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Abstract. We consider the family UREC of unambiguous recogniz-
able two-dimensional languages. We prove that there are recognizable
languages that are inherently ambiguous, that is UREC family is a
proper subclass of REC family. The result is obtained by showing a
necessary condition for unambiguous recognizable languages. Further
UREC family coincides with the class of picture languages defined by
unambiguous 20TA and it strictly contains its deterministic counter-
part. Some closure and non-closure properties of UREC are presented.
Finally we show that it is undecidable whether a given tiling system is
unambiguous.
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1. INTRODUCTION

The theory of one-dimensional string languages is well founded and investigated
since fifties. From several years, the increasing interest for pattern recognition and
image processing has also motivated the research on two-dimensional or picture
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languages, and nowadays this is a research field of great interest. A first attempt to
formalize the concept of finite state recognizability for two-dimensional languages
can be attributed to Blum and Hewitt [5] who started in 1967 the study of finite
state devices that can define two-dimensional languages, with the aim of finding a
counterpart of what regular languages are in one dimension. Since then, many ap-
proaches have been presented in the literature following all classical ways to define
regular languages: finite automata, grammars, logics and regular expressions.

In 1991, a unifying point of view was presented by Restivo and Giammarresi
who defined the family REC of recognizable picture languages (see [10,11]). The
definition of recognizable picture language takes as starting point a well known
characterization of recognizable string languages in terms of local languages and
projections. Namely, any recognizable string language can be obtained as projec-
tion of a local string language defined over a larger alphabet (¢f. Th. 6.1 in [9]).
Such notion can be extended in a natural way to the two-dimensional case: more
precisely, local picture languages are defined by means of a set of square arrays of
side-length two (called tiles) that represents the only allowed blocks of that size
in the pictures of the language. Then, we say that a two-dimensional language
is (tiling system) recognizable if it can be obtained as a projection of a local pic-
ture language. REC is the family of all recognizable two-dimensional languages.
Remark that, when we consider strings as particular pictures (that is pictures in
which one side has length one), this definition of recognizability coincides with the
one for the strings, i.e. the definition given in terms of finite automata. Further
the definition turns out to be robust from different points of view: REC family is
characterized in terms of some kind of finite-state automata called 2-dimensional
on-line tessellation automata (20TA for short), of logic formulas and of regular
expressions with alphabetic mapping and it inherits several properties from the
class of regular string languages.

Finally, the approach of recognizability in terms of tiling systems is very close to
that one proposed by W. Thomas in the more general context of graphs (cf. [24]).
From the results in [12], one derives that both approaches are indeed equivalent
for particular graphs corresponding to two-dimensional languages, referred to as
rectangular grid graphs.

A crucial difference between the recognizability of string languages and the one
of picture languages in REC arises directly from its definition. The definition
of recognizability in terms of local languages and projections is implicitly non-
deterministic. This can be easily understood if we refer to the one-dimensional
case: if no particular constraints are given for the tiling system, this corresponds in
general to a non-deterministic automaton. On the contrary to the one-dimensional
case, determinism and non-determinism are no more equivalent in power of recog-
nition for two-dimensional languages. Several definitions of deterministic models
to recognize two-dimensional languages have been considered in the literature. In
particular there is a deterministic on-line tessellation automaton, (see [14]) and
there are various versions of deterministic graph acceptors (see [24]). All ap-
proaches lead to the result that the deterministic models recognize a smaller class
of languages. This result is strengthened by another one stating a major difference
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with the one-dimensional case: REC family is not closed under complementation.
As a consequence of such results, we infer that it is not possible to eliminate the
non-determinism from this model without losing in power of recognition (as long
as deterministic versions allow complementation).

In formal language theory, an intermediate notion between determinism and
non-determinism is the notion of unambiguity. In an unambiguous model, we re-
quire that there is at most one way to recognize an object. Both determinism and
unambiguity correspond to the existence of a unique process of computation, but
while determinism is a “local” notion, unambiguity is a “global” one. As far as
regular string languages are concerned, these three notions of determinism, non-
determinism and unambiguity coincide. The notion of unambiguity is widely stud-
ied also in structures more general than strings. For example, in the case of trace
languages, A. Bertoni et al. proved that in general there is no equivalence between
the family of rational trace languages and its unambiguous counterpart (cf. [3],
see also [23]). We also remark that there are many other more general frameworks
(such as grammars, for example) where the unambiguity concept naturally plays
a very important role. This is especially true when the involved structures do not
have a privileged direction of computation, like with pictures. Also note that this
divergence between determinism and non-determinism can be overcome for tree
languages by reversing the computation from top-down to bottom-up; but this
cannot be avoided for grid graphs [22].

Unambiguous recognizable two-dimensional languages have been introduced
in [10], and their family referred to as UREC. Informally, a picture language
belongs to UREC when it admits an unambiguous tiling system, where a tiling
system is unambiguous if every picture has a unique counter-image in its corre-
sponding local language. In [10], the emptiness problem is proved undecidable
for UREC and the proper inclusion of UREC in REC is conjectured. In the same
years unambiguous graph automata are considered in [22], and they indeed exactly
match unambiguous tiling systems. The authors also provided an example of a
set of grid graphs that is unambiguous but not deterministically recognizable and
stated some questions about the relations of unambiguity to recognizability. Also
note that the questions about unambiguity are related to quantitative properties of
languages. In one-dimension this approach is formalized considering formal power
series instead of formal languages, and unambiguity corresponds to recognition by
means of some device whose behavior is a characteristic series. In this framework
we mention some recent papers where new notions of weighted recognizability for
picture languages are considered. In [4] weighted picture automata (WPA) and
weighted picture series are defined. The family of behaviors of such WPA coincides
with projections of certain rational picture series and can be also characterized by
using tiling and domino systems [20]. Very recently, weighted on-line tessellation
automata (W20TA) have been introduced in [21], where the author considers un-
ambiguous recognizable picture languages in order to obtain some results relating
picture series recognized by W20TA to series definable by some weighted logic.
Some other recent results on two-dimensional languages are in [1,6,8,17].
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The definition of unambiguous tiling system yields several questions, as the ones
above mentioned. This paper affords some of them. First of all we study some
properties of UREC family. We state a necessary condition for UREC family that
gives an upper bound to the rank of a set of matrices associated to a language in
UREC. The result is achieved considering pictures of fixed height as strings over
the alphabet of columns. Then, by using this necessary condition, we answer the
question whether all tiling recognizable languages admit unambiguous tiling sys-
tems. Our main result states that this is not the case: UREC is strictly included
in REC. In other words, in REC there exist languages that are inherently ambigu-
ous. We also show that UREC family is closed under rotation and intersection,
but not under the classical operations of row and column concatenations and their
iterations. Furthermore, we consider the problem of detecting the counterpart of
UREC inside the family of languages accepted by 20TA (recall the characteriza-
tion of REC in terms of 20TA). So we consider unambiguous on-line tessellation
automata (2UOTA for short) and show that they accept exactly UREC family.
Moreover we prove that 2UOTA are able to recognize languages that cannot be
recognized by a 2DOTA. Finally we show that it is undecidable whether a given
tiling system is unambiguous.

The paper is organized as follows. We start, in Section 2, by introducing some
basic two-dimensional languages terminology and definitions and recalling the defi-
nitions of recognizable two-dimensional languages. Then in Section 3 we introduce
the definition of unambiguous recognizable two-dimensional languages and prove
our main results. Finally, Section 4 lists some concluding remarks.

2. PRELIMINARIES

We introduce some definitions about two-dimensional languages by borrow-
ing and extending notations from the one-dimensional theory and give formal
definitions of concatenation operations between two-dimensional strings and two-
dimensional languages. The notations used can be mainly found in [11].

Let X be a finite alphabet. A two-dimensional string (or a picture) over X is a
two-dimensional rectangular array of elements of X.. The set of all two-dimensional
strings over X is denoted by X** and a two-dimensional language over X is a subset
of ¥**. Given a picture p € X**, let p; ; denote the symbol in p with coordinates
(,7), let ¢1(p) denote the number of rows of p and ¢2(p) denote the number of
columns of p. The pair (¢1(p),¢2(p)) of dimensions of p is called the size of the
picture p. The set of all two-dimensional strings over ¥ of size (m,n) is denoted
by X" ". Note that unlike the one-dimensional case, we can define an infinite
number of empty pictures namely all the pictures of size (n,0) and of size (0,m),
for all m,n > 0, that we call empty columns and empty rows, and denote by A, o
and Ao, respectively.

We now recall the classical concatenation operations between pictures and pic-
ture languages. Let p and ¢ be two pictures over an alphabet X, of size (m,n) and
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(m/,n’), m,n,m';n’ > 0, respectively. The column concatenation of p and ¢ (de-
noted by pDq) and the row concatenation of p and ¢ (denoted by p©¢) are partial
operations, defined only if m = m’ and if n = n’, respectively and are given by:

p
q

As in the string language theory, these definitions of pictures concatenation can
be extended to define concatenations between set of pictures. By iterating the
concatenation operations, we obtain the columns and rows closure or star.

In order to describe scanning or recognizing strategies for pictures, it is often
needed to identify the symbols on the boundary. Then, for any picture p of size
(m,n), we consider picture p of size (m + 2,n + 2) obtained by surrounding p with
a special boundary symbol # & 3.

2.1. RECOGNIZABLE TWO-DIMENSIONAL LANGUAGES

We now recall definition and properties of (tiling) recognizable two-dimensional
languages. For more details see [11].

We call tile a square picture of dimension (2,2) and given a picture x we denote
by Baa(x) the set of all blocks of = of size (2,2). A two-dimensional language
L C T"* is local if there exists a finite set © of tiles over the alphabet ' U {#}
(the set of allowed blocks) such that L = {x € I"*|By 2(Z) C O} and we will write
L =1L(©).

Let T and X be two finite alphabets. A mapping 7 : I' — X will be in the
sequel called projection. The projection m(x) of x € I'** is the picture 2’ € ¥**
such that :Egj = m(x;y;) forall 1 < i < li(z),1 < j < la(x). As usual, the
projection of an empty row (column, resp.) is itself. Similarly, if L C I'"** is a
picture language over I', we indicate by (L) the projection of language L, i.e.
m(L) = {a'|a’ = w(x)Vx € L} C T**.

A quadruple (X, T, 0, 7) is called a tiling system if 3 and I" are finite alphabets,
O is a finite set of tiles over I' U {#} and 7 : I' — ¥ is a projection. Therefore, a
tiling system is composed by a local language over T' (defined by the set ©) and a
projection 7 : I' — X. A two-dimensional language L C ¥** is tiling recognizable
if there exists a tiling system (3,T,©,7) such that L = w(L(©)). Moreover, we
will refer to L’ = L(0©) as an underlying local language for L and to ' as a local
alphabet for L. Let = € L, if 2/ € L' is such that 7(2’) = z, we refer to 2’ as a
counter-image of z in the local language L.

The family of all two-dimensional languages that are tiling recognizable is de-
noted by REC. We give here an example to which we will refer in the next section.
More examples can be found in [11].

Example 1. Let L.,_1, be the language of pictures p whose first column is
equal to the last one. We have that L.,;_1, € REC. Indeed we can define a tiling
system where the information on each letter of the first column of p is brought
along horizontal direction, using some subscripts, to the last column of p. More
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precisely, we use a local alphabet I = {z, } with =,y € X (the subscripts y are used
to recall the symbols in the first column of a picture), the projection m(zy) =
and a set of tiles such that if p;j =z, then p; ; = z and p; 1 = y. The tiles of the

left border must be of the form | 2 , the tiles of the right border must be of
# |t
ZZ # “. : : 99 ZZ SZ
the form ., whereas the “middle tiles” must be of the form . Here
b | # iy | T

below it is given an example of a picture p € Leo—1, € {a,b}* together with a
corresponding local picture p’.

blblal|bl|bd bb bb ayp bb bb
alalblala Ao | Qg | ba | Qg | g
p=|blalalalb| p=|by |ap]|ap|ay]| by
alb|b|bla g | bg | b | ba | g
alblb|b]|a ag | ba | ba | ba | aq

We remark that a tiling system (X,T',0,7) for a picture language is in some
sense a generalization to the two-dimensional case of an automaton that recognizes
a string language. Indeed, in one-dimensional case, the quadruple (X,T,0,7)
corresponds exactly to the state-graph of the automaton: the alphabet I' is in a
one-to-one correspondence with the edges, the set © describes the edges adjacency,
the mapping 7 gives the labelling of the edges in the automaton. Then, the set of
words of the underlying local language defined by set © corresponds to all accepting
paths in the state-graph and its projection by 7 gives the language recognized by
the automaton (cf. [9]). As consequence, when rectangles degenerate in strings
the definition of recognizability coincides with the classical one for strings.

We also remark that this approach is very close to that one proposed by
W. Thomas in the more general context of graphs (c¢f. [24]). From the results
in [12], one derives that both approaches are indeed equivalent for particular
graphs, referred there as rectangular grid-graphs.

The family REC is closed with respect to different types of operations (see [11]
for all the proofs). Firstly, REC is closed under row and column concatenation
operations and under row and column closure operations. As immediate applica-
tion of this closure properties we consider the following example to which we will
refer later.

Example 2. Let L.y—;; be the language of pictures p of size (m,n) with the
property “d1 < i < j < n such that the ¢th column of p is equal to the jth column
of p”. Observe that Leoi—i; = X**O Leoi—1n,OX**. Therefore, since Leoi—1n € REC
(see Ex. 1) and since REC is closed under column concatenation, we can conclude
that Leo—i5 € REC.

The family REC is also closed under union, intersection and rotation. All those
closure properties confirm the close analogy with the one-dimensional case. The
big difference regards the complement operation. In [11] and, in a different set-up,
in [15], it is shown that the family REC is not closed under complement.
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Moreover, notice that this definition of recognizability in terms of local lan-
guages and projections is implicitly non-deterministic. This can be easily un-
derstood if we refer to the one-dimensional case: if no particular constraints are
given for the set O, the quadruple (X,T,©,7) corresponds in general to a non-
deterministic automaton.

An interesting model of two-dimensional automaton to recognize picture lan-
guages is the two-dimensional on-line tessellation acceptor (denoted by 20TA)
introduced in [14]. In a sense the 20TA is an infinite array of identical finite-
state automata in a two dimensional space. The computation goes by diago-
nals starting from top-left towards bottom-right corner of the picture. Depending
on the corresponding kinds of automata we can have a deterministic or a non-
deterministic version of 20TA. The family of languages corresponding to a deter-
ministic 20TA (2DOTA for short) is strictly included in the one corresponding
to the non-deterministic model (¢f. [14]). We will denote £(20TA) the family of
languages accepted by 20TA; and similarly for the other types of 20TA.

The definition of REC in terms of tiling systems turns out to be very robust:
in [16], it is proved that REC = L(20TA). Moreover finite tiling systems have also
a natural logic meaning: in [11,12] it is shown that the family REC and the family
of languages defined by existential monadic second order formulas coincide. And
this is actually the generalization of Biichi’s theorem for strings to two-dimensional
languages. The class REC can also be characterized in terms of regular expressions
with projection.

2.2. UNAMBIGUOUS STRING LANGUAGES

We conclude this preliminary section by recalling the definition of unambiguous
regular language in the one-dimensional case together with some properties (see [2]
for more details) and in particular a necessary condition on unambiguous finite
automata for strings we will need in the sequel (cf. [13]).

Let L C ¥* be a regular language. A trim automaton for L is unambiguous if
it has a unique accepting path for each word w € L. Language L is unambiguous
if it is accepted by an unambiguous automaton. Observe that any deterministic
automaton is unambiguous but not vice versa. Moreover from classical results on
string languages we know that determinism, non-determinism and unambiguity
coincide when string languages are concerned. Indeed any regular language is
unambiguous, since any (non-deterministic) automaton that accepts it can be
determinized and any deterministic automaton is unambiguous.

We also recall the following theorem (see [23]).

Theorem 2.1. [t is decidable whether a given automaton is unambiguous.

Observe that the problem of deciding whether a regular language is unambigu-
ous is meaningless, because of the just mentioned equivalence results.
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Let us now denote by wuns(L) the size of a minimal unambiguous
non-deterministic finite automaton accepting L. For every regular (string) lan-
guage L C ¥*, we define the infinite boolean matrix My, = ||aas|lacs* gex~ where
aqop = 1 if and only if o8 € L. Observe that, since every regular language has
a finite index (Myhill-Nerode Theorem), the number of different rows of My, is
finite. Moreover, given a matrix M, we denote by Rankg(M), the rank of M over
the field of rational numbers ). The following theorem gives a lower bound for
the number of states of an unambiguous automaton recognizing a language L.

Theorem 2.2 (Hromkovic et al.). For every regular language L C ¥*, uns(L) >
Rankg(Myp,).

3. UNAMBIGUOUS RECOGNIZABLE LANGUAGES

In this section we consider a notion of unambiguity for two-dimensional lan-
guages. Informally, a tiling system is unambiguous if every picture has a unique
counter-image in its corresponding local language. As in one-dimension, the notion
of unambiguity lies between non-determinism and determinism. The definition of
unambiguous recognizable two-dimensional language was first given in [10].

Definition 3.1. A quadruple (X,T',0,7) is an unambiguous tiling system for a
two-dimensional language L C ¥** if and only if for any picture x € L there exists
a unique local picture y € L(O) such that z = 7m(y).

An alternative definition for unambiguous tiling system is that function 7 ex-
tended to I'** — X** is injective on L(©).

Observe that an unambiguous tiling system can be viewed as a generalization
in two dimensions of the definition of unambiguous automaton that recognizes a
string language. Moreover if we consider the definition of recognizability on graphs
by Thomas [24] an unambiguous tiling system matches exactly the unambiguous
finite-state acceptor (that has at most one accepting run for each graph).

Definition 3.2. A two-dimensional tiling recognizable language L C ¥** is un-
ambiguous if and only if it admits an unambiguous tiling system (X,T, O, ).

We denote by UREC the family of all unambiguous recognizable two-
dimensional languages. Obviously it holds true that UREC C REC.

Example 3. The language L.oi—1, (see Ex. 1) of pictures p whose first column
is equal to the last one, is in UREC. Indeed, the tiling system, considered in
Example 1, is unambiguous: each picture in L.y, —1, has a unique counter-image
in the local language denoted by that set of tiles. This because there is only one
possible counter-image for the first column of a picture p and there is a unique
way to build, from this, the counter-image for the second column of p and so on
up to the last column of p.

Given the definition of unambiguous tiling system, several questions naturally
arise. First of all, in Section 3.1, we give a necessary condition for a language in
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UREC. In Section 3.2, we consider the problem of whether all tiling recognizable
languages admit unambiguous tiling systems (i.e. whether family UREC coin-
cides with REC or it is strictly included in it). We prove that UREC is closed
under rotation and intersection operations while it is not closed under row and
column concatenations and star operations. Then, in Section 3.3 we investigate
on the counterpart of UREC inside family L(20T A) of two-dimensional languages
accepted by on-line tessellation acceptors. Finally, in Section 3.4 we study the
problem of deciding whether a given tiling system is unambiguous.

3.1. A NECESSARY CONDITION FOR UNAMBIGUITY

In this section we state a necessary condition for the family UREC. For this
we use a technique introduced in [18] that reduces two-dimensional languages to
string languages over the alphabet of the columns.

More precisely, let L C 3** be a picture language. For any m > 1, we consider
the subset L(m) C L containing all pictures in L with exactly m rows. The
language L(m) can be viewed as a string language over the alphabet X1 of
the columns, i.e. words in L(m) have a “fixed height m”. For example, if p =

a b b a a allb||b]||lall|la
a a b b a allallb||b
b b a b a € L then the word w = vllallallolla belongs to the
a a a a b allallallalld
x
string language L(4) over the alphabet ¥%! = z |z,y,s,t €%
t

Furthermore, recall from Section 2.2 that for any string language L, one can
define the infinite boolean matrix My = ||aagllacs* ges~ where aqs = 1 if and
only if af € L.

We now state the theorem.

Theorem 3.1. Let L C ¥**. If L € UREC, then there is a k € N such that, for
all m > 1, Rankqg(Mp(m)) < k™.

Proof. Let L C X** be recognizable and let (X,T, 0, ) be a tiling system for L.
In [18,19] it is shown that there is a k such that for all m > 1 there is a finite
(string) automaton with k™ states that accepts L(m). This is easily understood
from the following observations.

If we have a representation for a recognizable string language S over an alpha-
bet A by means of a local string language (a finite set Z of strings of length 2 over
I'U{#}) and a projection 7 : ' — A, we can define a corresponding automaton
as follows. The states of the automaton are the letters of the local alphabet I" plus
an initial state (that corresponds to the border symbol #); then for each string

xy € Z we add a transition z ) Y.
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Then, coming back to languages L(m), they have as local alphabets the cor-
responding sets of “local columns”: if + is the number of symbols in I', then the
local alphabet for L(m) has v™ symbols, at most.

Observe that if the tiling system for L is unambiguous, then the automata
defined above for the languages L(m) will result unambiguous too. (Recall that
such definition of unambiguous tiling systems generalizes the one of unambiguous
automata for strings). Therefore we can conclude that if L is in UREC then there
exists a k such that, for all m > 1 the string language L(m) is accepted by an
unambiguous (string) automaton with k™ states. Then we combine this result
with Theorem 2.2 and conclude the proof. 0

3.2. PROPERTIES OF UREC FAMILY

We now immediately use the necessary condition for UREC of Theorem 3.1
to prove that, differently from the one-dimensional case (see Sect. 2.2), there are
recognizable languages that are not unambiguous. This answers a question already
posed in [10] and mentioned also in [22] directly referred to grid-graphs. Then, we
prove some closure and non-closure properties of UREC.

Theorem 3.2. UREC is strictly included in REC.

Proof. We exhibit a language L in REC and show that L is not in UREC. The
language we consider is L = Lo;—;;, the one in Example 2. L contains all pictures p
of size (m,n), over the alphabet 3, with the property “31 < ¢ < j < n such that
the ith-column of p is equal to the jth-column of p”.

For any m > 1, we consider languages L(m) as defined above. Observe that such
languages L(m) are languages of strings over the alphabets X1 (of all possible
columns of height m on X) with at least two occurrences of the same symbol.
Let o be the cardinality of the alphabet X, then the cardinality of ™! is ¢™.
The problem is now reduced to a problem on strings: more specifically we need
to calculate the rank of all the matrices M, (,,). We do all the calculations in the
next Lemma 3.1 (see below) and obtain that Rankg(Mp,)) =2°" +1 and then,
by Theorem 3.1, L is not in UREC. g

We now prove the result used in the previous theorem.

Lemma 3.1. Let A be a finite alphabet and let S C A* be the set of strings with
at least two occurrences of the same symbol. Then Rankg(Mg) = 2€A) 41,

Proof. Let Card(A) = ¢ and let us suppose A = {aq,aq,...,a.}. The maximum
number of different rows in Mg is 2°+1. They are, for example, the rows indexed by
aiai, A and by all possible a = a;,a4, ... a;, with1 < h <candi; <iz <...<iy
(note that if @ contains two occurrences of the same symbol then its row contains
only 1 as the row indexed by aja;). Similarly, the maximum number of different
columns in Mg is 2¢ + 1 and, for example, the columns indexed as before are
all different. Let us consider, in Mg, the sub-matrix M. composed by all these
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different rows and all these different columns rearranged, for induction on ¢, in
this way: if ¢ = 1, then the first row and the first column of M; are indexed by
ajay, the second ones by A and the third ones by a;. The matrix M, is obtained
from the matrix M._, by adding to it 2°~! rows and 2°~! columns, so indexed: if
a1,Q9,...,00-1 are the indexes of the rows (and the columns) of M._1 (except
the first one), then the rows (and the columns), added in order to obtain M., are
those ones indexed by ajac, asae, . .., Qge—1a,.
For example, if ¢ = 3, the matrix M, will be the following one:

aypal A ay | a2 | a1az | as | aijaz | a2as | a1azas

aja; 1 11171 1 1 1 1 1

A 1 0010 0 0 0 0 0

ay 1 01110 1 0 1 0 1
iz 1T [ofo]1] 1 Jo|] o 1 1
°T aran 1 o1 |1 1 0 1 1 1
as 1 0010 0 1 1 1 1

aias 1 0110 1 1 1 1 1

aza3 1 0]0]1 1 1 1 1 1
a1a20a3 1 0] 111 1 1 1 1 1

Now we show that Ve > 1, det(M.) # 0 and, therefore, since M, has order
2¢+1, we can conclude that Rankg(Ms) = 2°+ 1. Indeed, if we evaluate det(M.,)
along its second column and then along its first row, then we have that det(M.) =
(—1)det(M!), where M is the matrix obtained from M, by removing the first two
rows and the first two columns. We will show that det(M!) # 0 and this will
conclude this proof.

Let us set k = 2° — 1: note that M, = ||m,| is a square matrix of order k
such that m;j =1,Vli<ij<kwithi+j7>k+1, and m;j =0,Vl1<4,j<k
with ¢ + j = k. In other words, matrix M/ has 1 in all positions of the counter-
diagonal and in all positions below it. Moreover, all positions immediately above
the counter-diagonal contain 0.

We show that for every square boolean matrix M = ||a;;|| of order k such that
ai; =1,V1<i4,j<kwithi+j>k+1,anda;; =0,V1 <4, <kwithi+j =k,
it holds detM # 0. The proof is by induction on k. For the basis, k = 2, it is
obvious. Suppose that it is true for square matrix of order £ — 1 and consider a
square matrix M of order k. Note that the last column of M contains only 1 and
the second-last column contains 0 in its first position and 1 in the other positions.
Therefore, if we evaluate det(M) along its first row, we have that Vj = 1,..., k—2,
det(My;) = 0 (because every My  has two identical columns, the last one and the
second-last one). Moreover a1,—1 = 0 and therefore aix_1det(Mig—1) = 0. So we
have that detM = (—1)'**aydetMy;, = (—1)'**det My, But My, is a matrix of
order k — 1 that satisfies the hypothesis and, therefore, by inductive hypothesis,
detMyy, # 0. ]
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Given a recognizable two-dimensional language L, we say that L is inherently
ambiguous if there are no unambiguous tiling systems for L. Then, Theorem 3.2
can be restated as:

Theorem 3.3. There exist recognizable two-dimensional languages that are inher-
ently ambiguous.

We now prove some closure and some non-closure properties of UREC under
classical operations on REC family. In [21] it is proved that UREC is closed
under projection and disjoint union. We now state that it is also closed under
rotation and intersection. So UREC family shares several important properties of
closure with REC family. Recall that REC is closed under the boolean operations,
rotation and projection, but not under complementation. The closure of UREC
under complementation is still an open question. This problem is also stated in
[22] in the more general context of the graphs.

Proposition 3.1. UREC is closed under intersection and rotation operations.

Proof. If Ly, Ls € REC then one can construct a tiling system for LN Ly following
the proof that REC is closed under intersection (see [11]). It is easy to show that if
the tiling systems for L; and Lo were unambiguous then the resulting tiling system
is so. The closure under rotation comes directly from the definition of UREC. O

As important consequence of the argument in the proof of Theorem 3.2, we
obtain that UREC does not inherit all closure properties of REC.

Proposition 3.2. UREC is not closed under row and column concatenation and
under row and column closure.

Proof. Let us consider language L.y 1, of pictures with leftmost column equal
to the rightmost one. In Example 3 it is shown that it belongs to UREC. Now
consider language L¢o;—;; of pictures such that there exist 1 < i < j < n and the
i-th column is equal to the j-th one. In Example 2 we observed that Lco—;; =
YO Leoi—1,OX** but it is not in UREC as shown in the proof of Theorem 3.2.
Using similar techniques (for example, languages obtained applying some rota-
tions to the above ones) one can prove also that family UREC is not closed under
column concatenation and under row and column closure. O

3.3. UNAMBIGUOUS TESSELLATION ACCEPTORS

In this section we consider the relation between UREC and the automata mod-
els. Recall that family REC is exactly the family £(20T A) of languages accepted
by two-dimensional on-line tessellation acceptors (c¢f. Sect. 2). Then it is natu-
ral to ask what is the counterpart of UREC inside £(20T A). We can give the
following definition (see [21]).
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Definition 3.3. A 2-dimensional on-line tessellation acceptor is an unambiguous
on-line tessellation acceptor (2UOTA, for short), if any picture has at most one
accepting computation.

We can immediately state the following proposition whose proof can be given
by following step-by-step the proof that REC = L(20T A) (see [16]) (the result
was independently observed in [21]).

Proposition 3.3. L(2UOTA) =UREC.

It is easy to see that any deterministic 20TA (2DOTA for short) is in particular
a 2UOTA. We recall that family £(2DOT A) is strictly included in L(20T A) (see
Sect. 2). The following theorem proves that family £(2UOT A) is still different
both with respect to L(20T A) and L(2DOT A).

Theorem 3.4. The inclusions L(2DOTA) C L2UOTA) C L(20TA) are all
strict.

Proof. The second strict inclusion (i.e., LQUOTA) C L(20T A)) can be obtained
directly from Theorem 3.2 by using the result that REC = L(20T A) (see [16])
together with Proposition 3.3.

Let us focus on the first strict inclusion, i.e. that L(2DOTA) C L(2UOTA).
Let L be the language of squares over a two-letters alphabet ¥ = {a,b} with
last row equal to the last column. We have that L € URFEC because we can
define a tiling system where the information on each letter of the last row is
brought up till the diagonal and then right towards the last column. More precisely,
we use a local alphabet of 12 symbols (apart #) I' = {0Y,1Y,2Y} with z,y €
{a, b} and let symbols 0¥ occur only below the diagonal, symbols 1% occur only in
the diagonal and symbols 2¥ only above the diagonal. Moreover the superscript
symbols correspond to the “real value” of the symbol (i.e. 7(0¥) = 7(1¥) =
7m(2Y%) = y) while the subscript symbols correspond to information we are bringing
from the last row to the last column (making a turn at the diagonal). For example,
if p;; = Of this means that position (7, j) is below the diagonal and that in the
corresponding picture p, p(4, j) = a, while going down to the last row, p(m, j) = b.
Moreover, if p;; = 2§ this means that position (i, j) is above the diagonal and that
in the corresponding picture p, p(i,j) = a, while going right to the last column,
p(i,n) = b. It is not too difficult to guess what are all the allowed tiles for the
local language L’: tiles with 0 (or 0 and 1) should have same subscript symbols
along vertical direction while tiles with 2 (or 2 and 1) should have same subscript
symbols along horizontal direction while tiles for the diagonal (with 0, 1 and 2)
should have same subscript symbols in 0 and 1 along vertical direction and in 1
and 2 along horizontal one. Moreover tiles in the bottom border contain only 0%
or 0% while tiles in the right border contain only 2¢ or 2} with the exception of the
bottom-right corner that can hold only 12 or 1}.
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Here below it is given an example of a picture p € L together with the corre-
sponding local picture p’.

blblalala 1225 ]2a]2e] 22
alalalb]|b 02 [1g 20|20 ]2
p=[blalalb|b]| p=[00]0g]12]20]2]
alblblbla oaloyoh]1b]2e
alb|lblala o2]oy]oyoa]1e

Observe that each picture in L has a unique counter-image in the local language
denoted by this set of tiles. This because there is only one possible counter-
image for the last row and last column and then, fixed those ones, one can “built”
the whole counter-image in a unique way. Then the theorem holds because L ¢
L(2DOTA) (see [14]). O

3.4. AN UNDECIDABLE PROBLEM

We now consider the problem of deciding whether a given tiling system (X, T,
©, ) is unambiguous. We prove that this problem is undecidable. Recall that on
the contrary, when string languages are dealt with, it is decidable whether a given
automaton is unambiguous (see Th. 2.1). The proof of the undecidability will
be obtained by reduction from the 2-dimensional Unique Decipherability Problem
that we briefly recall below (see [7] for all details).

Let X be a finite alphabet and S = {(u1,v1),..., (uk, vx)} be a system where
u;,v; € X*foralli=1,... k. The system S is umquely decipherable if and only if|
for all 41,...,4p,j1,... ,]p € {1,...,k}, the equalities w;, ...u;, = uy, ... u;, and
Viy ...V, = U5y ... 05, imply together that p = g and (41,...,%p) = (J1,---,Jp)-
The 2-dimensional Unique Decipherability Problem is the one of deciding whether
a given system is uniquely decipherable. In [7] it is shown that this problem is
undecidable using a reduction from the Post Correspondence Problem.

Theorem 3.5. Given a tiling system (X,T,0, ), it is undecidable whether it is
unambiguous.

Proof. We define a reduction from the 2-dimensional Unique Decipherability Prob-
lem. Let S = {(u1,v1),...,(ug,vk)} be a system where u;,v; € X* for all
i =1,...,k and let ¢ ¢ ¥. We define a picture language L(S) over the al-
phabet ¥ U {c} as a set of rectangles defined as follows. For any combination
(41,...,%p) of {1,...,k} there is a rectangle in L(S) such that the first row is the
string cuy, ... u;, and the first column is the string cv;, ...v;, and all the other
letters are c’s.

It is not difficult to prove that L(S) € REC. In fact, we can construct a tiling
system (3, T, ©, ) for L(S) in a similar way as in the proof of Theorem 3.4 for the
language of squares with last row equal to the last column. The local alphabet is
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I'=3%"U{co,c1,...,cx} where ¥’ is a local alphabet for the strings uj, v’ for all
i,7 =1,..., k. The pictures of the set L(0O) are like the following. The information
that in the first row there is a factor u;; is brought up by a stripe of ¢;; of width
|us;| downwards and then left towards the first column in a stripe of length |v;, |.
The symbol ¢ is needed for the position (1,1). The projection 7 maps each string
uz, v to u;, v; respectively and symbol ¢; to c.

li / !

o Ui, Ui, e uip

/ .
'U,L-l Cll

/ .
'U,L-2 C'LQ

! .
vip Ci,

Then the tiling system (X,T', 0, 7) is unambiguous if and only if the system S is
uniquely decipherable. Indeed the equalities w;, ... u;, = uj, ... uj, and vy, ...v;, =
vj, ...vj, hold with (i1,...,4,) # (j1,...,Jp) if and only if the picture in L(S)
whose first row is the string cu;, ... u;, and first column is the string cv;, ... v,
has two counter-images, one with stripes carrying in order ¢;, , ... c;, and the other
one with stripes carrying in order cj,,...,c;j,. O

Recall that in the framework of one-dimensional string languages, it holds the
opposite result with respect to Theorem 3.5: in fact it is decidable whether a given
automaton is unambiguous (see Sect. 2.2). Furthermore the problem of deciding
whether a regular language is unambiguous is meaningless. In the two dimensional
case, the problem of deciding whether a given picture language (given by its tiling
system) is unambiguous is an open problem.

4. CONCLUDING REMARKS AND FUTURE WORKS

In this paper we have studied the family UREC of unambiguous recognizable
two-dimensional languages. The notion of unambiguity seems to be more suitable
in this framework, since while expressing the uniqueness of a computation, it is
independent from a privileged direction of computation. In fact we have shown
that definition of UREC is stable with respect to rotations. Remark that in the
case of deterministic 20TA, this is no longer true. Moreover UREC family is
closed with respect to intersection, as required in a deterministic model. The main
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open problem with this definition is whether UREC family is also closed under
complementation. Moreover one can ask other related questions. For example, we
can show that the complement of language L.,;—;; of Example 2 is not recognizable
(recall that in Th. 3.2 we proved that L.y —;; is inherently ambiguous). Then one
could ask whether this holds for any language in REC but not in UREC, or whether
languages in REC whose complement is in REC are all unambiguous.

Furthermore, in Section 3.4 we have proved that it is undecidable whether a
given tiling system is unambiguous. Another open problem is to decide whether a
given picture language (given by its tiling system) is unambiguous.
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