at around 100Ma coincided with the change in absolute motion of South America

related to the final breakup of western Gondwana [Ramos, 2010]. In late Eocene to early Miocene, trench

normal absolute velocity of the South American plate remained particularly low [Maloney et al., 2013].

However, plate convergence increased again at 23Ma (above 4 cm/a), with a peak of 6 cm/yr from ~20 to

15Ma [Pardo-Casas and Molnar, 1987; Maloney et al., 2013]. This peak velocity is coincident with the latest

stages of Andean shortening, triggering exhumation in the thrust belt sector of our study area (Figure 3),

where final cooling through the ~65°C isotherm reaches the Pliocene (Table 2). On the other hand, the

Neogene broken foreland reactivation at 19.0–14.8Ma [Bilmes et al., 2013] occurred in a period characterized

by no general arc expansion [Gianni et al., 2015b, and references therein]. This rules out thepossibility of a long-

standing flat-slab segment during this time span, as already pointed out by Bilmes et al. [2013] themselves. As a

matter of fact, our new low-T thermochronometric data provide no evidence for major reverse-slip fault reac-

tivation and tectonic inversion in theGastre foreland sector at kilometric scale during theNeogene, despite the

fact that the closure temperature of the apatite (U-Th)/He systemmakes the applied geochronologicalmethod

as the most appropriate to unravel exhumation throughout the uppermost part of the crust. Therefore,

Miocene tectonic inversion in the Gastre area must have been very mild and limited, and it did not produce

any significant exhumation.

In synthesis, our results suggest that, during periods of steep-slab subduction and rollback, high convergence

rates (above 4 cm/yr) [Maloney et al., 2013] are able to produce shortening in the fold and thrust belt, but

far-field stress propagation and tectonic inversion in the foreland are relatively minor, the foreland being

essentially uncoupled from the thrust belt (Figure 9a). On the other hand, a flat-slab configuration, probably

associated with thermal weakening of the overriding plate imposed by prolonged mid-ocean ridge subduc-

tion [Martinod et al., 2005; Ramos, 2005], leads to regional shortening involving both the thrust belt and the

foreland (Figure 9b). This is consistent with geological observations and insights from analog modeling,

which suggest that the occurrence of horizontal slab segments results in stronger interplate coupling

[Martinod et al., 2010]. This, besides relatively high shortening rates in the orogen [Guillaume et al., 2009],

also produces widespread shortening of continental plate interiors [Martinod et al., 2010]. During these

stages of flat-slab subduction, the foreland sector may therefore experience tectonic inversion triggering

substantial exhumation. This coupling of the deformation may be effective even at very large distances

(i.e., many hundreds of kilometers) from the subduction trench, as it occurred during Late Cretaceous to

Paleogene times in the Patagonian Andes.

6. Conclusions

Our study suggests that configurations of flat-slab versus steep-slab subduction may exert an important role

in controlling the coupling versus uncoupling of the deformation between the thrust belt and its foreland in

the Patagonian Andes. Of course, the complexity of the structural architecture of this vast area implies that

deformation is heterogeneously distributed in both space and time. Within this framework, the simple model

depicted in the cartoon of Figure 9 is intended to represent just a general rule of thumb. As recently pointed

out by Gianni et al. [2015b], throughout the Andean evolution of the Patagonian foreland, extensional basins

have acted as anisotropies effectively focalizing strain during shortening. This process led to a localized

tectonic inversion of foreland sectors as far as the distal broken foreland of the Atlantic offshore. These

shortened sectors are separated by relatively undeformed areas. Such a heterogeneous style of upper plate

deformation during Andean orogenesis had been reported previously at a continental scale for the whole

South American plate [Cobbold et al., 2007]. The results of this study confirm the complexity and relevance

of foreland deformation, probably beyond the simple notion of propagation of horizontal compression into

the foreland area during the main stages Andean orogenesis. In particular, the spatial distribution of tectonic

inversion and associated exhumation, being focused in the thrust belt or spreading over wide foreland

sectors as well, appears to be controlled by deep geodynamic processes (i.e., slab rollback versus flat-slab
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subduction). Late Miocene to Pliocene AHe ages from the frontal part of the northern Patagonian Andes

correlate well with a shortening and exhumation stage documented to have occurred in the thrust belt

during steep subduction characterized by high convergence rates (>4 cm/a). On the other hand, AHe ages

obtained for the first time in this study for the broken foreland unraveled final exhumation at near-surface

conditions (i.e., through the ~100–50°C HePRZ) during Late Cretaceous to Paleogene times. This is envisaged

to have occurred by the upward extrusion of the sedimentary fills of Mesozoic grabens/half-grabens, accom-

panied by folding of the sedimentary successions caught between rigid basement blocks, and by substantial

unroofing produced by erosion of the overlying uplifted sedimentary cover. This process was coeval with a

major shortening stage in the thrust belt, associated with a period of flat-slab subduction. Coupling of the

deformation during such a period was probably enhanced by thermal weakening of the overriding plate

as a result of mid-ocean ridge subduction [Ramos, 2005], resulting in plate-scale heterogeneous shortening.
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