
 Open access Journal Article DOI:10.1142/S0129054113400339

Unambiguous constrained automata — Source link

Michaël Cadilhac, Alain Finkel, Pierre McKenzie

Institutions: Université de Montréal, École normale supérieure de Cachan

Published on: 01 Nov 2013 - International Journal of Foundations of Computer Science (World Scientific Publishing
Company)

Topics: Deterministic context-free language, Deterministic context-free grammar and Decidability

Related papers:

 A Superpolynomial Lower Bound for the Size of Non-Deterministic Complement of an Unambiguous Automaton

 Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series

 Unambiguous Automata Denoting Finitely Sequential Functions

 When is Containment Decidable for Probabilistic Automata

 Two-Way Parikh Automata

Share this paper:

View more about this paper here: https://typeset.io/papers/unambiguous-constrained-automata-
4chox5wkbq

https://typeset.io/
https://www.doi.org/10.1142/S0129054113400339
https://typeset.io/papers/unambiguous-constrained-automata-4chox5wkbq
https://typeset.io/authors/michael-cadilhac-2ke1jefk3f
https://typeset.io/authors/alain-finkel-15iwjc7lqw
https://typeset.io/authors/pierre-mckenzie-2v7mhvx06u
https://typeset.io/institutions/universite-de-montreal-3mtwvk9r
https://typeset.io/institutions/ecole-normale-superieure-de-cachan-1us5b34j
https://typeset.io/journals/international-journal-of-foundations-of-computer-science-2rl2bpwm
https://typeset.io/topics/deterministic-context-free-language-5azbf4st
https://typeset.io/topics/deterministic-context-free-grammar-28elszrm
https://typeset.io/topics/decidability-wemkaasb
https://typeset.io/papers/a-superpolynomial-lower-bound-for-the-size-of-non-1t681a7abw
https://typeset.io/papers/weakly-unambiguous-parikh-automata-and-their-link-to-4v5mlxv3yr
https://typeset.io/papers/unambiguous-automata-denoting-finitely-sequential-functions-54t5ftvb2r
https://typeset.io/papers/when-is-containment-decidable-for-probabilistic-automata-2vuravr1jc
https://typeset.io/papers/two-way-parikh-automata-vc49y3wlby
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/unambiguous-constrained-automata-4chox5wkbq
https://twitter.com/intent/tweet?text=Unambiguous%20constrained%20automata&url=https://typeset.io/papers/unambiguous-constrained-automata-4chox5wkbq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/unambiguous-constrained-automata-4chox5wkbq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/unambiguous-constrained-automata-4chox5wkbq
https://typeset.io/papers/unambiguous-constrained-automata-4chox5wkbq

Unambiguous Constrained Automata

Michaël Cadilhac1, Alain Finkel2,⋆, and Pierre McKenzie1,⋆⋆

1 DIRO, Université de Montréal
C.P. 6128 succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada

{cadilhac,mckenzie}@iro.umontreal.ca
2 LSV, ENS Cachan, CNRS

61 avenue du Président Wilson, 94235 Cachan Cedex, France
finkel@lsv.ens-cachan.fr

Abstract. The class of languages captured by Constrained Automata
(CA) that are unambiguous is shown to possess more closure properties
than the provably weaker class captured by deterministic CA. Problems
decidable for deterministic CA are nonetheless shown to remain decidable
for unambiguous CA, and testing for regularity is added to this set of
decidable problems. Unambiguous CA are then shown incomparable with
deterministic reversal-bounded machines in terms of expressivity, and a
deterministic model equivalent to unambiguous CA is identified.

Keywords: unambiguity, constrained automata, regularity test.

1 Introduction

A recent trend in automata theory is to study flavors of nondeterminism, which
are introduced to provide a scale of expressiveness in different models (see [4]
for a survey). The usual goal is to strike a balance between the expressiveness of
nondeterministic models and the undecidability properties that often come with
nondeterminism. A natural restriction to nondeterminism is unambiguity, i.e.,
the property that despite the underlying nondeterminism, there be at most one
way to accept an input word. Within the context of finite automata, unambiguity
and nondeterminism are equally expressive, but many open problems concerning
the state complexity of unambiguity remain. Within more general contexts, the
first question is often whether unambiguity offers more expressiveness than de-
terminism; if so, then the examination of the closure and decidability properties
of the new class often reveals that it inherits good properties. Another line of
attack is to find a deterministic model equivalent to an unambiguous model, so
as to understand how unambiguity affects a given model.

In [9], Klaedtke and Rueß studied Constrained Automata (CA),1 a model
whose expressive power lies between regular languages and context-sensitive

⋆ Ce travail a bénéficié d’une aide de l’Agence Nationale de la Recherche portant la
référence “REACHARD-ANR-11-BS02-001”.

⋆⋆ Supported by the Natural Sciences and Engineering Research Council of Canada.
1 In [9], the model under study is called Parikh automata. CA are but an effectively

equivalent model with an arguably simpler definition.

H.-C. Yen and O.H. Ibarra (Eds.): DLT 2012, LNCS 7410, pp. 239–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

240 M. Cadilhac, A. Finkel, and P. McKenzie

languages [3]. Klaedtke and Rueß successfully used the CA in the model check-
ing of hardware circuits, suggesting that CA is a model of interest for real-life
applications. The deterministic variant (DetCA) of the CA enjoys more closure
properties (e.g., complement) and decidability properties (e.g., universality) than
the CA, but is unable to express languages as simple as {a, b}∗·{anbn | n ≥ 1} [3].
Buoyed by Colcombet’s recent systematic examination of unambiguity [4], here
we initiate the study of unambiguous CA (UnCA).

We show that UnCA enjoy more closure properties than DetCA, while being
more expressive. The class of languages UnCA defines is indeed closed under
Boolean operations, reversal, and right and left quotient. We show that the
problems known to be decidable for DetCA (emptiness, universality, finiteness,
inclusion) remain decidable for UnCA. As the main technical result of this paper,
we show that regularity is decidable for UnCA; by contrast, regularity is known
to be undecidable for CA [3], while its status was unknown for DetCA. Finally,
although DetCA are less powerful than UnCA, we present a natural deterministic
model equivalent to UnCA; as a result of independent interest, we show that the
nondeterministic variant of this model has the same expressive power as CA.

Section 2 contains preliminaries, settles notation, and defines the models in
play. Section 3 investigates the closure and expressiveness properties of UnCA
and compares it to deterministic reversal-bounded counter machines. Section 4
proceeds with the decidability properties of UnCA and proves regularity decid-
able. Section 5 shows that there is a natural deterministic model equivalent to
UnCA. Section 6 concludes with a brief discussion.

2 Preliminaries

Integers, Vectors, Monoids. We write N for the nonnegative integers. Let d ≥ 1.
Vectors in Nd are noted in bold, e.g., v whose elements are v1, v2, . . . , vd. We write
ei ∈ {0, 1}d for the vector having a 1 only in position i and 0 for the all-zero
vector. We view Nd as the additive monoid (Nd, +), with + the component-
wise addition and 0 the identity element. Given an order on some set Σ =
{a1, a2, . . . , an} we often refer to the components of a vector v ∈ N|Σ| by xai

instead of xi. In particular, for a ∈ Σ, xa refers to the i-th component of x

where i is such that ai = a. Let s ≥ 0 and p ≥ 1, we define the congruence ≡s,p,
by x ≡s,p y iff (x = y < s) ∨ (x, y ≥ s ∧ x = y (mod p)), for x, y ∈ N; we write
[x]s,p for the equivalence class of x under ≡s,p. We extend ≡s,p component-wise
to vectors x, y ∈ Nd by letting x ≡s,p y iff xi ≡s,p yi for all 1 ≤ i ≤ d; similarly,
[x]s,p is the equivalence class of x under this relation.

For a monoid (M, ·) and S ⊆ M , we write S∗ for the monoid generated by S,
i.e., the smallest submonoid of (M, ·) containing S. A (monoid) morphism from
(M, ·) to (N, ◦) is a function h : M → N such that h(m1 ·m2) = h(m1) ◦ h(m2),
and, with eM (resp. eN) the identity element of M (resp. N), h(eM) = eN .
Moreover, if M = S∗ for some finite set of symbols S (and this will always be
the case), then h need only be defined on the elements of S. In this case, h is
said to be erasing if there is an s ∈ S such that h(s) = eN . If in addition N = T ∗

Unambiguous Constrained Automata 241

for some finite set of symbols T , h is said to be length-preserving if for all s ∈ S,
h(s) ∈ T .

Semilinear Sets, Parikh Image. A subset C of Nd is linear if there exist c ∈ Nd

and a finite P ⊆ Nd such that C = c+P ∗. The subset C is said to be semilinear
if it is equal to a finite union of linear sets: {4n + 56 | n > 0} is semilinear
while {2n | n > 0} is not. We will often use the fact that the semilinear sets
are those sets of natural numbers definable in first-order logic with addition [5].
A semilinear set is said to be effectively semilinear if its description as a set of
c’s and P ’s, or equivalently as a formula, can be computed from the data at
hand. Let Σ = {a1, a2, . . . , an} be an (ordered) alphabet with ε the empty word.
The Parikh image is the morphism Φ : Σ∗ → Nn defined by Φ(ai) = ei, for
1 ≤ i ≤ n — in particular, we have that Φ(ε) = 0. For w ∈ Σ∗, with Φ(w) = x

and a ∈ Σ, we write |w|a for xa. The Parikh image of a language L is defined
as Φ(L) = {Φ(w) | w ∈ L}. The name of this morphism stems from Parikh’s
theorem [11], stating that for L context-free, Φ(L) is semilinear. For L ⊆ Σ∗ and
C ⊆ Nn, define L↾C = {w ∈ L | Φ(w) ∈ C}.

Languages, Operations. For u = u1u2 · · ·un ∈ Σ∗, define uR = un · · ·u2u1 as
the reversal of u. For L1, L2 ⊆ Σ∗, define LR

1 as the set of the reversals of each
word in L1; (L1)

−1L2 = {v | (∃u ∈ L1)[u · v ∈ L2]} as the left quotient of
L2 by L1; and L1(L2)

−1 = {u | (∃v ∈ L2)[u · v ∈ L1]} as the right quotient
of L1 by L2. A language L ⊆ Σ∗ is bounded [6] if there exist n > 0 and a
sequence of words w1, w2, . . . , wn ∈ Σ+, which we call a socle of L, such that
L ⊆ w∗

1w∗
2 · · ·w

∗
n. The iteration set of L w.r.t. this socle is (uniquely) defined as

Iter(w1,w2,...,wn)(L) = {(i1, i2, . . . , in) ∈ Nn | wi1
1 wi2

2 · · ·win
n ∈ L}.

Automata. An automaton is a quintuple A = (Q, Σ, δ, q0, F) where Q is a finite
set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is a set of transitions, q0 ∈ Q is the
initial state, and F ⊆ Q is a set of final states. For a transition t = (q, a, q′) ∈ δ,
we write t = q a q′ and define From(t) = q and To(t) = q′. We define µA : δ∗ →
Σ∗ as the length-preserving morphism given by µA(t) = a, with, in particular,
µA(ε) = ε, and write µ when A is clear from the context. A path π on A is
a word π = t1t2 · · · tn ∈ δ∗ such that To(ti) = From(ti+1) for 1 ≤ i < n; we
extend From and To to paths, letting From(π) = From(t1) and To(π) = To(tn).
We say that µ(π) is the label of π. A path π is initial if From(π) = q0, final
if To(π) ∈ F , and accepting if it is both initial and final; we write Run(A)
for the language over δ of accepting paths (or runs) on A. We write L(A) for
the language of A, i.e., the labels of the accepting paths. The automaton A is
deterministic if (p a q ∈ δ ∧ p a q′ ∈ δ) implies q = q′. An ε-automaton is
an automaton A = (Q, Σ, δ, q0, F) as above, except with δ ⊆ Q× (Σ ∪ {ε})×Q
so that in particular µA becomes an erasing morphism. An (ε-)automaton A is
unambiguous if each word in L(A) is the label of only one path in Run(A).

Affine Functions. A function f : Nd → Nd is a (total and positive) affine function
of dimension d if there exist a matrix M ∈ Nd×d and v ∈ Nd such that for
any x ∈ Nd, f(x) = M.x + v. We abusively write f = (M, v). We let Fd

be the monoid of such functions under the operation ⋄ defined by (f ⋄ g)(x)

242 M. Cadilhac, A. Finkel, and P. McKenzie

= g(f(x)), where the identity element is the identity function, i.e., (Id ,0) with
Id the identity matrix of dimension d. Let U be a monoid morphism from Σ∗

to Fd. For w ∈ Σ∗, we write Uw for U(w), so that the application of U(w) to a
vector v is written Uw(v), and Uε is the identity function. We define M(U) as
the multiplicative matrix monoid generated by the matrices used to define U ,
i.e., M(U) = {M | (∃a ∈ Σ)(∃v)[Ua = (M, v)]}∗.

Definition 1 (Constrained automaton [3]). A constrained automaton (CA)
is a pair (A, C) where A is an ε-automaton with d transitions and C ⊆ Nd is
semilinear. Its language is L(A, C) = µA(Run(A)↾C). The CA is said to be:
– Deterministic (DetCA) if A is a deterministic automaton;
– Unambiguous (UnCA) if A is an unambiguous ε-automaton.

We write LCA, LDetCA,2 and LUnCA for the classes of languages recognized by
CA, DetCA, and UnCA, respectively.

3 Closure Properties and Expressiveness of UnCA

We show closure and nonclosure properties, and we give languages witnessing
the strictness of LDetCA � LUnCA � LCA. Lemma 1 is a tool that will prove
useful when combining UnCA. It is shown by applying the standard procedure of
backward-closure (e.g., [12]) and keeping track of the closure in the constraint set:

Lemma 1. For any UnCA (A, C), there is an UnCA (A′, C′) where A′ has no
ε-transition, L(A) = L(A′), and L(A, C) = L(A′, C′).

Proposition 1. LUnCA is closed under union.

Proof (sketch). First, we note that for an UnCA (A, C) over the alphabet Σ,
there is an UnCA (A′, C′) with L(A′) = Σ∗ and L(A′, C′) = L(A, C). The
ε-automaton A′ is defined as A A where A is a deterministic au-
tomaton for L(A) and the two new transitions are labeled by ε. Then C′ is
defined to reject if the transition to A is taken, and to accept if the run is in A
and its Parikh image is in C. Clearly, A′ is unambiguous.

Now let (A, C) and (B, D) be two UnCA over the same alphabet Σ (w.l.o.g.),
and with L(A) = L(B) = Σ∗, as per the previous discussion. We design an
automaton that runs A and B in parallel. We rely on Lemma 1 to synchronize
the two automata. For any word w, there will be exactly one way to read w over
A and B, thus only one way to read w over both at the same time. Finally, we
constrain this automaton by extracting the paths in A and B and checking that
at least one of them is in its respective constraint set. ⊓⊔

As L(A, C) = L(A) ∪ L(A, C), we have:

Proposition 2. LUnCA is closed under complement and intersection.

Note that LDetCA is not closed under reversal, as {a, b}∗ · {anbn | n ≥ 1} is not
in LDetCA while its reversal is [3]. Thus it is a curiosity, especially for a class
described by a deterministic model (forthcoming Theorem 4), that we have:

2 In [3], LCA and LDetCA are written LPA and LDetPA, in reference to Parikh
automata [9], which are equivalent to CA.

Unambiguous Constrained Automata 243

Proposition 3. LUnCA is closed under reversal.

Proof. Let (A, C) be an UnCA. Let B be the ε-automaton A in which a fresh
state qf is set to be the only final state, and with a transition from each for-
mer final state to qf labeled ε. Clearly, B is unambiguous. Adjust C into C′

so that the added transitions in B do not affect the acceptance of a word, i.e.,
L(B, C′) = L(A, C). Then define D as the ε-automaton B in which every transi-
tion is reversed, i.e., (q, a, q′) is a transition of B iff (q′, a, q) is a transition of D;
the order on the transition set of D is the same as that of B. Additionally, set qf

as the initial state and the former initial state of B as the only final state. Then
D is unambiguous: clearly, Run(B) = {πR | π ∈ Run(D)}, thus the accepting
paths in D labeled w are the reversal of the accepting paths in B labeled wR.
As B is unambiguous, only one such path may exist, thus D is unambiguous.
Hence L(D, C′) = (L(B, C′))R = (L(A, C))R. ⊓⊔

Proposition 4. Let L1 ∈ LCA and L2 ∈ LUnCA. Then L−1
1 L2 ∈ LUnCA.

Proof. Let (A, C) be a CA, (B, D) be an UnCA, with A = (QA, Σ, δA, q0,A, FA)
and B = (QB, Σ, δB, q0,B, FB). We suppose, thanks to Lemma 1, that no transi-
tion of B is labeled by ε, and that each state of B is reachable from q0,B and can
reach a final state. For q ∈ QB, define B q (resp. Bq) to be the ε-automaton
B where the initial state (resp. the only final state) is q, and note that B q is
unambiguous, as any path from q to a final state can be prefixed with a path
from q0,B to q to make an accepting path in B. First note that:

Claim 1. For any qB ∈ QB, the set EqB = {(Φ(π), Φ(ρ)) | π ∈ Run(A) ∧ ρ ∈
Run(BqB) ∧ µA(π) = µB(ρ)} is effectively semilinear.

A word w is in (L(A, C))−1L(B, D) iff there is a state qB ∈ QB and a word
u ∈ L(A, C) such that u ∈ L(BqB), w ∈ L(B qB), and the Parikh image of one
(in fact, the only) path for u in BqB concatenated with the path for w in B qB

is in D. This is the case iff there is a state qB ∈ QB and a pair (x, y) ∈ EqB

such that x ∈ C and the Parikh image z of the only path in B qB labeled
w plus y is in D. In symbols, a word w is in (L(A, C))−1L(B, D) iff it is in
⋃

qB∈QB
L(B qB , {z | (∃(x, y) ∈ EqB)[x ∈ C ∧ y + z ∈ D]}). ⊓⊔

Remark 1. We note that a similar proof shows that LUnCA is closed under right
quotient. Also, similar proofs show that LDetCA is closed under both right and
left quotient, settling those two closure properties that were left open in [9].

Let P1 = {w = w1w2 · · ·wk ∈ {⊏, ⊐}∗ | (∀i)[|w1w2 · · ·wi|⊏ ≥ |w1w2 · · ·wi|⊐]}
be the prefixes of the semi-Dyck language with one set of parentheses. Then:

Proposition 5. P1 /∈ LCA and P1 ∈ LCA \ LUnCA.

Proof. (Sketch: P1 /∈ LCA and P1 ∈ LCA.) An expressiveness lemma for CA
similar to [3, Lemma 1] shows that P1 /∈ LCA. Moreover, we can design a simple
CA for P1 which guesses a position in the input word at which the number of
⊏’s read so far is less than the number of ⊐’s.

(P1 /∈ LUnCA.) If P1 ∈ LUnCA, then P1 ∈ LUnCA (Proposition 2), but as
LUnCA ⊆ LCA, this contradicts P1 /∈ LCA. ⊓⊔

244 M. Cadilhac, A. Finkel, and P. McKenzie

Theorem 1. LDetCA � LUnCA � LCA.

Proof. The chain of inclusion is immediate. The strictness of LDetCA � LUnCA is
witnessed by {a, b}∗ · {anbn | n ≥ 1}, as previously mentioned, and the strictness
of LUnCA � LCA is witnessed by P1 (Proposition 5). ⊓⊔

Proposition 6. LUnCA is neither closed under concatenation with a regular
language, nor under length-preserving morphisms, nor under starring.

Proof. (Concatenation.) Let Σ = {⊏, ⊐}. The language L< = {w ∈ Σ∗ |
|w|⊏ < |w|⊐} is in LDetCA and such that P1 = L< · Σ∗ /∈ LUnCA.

(Length-preserving morphisms and starring.) Let T = {⊏, ⊐}, then L< ·T ∗ ∈
LUnCA. The length-preserving morphism h : (Σ ∪ T)∗ → Σ∗ defined by h(⊏) =
h(⊏) = ⊏, h(⊐) = h(⊐) = ⊐ is such that h(L< · T ∗) = L< · Σ∗ /∈ LUnCA. For
starring, it is shown in [3, Proposition 10] that with L = {anbn | n ∈ N} ∈
LDetCA, L∗ /∈ LCA � LUnCA. ⊓⊔

UnCA and RBCM. It is known that one-way reversal-bounded counter ma-
chines (RBCM) [8] are as powerful as CA [9], while deterministic such machines
(DetRBCM) are more powerful than DetCA [3].

Definition 2 (RBCM [8]). A one-way counter machine is a finite-state read-
only device that decides at each point whether to move its input head one step
to the right and uses a finite number of counters holding natural numbers,
which can be incremented, decremented, and tested for 0. It is reversal-bounded
(RBCM) if there is a constant r such that each accepting run changes between
increment and decrement at most r times for each counter. It is deterministic
(DetRBCM) if at any point the next values of the counters and the device’s state
are uniquely determined by the symbol currently read, the counter values, and
the device’s state. We write LDetRBCM for the class of languages recognized by
DetRBCM.

Proposition 7. LDetRBCM and LUnCA are incomparable.

Proof (sketch). A DetRBCM can deterministically use extra information pro-
vided in the input word to check for a certain property later in the input; this
is illustrated by L = {anw | w ∈ {⊏, ⊐}∗ ∧ |w1w2 · · ·wn|⊏ < |w1w2 · · ·wn|⊐} ∈
LDetRBCM.

Suppose L ∈ LUnCA. Proposition 4 then asserts that ({a}∗)−1L∩{⊏, ⊐}∗ is in
LUnCA. But this latter language is P1 /∈ LUnCA (Proposition 5), a contradiction.

In the other direction, {a, b}∗ · {anbn | n ≥ 1} ∈ LUnCA \ LDetRBCM [3,2]. ⊓⊔

4 Decision Problems for UnCA

We recall the following decidability results, that hold equally well for UnCA:

Proposition 8 ([9,3]). Given a CA, it is decidable whether its language is
empty, and whether its language is finite.

With the closure properties of LUnCA of Proposition 2, this implies:

Unambiguous Constrained Automata 245

Proposition 9. Given an UnCA, it is decidable whether its language is Σ∗.
Given two UnCA, it is decidable whether the language of the first is included in
the language of the second.

The rest of this section is devoted to the main technical result of our paper,
namely that it is decidable whether the language of an UnCA is regular. Our
technique is mainly in two steps: we first show that it is decidable whether a
bounded CA language (given additionally a socle of the language) is regular
(Lemma 3) then reduce the decision in the general case to the decision with
bounded CA languages.

Definition 3 ([7]). A set C is unary if it is equal to a finite union of linear
sets, each period of each linear set having at most one nonzero coordinate.

Lemma 2 ([7, Theorem 1.3]). Let L ⊆ w∗
1w

∗
2 · · ·w

∗
n. The language L is reg-

ular iff Iter(w1,w2,...,wn)(L) is unary.

Lemma 3. Given a CA (A, C) and words w1, w2, . . . , wn such that L(A, C) ⊆
w∗

1w∗
2 · · ·w

∗
n, it is decidable whether L(A, C) is regular.

Proof. Let (A, C) be a CA with L(A, C) ⊆ w∗
1w∗

2 · · ·w
∗
n. Let T = {a1, a2, . . . , an}

be a set of fresh symbols and define the morphism h : T ∗ → Σ∗ by h(ai) = wi

for all i. Now let (A′, C′) be the CA with language h−1(L(A, C)) ∩ a∗
1a

∗
2 · · · a

∗
n

obtained by the (effective) closures of CA. Then for i ∈ Nn, ai1
1 ai2

2 · · · ain
n ∈

L(A′, C′) iff wi1
1 wi2

2 · · ·win
n ∈ L(A, C); hence the Parikh image of L(A′, C′) is

Iter(w1,w2,...,wn)(L(A, C)). Now Φ(L(A′, C′)) is an effectively semilinear set [9,
Lemma 5], hence we can decide whether it is a unary set (see [7, Section 3]).
This amounts to deciding, by Lemma 2, whether L(A, C) is regular. ⊓⊔

Lemma 4. The language of an UnCA (A, C) is regular iff Run(A)↾C is regular.

Proof. First, suppose Run(A) ↾C is regular, for a CA (A, C). As L(A, C)
= µ(Run(A) ↾C) and regular languages are closed under morphisms, L(A, C)
is regular. This part does not rely on unambiguity.

Second, consider an UnCA (A, C). We remark that if an accepting path of A is
labeled by a word in L(A, C), then it is in Run(A)↾C (the converse is true of any
CA). Indeed, since a path labeled by a word w in L(A, C) is, by unambiguity,
the only path labeled w in Run(A), it has its Parikh image in C. In other words,
Run(A) ↾C = µ−1(L(A, C)) ∩ Run(A). Now, as the class of regular languages
is closed under inverse morphisms and intersection, if L(A, C) is regular then
Run(A)↾C is regular. ⊓⊔

Remark 2. The inclusion Run(A)↾C ⊇ µ−1(L(A, C)) ∩ Run(A) is crucial to the
proof of Lemma 4 and to the decidability of regularity for UnCA. Indeed, both
this inclusion and Lemma 4 fail for CA — in fact, regularity is undecidable for
CA [3]. For example, let A be the automaton: r sa a a with r
initial. Define C to constrain the two loops on r and s to occur the same number
of times. Then L(A, C) = {a2n+1 | n ∈ N}, a regular language. But with t1, t2, t3
the three transitions of A, from left to right, Run(A)↾C = {tn1 t2t

n
3 | n ∈ N}, a

nonregular language.

246 M. Cadilhac, A. Finkel, and P. McKenzie

As Run(A) is effectively obtainable from A, we need only focus on the decidability
of the regularity of Run(A)↾C . Note that “moving a cycle” within a run affects
neither its being an accepting path, nor its Parikh image. Repeatedly moving
the cycles to the leftmost position in the run at which they can occur will be a
key ingredient in the following proof. This operation, in particular, will allow to
convert the language of runs in an ε-automaton to a set of bounded languages,
with the property that a path is in Run(A)↾C iff the repeated moving of cycles
leads to a path in one of the bounded languages.

Theorem 2. It is decidable whether the language of an UnCA is regular.

Proof. Let (A, C) be a UnCA with A = (Q, Σ, δ, q0, F). Thanks to Lemma 4, we
need only show the decidability of the regularity of R = Run(A)↾C .

We first formalize the discussion made before this theorem. In the following,
we use Latin letters b, u, v, w to denote paths, and more generally words over δ,
as we no longer consider words over Σ. We use the term cycle for nonempty
paths starting and ending in the same state and with no other state appearing
twice, i.e., an elementary cycle in the underlying multigraph. Fix an ordering
on the cycles of A: {b1, b2, . . . , bℓ} ⊆ δ∗. Let S be the set of initial paths in A,
including the empty path. For w ∈ S, define States(w) as the set of states visited
by w. We see the empty path as from and to q0, so that States(ε) = {q0} and
From(ε) = To(ε) = q0. Define α : S → (S ×Nℓ) by α(ε) = (ε,0) and, for u · t ∈ S
where t ∈ δ and α(u) = (v, x):

α(u · t) =

{

(v′, x + ei) if v · t = v′bi ∧ States(bi) ⊆ States(v′) ,

(v · t, x) otherwise .

Note that α is well-defined and that, for any u ∈ S, α(u) = (w, x) is such that
w is indeed in S.

In words, applying α removes most of the cycles in a path, and counts them.
Hence, if we see α(u) = (w, x) as the path w in which bi is placed xi times on the
first occurrence of From(bi) in w, we may interpret the action of α as “moving to
the left” each cycle read, while “removing their nesting.” Additionally, this path
is in R iff u is in R.

In order to make the preceding intuition formal, we define the different bounded
languages that represent Run(A) when the cycles are moved to the leftmost po-
sition where they fit. First, for q ∈ Q, fix a compatible ordering on the cycles
with q as their origin: {b(q,1), b(q,2), . . . , b(q,ℓq)}, i.e., if bi = b(q,i′), bj = b(q,j′),
and i < j then i′ < j′. We write, as usual, bq for (b(q,1), b(q,2), . . . , b(q,ℓq)). De-
fine, for q ∈ Q, the regular language Bq = b∗(q,1)b

∗
(q,2) · · · b

∗
(q,ℓq). Now for w ∈ S,

let (q0, q1, . . . , qn) be an ordering of States(w) such that if qi is first met before
qj in w, then i < j — that is, the qi’s are ordered in their order of first ap-
pearance in w. Further, let 1 = i0, i1, . . . , in be the positions in w of the first
appearance of q0, q1, . . . , qn, respectively. Then we define the bounded regular
language Ew ⊆ S by Ew = Bq0 ·w[i0,i1−1] ·Bq1 ·w[i1,i2−1] · · ·Bqn

·w[in,|w|], where
w = w1w2 · · ·w|w|, w[a,b] = wawa+1 · · ·wb. In particular, Eε = Bq0 . Let Cw

Unambiguous Constrained Automata 247

be the set Iter(bq0
,w[i0,i1−1],...,bqn ,w[in,|w|])(Ew ∩ R) and define Iw using Cw and

focusing on the cycles, i.e., for x ∈ Nℓ, x ∈ Iw iff:

(xq0
, 1, xq1

, 1, . . . ,xqn
, 1) ∈ Cw ∧ (∀q ∈ Q \ {q0, q1, . . . , qn})[xq = 0] ,

where xq ∈ Nℓq , and x(q,i) is understood as the variable xj for which bj = b(q,i).
Note that if Iw �= ∅, then w ∈ Run(A). We are now ready to clarify the informal
discussion made before the theorem:

Claim 2. For all u ∈ S, u ∈ R iff α(u) ∈ {(w, x) | x ∈ Iw}.

If R is regular, then any Ew ∩ R is regular. We will show, using the previous
claim as a decision procedure for R, that if all the Ew ∩ R are regular, then
R is regular. The function α gives a hint of an automaton for R; however, the
“accepting set” of Claim 2 clearly establishes that the state set is infinite. To
circumvent this problem, we show that we can consider only finite objects with
the two following claims, the second being a consequence of Lemma 2.

Claim 3. There is a computable finite set Sfin such that any word w appearing
as α(u) = (w, ·) is in Sfin.

Claim 4. Suppose that for all w ∈ Sfin, Ew ∩ R is regular. There exist s ≥ 0,
p ≥ 1 such that for any x ∈ Nℓ, x ∈ Iw iff [x]s,p ⊆ Iw .

Suppose that for all w ∈ Sfin, Ew ∩R is regular, and let s, p be given by Claim 4.
We define a deterministic automaton B for R by:

B = (Sfin × (N|δ|/≡s,p), δ, ∆, (ε, [0]s,p), T) ,

∆ = {(u, [x]s,p) t (u′, [x + e]s,p) | u · t ∈ S ∧ α(u · t) = (u′, e)} ,

T = {(w, [x]s,p) | [x]s,p ⊆ Iw} .

The set ∆ is well-defined as x ≡s,p x′ implies x + e ≡s,p x′ + e. Also, for any
word u ∈ S (and only for them) there is a path from the initial state labeled u.

Claim 5. Suppose that for all w ∈ Sfin, Ew ∩ R is regular. Let u ∈ S, α(u) =
(w, x), and Π be the initial path on B labeled u. Then To(Π) = (w, [x]s,p).

Let u ∈ S and α(u) = (w, x). Then u ∈ L(B) iff, by the Claim 5, (w, [x]s,p) ∈ T ,
that is, iff [x]s,p ⊆ Iw. By Claim 4, this is the case iff x ∈ Iw. By Claim 2, this
is the case iff u ∈ R ∩ S, i.e., iff u ∈ R. Thus L(B) = R and R is regular.

We now conclude the proof of Theorem 2. As R is regular iff all the Ew ∩ R
are regular, for w ∈ Sfin, it is sufficient to check whether the latter part is true.
Now, for w ∈ Sfin, we can construct a CA for Ew ∩ R and we know a socle of
Ew ∩ R (as we know a socle for Ew); hence Lemma 3 allows to check whether
Ew ∩ R is regular. ⊓⊔

A DetCA is an UnCA; moreover, DetCA are effectively equivalent [9] to deter-
ministic extended finite automata over (Zk, +,0) (defined in [10]). Thus:

Corollary 1. Given a DetCA or an extended finite automaton over (Zk, +,0),
it is decidable whether its language is regular.

248 M. Cadilhac, A. Finkel, and P. McKenzie

5 A Deterministic Form of UnCA

We present a deterministic model equivalent to UnCA. This model is a restriction
of the affine Parikh automaton [3] and can be seen as a simple register automaton.
As a result of independent interest, we show that CA are equivalent to the
nondeterministic variant of this model, and that a seemingly more powerful
model (so-called finite-monoid affine Parikh automata [2]) is in fact equivalent
to CA (resp. UnCA) in its nondeterministic (resp. deterministic) form.

Definition 4 (Affine Parikh automaton [3]). An affine Parikh automaton
(APA) of dimension d is a triple (A, U, C) where A is an automaton with tran-
sition set δ, U : δ∗ → Fd is a morphism, and C ⊆ Nd is semilinear. Its language
is L(A, U, C) = µA({π ∈ Run(A) | Uπ(0) ∈ C}). The APA is said to be:
– Deterministic (DetAPA) if A is deterministic;
– Finite-monoid (FM-APA, FM-DetAPA) [2] if M(U) is finite;
– Moving (M-APA, M-DetAPA) if for all t ∈ δ, Ut = (M, v) is such that M

is a 0-1-matrix with exactly one 1 per row.
We consider only FM- and M-(Det)APA in the present work. We write LFM-APA,
LFM-DetAPA, LM-APA, and LM-DetAPA for the classes of languages recognized by
FM-APA, FM-DetAPA, M-APA, and M-DetAPA respectively.

Remark 3. An M-(Det)APA of dimension d can be seen as a finite-state
(deterministic) register automaton with d registers r1, r2, . . . , rd: each transi-
tion performs actions of the type ri ← rji

+ ki, with ki ∈ N, 1 ≤ ji ≤ d, for
1 ≤ i ≤ d, and the device accepts iff the underlying automaton accepts and
the values of the registers at the end of the computation belong to a prescribed
semilinear set.

Theorem 3. LCA = LM-APA = LFM-APA.

Proof. We only show LFM-APA ⊆ LCA. Let (A, U, C) be an FM-APA, where
A = (Q, Σ, δ, q0, F). For t ∈ δ, we write Ut = (Mt, vt), and for t1t2 · · · tn ∈ δ+,
we let Mt1t2···tn

= Mtn
· · ·Mt2 · Mt1 . As it is consistent to do, we set Mε = Id ,

the identity matrix. We show that L(A, U, C) can be expressed as the union of
the languages of a finite number of CA, and that those CA are unambiguous if
A is deterministic. We work in 3 steps. (1.) We devise a finite set of automata
and show that they recognize the runs π on A while “knowing” Mπ (Claim 6).
(2.) We show that this extra knowledge allows for the extraction of Uπ(0) when
π is read (Claim 7). We design a semilinear set to constrain this extracted value
by C. (3.) We conclude that replacing the labels t of those CA by µA(t) gives a
finite set of CA recognizing L(A, U, C).

Step 1: Automata for the Paths of A. The simplest way to construct an au-
tomaton for Run(A) is by replacing the label of each transition t of A by t
itself, i.e., we obtain the automaton (Q, δ, ∆, q0, F) where t = q a q′ ∈ δ ⇔
q t q′ ∈ ∆. This is the first idea of the present construction. The second idea
is that we want, when in a state q, all the possible Mπ’s for π accepted from
q to be the same. Write M = M(U). We define, for q ∈ Q and M ∈ M,

Unambiguous Constrained Automata 249

B (q,M) = (Q ×M, δ, ∆, (q, M), F × {Mε}), where ∆ = {(q, M) t (q′, M ′) |
t = q µ(t) q′ ∈ δ ∧ M ′.Mt = M}.

It is important to note that even if A is deterministic, B (q,M) may not be
deterministic. Indeed, let Z be the all-zero matrix, and suppose that, for some
t ∈ δ, Mt = Z. Then any matrix M ′ verifies M ′.Mt = Z, thus from the state
(From(t), Z) there is a transition labeled t to any state (To(t), M ′) for M ′ ∈ M.
We now show that these automata indeed recognize the paths π in A, while
“knowing” Mπ. In order to produce a simple statement, write A q for A where
the initial state is set to q, then:

Claim 6. For any q ∈ Q and M ∈ M, L(B (q,M)) = {π ∈ Run(A q) | Mπ = M}.
In particular, Run(A) =

⋃

M∈M L(B (q0,M)).

Step 2: Retrieving Uπ(0). In this step, we argue that our previous construction
helps in retrieving the value of Uπ(0) when π is read over some B (q,M). The
main ingredient is the following simple property: for t ∈ δ and ρ ∈ δ∗, Utρ(0) =
Mρ.vt + Uρ(0). We now show a property on paths over B (q,M). First, identify
∆ with {T1, T2, . . . , Tn}, and each Ti with (qi, Mi) ti (q′i, M

′
i); next, write µB

for the µ function of one of the B (q,M)’s — this morphism does not depend on
the choice of (q, M). Then:

Claim 7. For any q ∈ Q, M ∈ M, and Π ∈ Run(B (q,M)), we have UµB(Π)(0)
=

∑n
i=1 |Π |Ti

× (M ′
i .vti

).

Now define C′ ⊆ Nn by (x1, x2, . . . , xn) ∈ C′ ⇔ (
∑n

i=1 xi × (M ′
i .vti

)) ∈ C.
Claim 6 and Claim 7 imply that, for q ∈ Q and M ∈ M, L(B (q,M), C′) = {π ∈
Run(A q) | Mπ = M ∧ Uπ(0) ∈ C}.

Step 3: from Paths to their Labels. For q ∈ Q and M ∈ M, define D (q,M) to
be the automaton B (q,M) where a transition labeled t in B (q,M) is relabeled
µA(t) in D (q,M). Then L(D (q,M), C′) = µA(L(B (q,M), C′)). Since Run(A) =
⋃

M∈M B (q0,M), this implies that L(A, U, C) =
⋃

M∈M L(D (q0,M), C′). As M
is finite by hypothesis, L(A, U, C) is the finite union of CA languages. The closure
of LCA under union [9] implies that L(A, U, C) ∈ LCA. ⊓⊔

Theorem 4. LUnCA = LM-DetAPA = LFM-DetAPA.

Proof (sketch). LUnCA ⊆ LM-DetAPA is shown in [2, Lemma 5]; LM-DetAPA ⊆
LFM-DetAPA is immediate.

For LFM-DetAPA ⊆ LUnCA, we simply add a step to the proof of the inclusion
LFM-APA ⊆ LCA of Theorem 3. We note, using the same notations, that if A is
deterministic, then for any q ∈ Q and M ∈ M, D (q,M) is unambiguous. LUnCA

being closed under union (Proposition 1) this proves the inclusion. ⊓⊔

Remark 4. Theorems 3 and 4 are effective, in the sense that one can go from
one model to another following an algorithm. This implies in particular, from
Theorem 2 that regularity is decidable for FM-DetAPA; we note that it is not
decidable for DetAPA [2], which describes a class of languages strictly larger
than that of UnCA though expected to be incomparable with that of CA.

250 M. Cadilhac, A. Finkel, and P. McKenzie

6 Conclusion

We showed that LUnCA is a class of languages that is closed under the Boolean
operations, reversal, and right and left quotient, and that provably fails to
be closed under concatenation with a regular language, length-preserving mor-
phisms, and starring. Further, the following problems are decidable for LUnCA:
emptiness, universality, finiteness, inclusion, and regularity. Deciding regularity
for UnCA and DetCA is our main result.

We propose three future research avenues. First, the properties of UnCA in-
dicate its suitability for model-checking, and we could envisage real-world appli-
cations of verification using UnCA. Second, we translated unambiguous CA to
a natural model of deterministic register automata; the close inspection of this
translation can lead to further advances in our understanding of unambiguity, in
particular in the open problems dealing with unambiguous finite automata [4].
Third, we note that the closure properties of LUnCA imply that this class can
be described by a natural algebraic object (see [1]). This will certainly help in
linking UnCA to a first-order logic framework, and thus to some Boolean circuit
classes. Hence we hope that UnCA can shed a new light on the classes of circuit
complexity.

Acknowledgement. We thank Andreas Krebs for stimulating discussions and
comments concerning this work and the anonymous referees their careful reading.
The first author thanks Benno Salwey and Dave Touchette for comments on early
versions of this paper.

References

1. Behle, C., Krebs, A., Reifferscheid, S.: Typed Monoids – An Eilenberg-Like Theo-
rem for Non Regular Languages. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742,
pp. 97–114. Springer, Heidelberg (2011)

2. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded Parikh automata. In: WORDS,
pp. 93–102 (2011)

3. Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata
and related models. In: NCMA, pp. 103–119 (2011)

4. Colcombet, T.: Forms of determinism for automata. In: STACS, pp. 1–23 (2012)
5. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and languages. Pacific

Journal of Mathematics 16(2), 285–296 (1966)
6. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages (1964)
7. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American

Mathematical Society 17(5), 1043–1049 (1966)
8. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-

lems. J. ACM 25(1), 116–133 (1978)
9. Klaedtke, F., Rueß, H.: Monadic Second-Order Logics with Cardinalities. In:

Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003)

10. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Appl.
Math. 108(3), 287–300 (2001)

11. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
12. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

