
LCNS, Vol 583, pp. 387–400, Springer 1992

Unambiguous Simulations of Auxiliary Pushdown Automata

and Circuits

�

(Preliminary Version)

Rolf Niedermeier Peter Rossmanith

Technische Universit�at M�unchen, Institut f�ur Informatik,

Arcisstr. 21, D-8000 M�unchen 2

Abstract

In this paper time-bounded auxiliary push-down automata (AuxPDA), i.e. time and space

bounded Turing machines with additional pushdown store, are considered. We investigate the

power of unambiguous AuxPDA, i.e., machines that have at most one accepting computation,

and ambiguity bounded AuxPDA.

Recently, it was shown by Buntrock, Hemachandra, and Siefkes that space bounded Turing

machines, whose computation trees have moderate ambiguity, can be e�ciently simulated by

unambiguous AuxPDA with same space bound. This paper shows that such an e�cient sim-

ulation is also possible for AuxPDA. The simulation incorporates no space and time penalty,

unless the ambiguity is very high.

By similar methods it is shown that unambiguous AuxPDA can e�ciently simulate a

certain class of unambiguous, semi-unbounded fan-in circuits, which answers an open question

posed by Lange.

Finally, obliviousness for AuxPDA is considered and it is proved that unambiguous Aux-

PDA work w.l.o.g. with a very limited amount of space on the pushdown store, a result that

is already known for deterministic and nondeterministic AuxPDA.

1 Introduction

One of the oldest problem in complexity theory is the relationship between deterministic and

nondeterministic complexity classes. One approach to solve this question in the case of polynomial

time was to consider machines with a limited number of accepting computations. This led to the

de�nition of the classes UP (unambiguous polynomial time) and FewP [Val76, All86], de�ned

by NP machines with a number of accepting computations bounded by one and a polynomial,

respectively. Unambiguous complexity classes play a crucial role in cryptography and for the

existence of one-way functions [GS88].

A more general approach to �nd concepts between determinism and nondeterminism was pre-

sented in [BHS90], where the notion of ambiguity for space bounded Turing machines was intro-

duced. A Turing machine is a(n)-ambiguity bounded if for all inputs up to length n and each

con�guration A there are at most a(n) computation paths from the initial con�guration to A. An

s(n) space bounded nondeterministic Turing machine can be deterministically simulated using only

s(n)

2

space due to the theorem of Savitch. Buntrock, Hemachandra, and Siefkes showed that an

unambiguous Turing machine can do this simulation better in certain cases. If an NSPACE (logn)

machine has ambiguity a(n), then it can be simulated unambiguously with log(n) � log(a(n)) space.

�

This research was partially supported by the Deutsche Forschungsgemeinschaft, SFB 342, Teilprojekt A4 \Klas-

si�kation und Parallelisierung durch Reduktionsanalyse"

1



LCNS, Vol 583, pp. 387–400, Springer 1992

Theorem 1 [BHS90]

1. For s(n)-space computable a(n) with log(a(n)) = O(s(n)) and s(n) � logn,

(NSPACE)-AMBIGUITY (s(n); a(n))

� UnambAPDA-SPACE-STACKSIZE (s(n); s(n) � log(a(n))).

2. For logspace computable a(n), a(n) polynomially bounded,

(NSPACE)-AMBIGUITY (logn; a(n)) � UnambAPDA-TISP (n

O(1)

; logn).

This is better than Savitch's simulation if a(n) grows slower than all polynomials. Additionally,

the unambiguous simulation uses only polynomial time which is also better than Savitch's method

and the additional space that is needed can be arranged as a pushdown store rather than an

ordinary Turing tape. Meanwhile, it could also be shown that any language accepted by some

polynomially ambiguity bounded log space machine is contained in LOGDCFL (see [BJLR90]).

In [BHS90] a new inductive counting method was used to show Theorem 1. In Section 2

techniques of [BHS90] and [LR90] will be combined to improve Theorem 1. We show that nonde-

terministic auxiliary pushdown automata can be simulated by unambiguous ones which use more

space and time. However, in the most important cases the amount of additional space and time

used depends only on the ambiguity of the simulated machine. If this ambiguity is bounded by

some polynomial, we even need neither additional space nor time for the simulation. For this

purpose, we will introduce ambiguity bounded auxiliary pushdown automata and circuits. While

in [BHS90] the ambiguity bound applies only to reachable con�gurations, we will restrict the num-

ber of paths between any two con�gurations of auxiliary pushdown automata due to the parallel

nature of this model.

Unambiguity seems to be a concept restricted to sequential computation. Recently, however,

well known models of parallel computations were recognized to behave unambiguously in some

sense. The �rst candidates for such unambiguous parallel models were CREW-PRAMs, i.e.,

parallel random access machines with concurrent read and exclusive write access. In [Ryt87]

it was shown that CREW-PRAMs can recognize any unambiguous context-free language. The

computational power of CREW-PRAMs lies between CRCW-PRAMs and CROW-PRAMs [Sni82,

DR86]. For CRCW-PRAMs concurrently writing to the same memory cell is allowed. The class of

languages accepted by this type of PRAM in O(log

k

n) time using polynomially many processors

is exactly AC

k

, the class of languages accepted by polynomial size and O(log

k

n) depth circuits

of unbounded fan-in. AC

1

contains LOGCFL, the closure of context-free languages under log

space many-one reductions [Ruz80]. On the other hand, CROW-PRAMs are a restriction of

CREW-PRAMs, where each memory cell has one owner who is the only one allowed to write into

this memory cell. CROW-PRAMs with polynomially many processors recognize in O(logn) time

LOGDCFL.

An AuxPDA is called strongly unambiguous, if it ful�lls the additional restriction that there is

at most one computation path between any two con�gurations. This restriction, which must hold

for all possible input words, is called strong unambiguity. Note that strong unambiguity also means

that there is exactly one accepting con�guration, in particular, strongly unambiguous AuxPDA

are unambiguous. Speaking of strongly and weakly unambiguous models, unambiguous Turing

machines are weakly unambiguous and CREW-PRAMs are strongly unambiguous. For sequential

models of computation weak unambiguity seems to be the natural choice for an unambiguity

notion, while it is strong unambiguity for parallel models. For auxiliary pushdown automata it even

seems reasonable to consider both notions because an auxiliary pushdown automaton in principle

is a sequential model that has also important relations to parallelity (see e.g. [Ruz80, Ven87]).

Further evidence of relationship between CREW-PRAMs and unambiguous complexity classes

followed from a circuit characterization of CREW-PRAMs. Analogously to CRCW

k

= AC

k

(see

[SV85]), a similar equation CREW

k

= UnambAC

k

was proved in [Lan90]. For this purpose,

semi-unbounded, unambiguous circuits had to be de�ned.

2



LCNS, Vol 583, pp. 387–400, Springer 1992

An AC

k

-circuit is called unambiguous if for all inputs there is no unbounded fan-in OR-gate

in the circuit that receives more than one 1 from its predecessors. Similarly, no unbounded

fan-in AND-gate is allowed to receive more than one 0. Note that these restrictions need only

hold for all unbounded fan-in gates, there is no restriction for gates that have only two inputs.

Unambiguous circuits of semi-unbounded fan-in were considered, too. This led to the two classes

UnambSAC

k

and UnambRAC

k

. The �rst one consists of all languages that are recognized by

UnambAC

k

-circuits which do not contain any unbounded fan-in AND-gates. The second one is

even more restricted: UnambRAC

k

contains all languages that are recognized by semi-unbounded

fan-in circuits, in which all OR-gates receive at most one 1. In contrast to UnambSAC

k

, in

UnambRAC

k

circuits also OR-gates of bounded fan-in have to be vulnerable.

In [Lan90] it was shown that UnambRAC

k

circuits can be simulated by c

log

k

n

time bounded un-

ambiguous auxiliary pushdown automata. On the other hand, UnambRAC

1

contains LOGSPACE .

In the subsequent paper [LR90] the �ne structure of UnambRAC

1

was investigated. UnambRAC

1

is exactly the class of languages recognized by polynomially time bounded strongly unambiguous

auxiliary pushdown automata. On the other hand, if we claim gates to be vulnerable within an

accepting subcircuit, only, such a circuit is called weakly unambiguous and the class of languages

recognized by these circuits is denoted by WeakUnambRAC

1

. Another result of [LR90] is that

WeakUnambRAC

1

is exactly the class of languages recognized by some unambiguous auxiliary

pushdown automata.

We suppose all circuit families to be U

BC

-uniform, that is, a description of the nth circuit can

be computed by some z(n) space bounded Turing machine, where z(n) is the size of the circuit (cf.

[Ruz81]). In the case of polynomial size circuits this means logspace uniformity. We also assume

all circuits to be leveled, i.e., informally spoken, each circuit gate of depth d receives its inputs

from gates at depth d� 1. This property is also called synchronous in [BCD

+

89]. It can be seen

(although it is not trivial) that this normal form can be established for all circuits considered in

this paper. By now, no nontrivial upper bounds were known for UnambSAC

k

. In Section 3 we

show the inclusion of UnambSAC

k

in UnambAPDA

k

using an inductive counting technique. This

surprising relationship answers an open question of [Lan90], where this inclusion was conjectured

to be wrong or at least very hard to obtain. Furthermore, we show UnambSAC

k

to be closed

under complementation.

For nondeterministic and deterministic, polynomially time bounded AuxPDA it is known that

their pushdown height can be bounded by O(log

2

n) [Ruz80, DR86]. In Section 4 we obtain the

same result for unambiguous and strongly unambiguous AuxPDA. Moreover, we consider oblivious

AuxPDA, i.e., machines where the movements of all heads do not depend on the input except

its length. We show that nondeterministic, unambiguous, and strongly unambiguous AuxPDA

can be simulated by such machines which, furthermore, are oblivious. Considering a special

kind of obliviousness, we �nally obtain AuxPDA characterizations for WeakUnambRAC

k

and

UnambRAC

k

, extending a result of [LR90], where only a characterization for k = 1 was obtained.

2 Simulating Ambiguous AuxPDA by Unambiguous Aux-

PDA

In some respects this part of the paper o�ers a fusion of results and ideas of [LR90] and [BHS90].

Roughly speaking, we proceed in the following manner. In Subsection 2.2 we make use of the

simulation of unambiguous AuxPDA by unambiguous circuits to be found in [LR90]. Using the

same construction (in revised form) we prove a result stating that ambiguity bounded AuxPDA

can be simulated by ambiguity bounded circuits. Then, in Subsection 2.3, we give a simulation of

ambiguity bounded circuits by unambiguous AuxPDA. By means of these two results we obtain

our main theorem, the unambiguous simulation of ambiguity bounded AuxPDA. This simulation

only demands a moderate penalty in space and time usage. For the most interesting cases this

3



LCNS, Vol 583, pp. 387–400, Springer 1992

penalty depends only on the ambiguity bound. Up to polynomial ambiguity there is no penalty

at all. A similar result was proved by Buntrock, Hemachandra, and Siefkes who showed a similar

result for space bounded classes. The additional space again depends on the ambiguity bound and

can be organized as a pushdown store rather than a general Turing tape. However, there is no

additional space necessary only in the case of constant ambiguity.

For reasons of clarity, we �rstly give the basic de�nitions needed for this and further sections

and, immediatly afterwards, come to out main result, presented in Subsection 2.1.

We deal with auxiliary pushdown automata. AuxPDA are space bounded Turing machines

with an additional, unbounded pushdown store ([Coo71], [Ruz80]). As usual, we make the tech-

nical assumption that accepting computations always end with an empty stack and an empty

working tape, all heads at a �xed position, and there is exactly one �nal state, i.e., there is exactly

one accepting con�guration. This normal form can always be achieved for deterministic and non-

deterministic auxiliary pushdown automata, but this does not seem to be the case for unambiguous

and strongly unambiguous automata. However, acceptance by empty pushdown store seems to be

the natural choice. Additionally, we require the machine either to push or pop one symbol in every

step. NAPDA

k

is the class of languages recognized by nondeterministic AuxPDA using logarith-

mic working space in time 2

O(log

k

n)

. In the usual way, we call an AuxPDA M unambiguous if for

every input there is at most one accepting computation. M is strongly unambiguous if for every

pair of con�gurations of M there is at most one computation path between them. We denote the

class of languages recognized by O(logn) space and 2

O(log

k

n)

time bounded unambiguous (resp.

strongly unambiguous) auxiliary pushdown automata by UnambAPDA

k

(resp. StUnambAPDA

k

).

De�nition 2 We say AuxPDAM has ambiguity a(n) if and only if for all inputs of length n there

exist at most a(n) computation paths between two arbitrary con�gurations of M .

Note that we do not mean surface con�gurations here and that this restriction must even hold for

con�gurations that are not reachable from the initial con�guration.Clearly, an ambiguity bound of

one coincides with the notion of strong unambiguity. Here the di�erence between the de�nition of

ambiguity of [BHS90] and ours should be emphasized. Buntrock, Hemachandra, and Siefkes de�ne

ambiguity as the maximum over the number of paths leading to any con�guration reachable by

the start con�guration. In contrast, the above de�nition restricts ambiguity also for con�gurations

not reachable by the start con�guration.

As detailed below, we �rstly de�ne the ambiguity of a circuit C by means of the de�nition of

ambiguity of a gate of C. The motivation for the de�nition arises from the notion of accepting

subtrees of a circuit

~

C with root g: The nodes of an accepting subtree are gates of

~

C. The root

node is g. If g is an OR-gate, then in the accepting subtree g exactly has one child gate h which

must have value 1. If g is an AND-gate, then all input gates of g (which must have value 1) are

children of g. The rest is done by a straightforward induction. In this context, the ambiguity of

any gate g of C simply corresponds to the number of accepting subtrees of subcircuit

~

C of C with

output gate g. The ambiguity of C then is the maximum over all ambiguities of gates of C.

De�nition 3 Let C be a circuit with input x 2 f0; 1g

n

.

1. The ambiguity GAmb

C

(g; x) of gate g in C on input x is de�ned as follows:

(a) If g is an input gate of C, then GAmb

C

(g; x) is 1 if g = 1 and 0, otherwise.

(b) If g = AND(g

1

; g

2

), then GAmb

C

(g; x) := GAmb

C

(g

1

; x) �GAmb

C

(g

2

; x).

(c) If g = OR(g

1

; : : : ; g

l

); l � 2, then GAmb

C

(g; x) :=

P

l

i=1

GAmb

C

(g

i

; x).

2. The ambiguity CAmb(C; x) of circuit C on input x is de�ned as maximum over the gate

ambiguities of all gates in C:

CAmb(C; x) := max

g2C

GAmb

C

(g; x).

4



LCNS, Vol 583, pp. 387–400, Springer 1992

Again it is clear that semi-unbounded fan-in circuits of depth O(log

k

n) and ambiguity one recog-

nize exactly all languages in UnambRAC

k

. The equality of StUnambAPDA

1

and UnambRAC

1

,

which was shown in [LR90], means in the terminology of ambiguity bounded classes that polyno-

mially time bounded auxiliary pushdown automata of ambiguity one recognize the same class of

languages as O(logn) depth semi-unbounded circuits with ambiguity one.

The subsequent proposition is evident.

Proposition 4 A circuit C accepts on input x i� CAmb(C; x) � 1.

Now we are able to de�ne the ambiguity bounded AuxPDA and circuit classes dealt with in

this section.

De�nition 5 1. A language L is in NAPDA-TISP-AMBIGUITY (t(n); s(n); a(n)) if L is ac-

cepted by a nondeterministic t(n) time-bounded and s(n) space-bounded auxiliary pushdown-

automaton which has ambiguity a(n).

2. A language L is in Semiunbounded-SZDP-AMBIGUITY (z(n); d(n); a(n)) if L is accepted

by a O(d(n)) depth-, O(z(n)) size-, and a(n) ambiguity-bounded circuit which consists of

AND-gates of bounded fan-in and OR-gates of arbitrary fan-in.

2.1 The Main Theorem and Further Results

In the beginning we state our main result for the unambiguous simulation of ambiguity bounded

AuxPDA. Corollary 7, a special case of this result, is particularly interesting.

Theorem 6 Let m(n) = max(a(n); 2

s(n)

; t(n)). Then

NAPDA-TISP-AMBIGUITY (t(n); s(n); a(n))

� UnambAPDA-TISP (m(n)

O(1)

; log(m(n))).

The proof of Theorem 6 is a combination of Theorem 9 and 14 of the following two subsections.

Corollary 7 reveals the strength of our result. A polynomially ambiguity bounded AuxPDA

with logarithmic working-tape and polynomial running-time can be simulated by an unambiguous

AuxPDA without time and space penalty.

Corollary 7 NAPDA-TISP-AMBIGUITY (n

O(1)

; logn; n

O(1)

)

� UnambAPDA-TISP (n

O(1)

; logn).

Buntrock, Hemachandra, and Siefkes showed that logspace and polynomially ambiguity bounded

Turing machines can be simulated by unambiguous AuxPDA in time n

O(1)

and space logn. Our

results yields that these AuxPDA can even simulate logspace and polynomially ambiguity bounded

AuxPDA, i.e., in contrast to [BHS90], we do not have to pay any penalty. Roughly speaking, our

result says that we can simulate a more powerful computational model than [BHS90] by the same

machines as they use. Note that in the unambiguous simulation of [BHS90] the space penalty for

ambiguity a(n) appears as a multiplicative factor log(a(n)). In contrast to them, in our simulation

we only have to pay an additive space penality of log(a(n)). Note that this is the reason why in

Corollary 7 both AuxPDA have same space complexity.

Eventually, the simulation by unambiguous AuxPDA also is possible if the simulated, ambiguity

bounded AuxPDA have got the MOD

q

acceptance mechanism.

Theorem 8 Let a(n) = 2

O(s(n))

) and m(n) = max(2

s(n)

; t(n)).

Then MOD

q

APDA-TISP-AMBIGUITY (t(n); s(n); a(n))

� UnambAPDA-TISP (m(n)

O(1)

; log(m(n))).

�

�

MOD

q

APDA-TISP-AMBIGUITY is the NAPDA-TISP-AMBIGUITY complexity class using the acceptance

mechanism of the polynomial time class MOD

q

P [BGH90].

5



LCNS, Vol 583, pp. 387–400, Springer 1992

Again the main task in the proof of Theorem 8 is to combine Theorem 9 and Theorem 14. But

now, we must additionally change the mode of acceptance. Remember that for MOD

q

-classes it

only matters to count the number of accepting computation paths. A careful inspection especially

of the proof of Theorem 6 will reveal that it is also possible to ascertain correctly this number.

In the following two subsections we will give the proof of the above results. Herein, Subsec-

tion 2.2 will not introduce any new proof techniques, but will show a new result for an already

known circuit construction. Subsection 2.3 will present our new technique, namely inductive

counting on leveled circuits and, �nally the proofs of Theorem 6 and 8.

2.2 Simulating Ambiguous AuxPDA by Ambiguous Circuits

Here we are going to give the simulation of ambiguity bounded AuxPDA by ambiguity bounded,

semi-unbounded circuits. Again, for reasons of clarity, we �rstly state the main result of this

subsection.

Theorem 9 Let m(n) = max(t(n); 2

s(n)

)). Then

NAPDA-TISP-AMBIGUITY (t(n); s(n); a(n))

� Semiunbounded-SZDP-AMBIGUITY (m(n)

O(1)

; log(t(n)); a

2

(n)).

This subsection is organized as follows. First, we give the basic circuit construction of [LR90]

(in revised form) to simulate AuxPDA by circuits. For this purpose, we have to take a closer look

on computation paths of AuxPDA. Second, we show that the constructed circuit exactly ful�lls

the properties required in Theorem 9.

The following de�nitions and propositions arise from [LR90]. In the beginning, we de�ne some

basic concepts with respect to auxiliary pushdown automata. By capital letters we denote surface

con�gurations. Surface con�gurations, we consider, contain the topmost symbol of the pushdown

store, the actual state, and the contents of the auxiliary tape, as well as the positions of the input

and working heads. Our purpose now is to identify certain computation paths of an auxiliary

pushdown automaton M with some sort of binary trees. (These trees are the essential tool for

constructing a circuit simulating M .) For this reason, we introduce the notion of nodes. A triple

(A;B; i) is called a node if A and B are surface con�gurations and i is some number bounded by

the running-time ofM . How will �nally turn out, we are mainly interested in realizable nodes, i.e.,

nodes for which there exists a computation from A to B in 2(i � 1) steps and where the level of

the pushdown is the same for A and B and does not go below this level during the computation.

Note that there is an accepting computation of M from the start con�guration S to the end

con�guration F (which both are uniquely determined) i� there exists an i

0

such that (S; F; i

0

) is

realizable.

The rough idea of binary trees is to recursively divide a computation path between con�g-

urations ful�lling the above mentioned properties in two uniquely determined paths. For this

purpose, we introduce a relation ``' between nodes and, in this way, between computation paths.

Let x = (A;B; i), y = (C;D; j), and z = (E;B; k). Then we write y; z ` x and z; y ` x i�

1. The level of the pushdown is equal for A, E, and B.

2. There exists a computation from A to C in one step, pushing a onto the pushdown store

during this step.

3. There exists a computation from D to E in one step, popping a from the pushdown store.

4. j + k = i, where j; k � 1.

Now we are able to de�ne the binary trees. For each inner node x = (A;B; i), i > 1, both

children y and z are determined by y; z ` x. Leaves of a binary tree are of shape (A;B; 1). In

6



LCNS, Vol 583, pp. 387–400, Springer 1992

this context, the meaning of the parameter i in the de�nition of nodes becomes clear: i denotes

the number of leaves of a binary tree with root (A;B; i). Some simple considerations show that

(A;B; i) is realizable i� there exists a binary tree with root (A;B; i), in which all the leaves are of

shape (C;C;1). We aim at �nding out whether there exists an i

0

such that (S; F; i

0

) is realizable.

For this target, the binary trees with root (S; F; i) serve in a straightforward manner to recursively

compute the realizability of (S; F; i). (A node is realizable i� both its children are realizable or it

is a leaf of shape (A;A; 1).)

To gain a circuit with small depth, it is necessary to make a division of the binary trees into

certain subtrees. To this, we have to consider pairs of nodes (x; y) = ((A;B; i); (C;D; j)), where

i � j holds. A pair of nodes (x; y) is called realizable i� there is a binary tree with root x, one leaf

is y, and all other leaves are of shape (E;E; 1). That is, the original binary tree is transformed

into a binary tree where the subtree with root y is simply replaced by the node y (which now is

considered as a leaf). We say the tree has gap y. Note that this tree has i � j + 1 leaves. Then,

roughly speaking, we split a binary tree with root x in the binary tree with root x and gap y and

in the tree with root y (more precisely, in the two trees of the children of y), where both arising

subtrees have approximately the same number of leaves.

Now the detailed construction follows: Gates labeled hxi will compute whether x is realizable.

If x = (A;B; 1), then h x i � 1 i� A = B and h x i � 0, otherwise. If x = (A;B; i), i > 1,

then hxi is de�ned as

hxi � 9

y;y

1

;y

2

hx; yi ^ hy

1

i ^ hy

2

i ^ hy

1

; y

2

` yi;

where y

1

, y

2

, and y are nodes such that y

1

� y

2

holds, where � is a logspace-computable

total order. Herein, the last gate computes whether the relation y

1

; y

2

` y holds. Observe that

this only depends on at most input bits and the transition relation of the simulated AuxPDA.

Obviously, this can easily be managed by the uniformity machine of the circuit. Assume that

y = (C;D; j), y

1

= (E;G; j

1

), and y

2

= (H;D; j

2

). Then y, y

1

, and y

2

are additionally restricted

by j

1

; j

2

� d

i

2

e < j.

The gates hx; yi check whether (x; y) is realizable and are de�ned in an analogous way to the

hxi-gates. If (x; y) = (x; x), then hx; yi � 1. Otherwise, they are de�ned as

hx; yi � 9

y

1

;y

2

;y

3

hx; y

1

i ^ hy

2

; yi ^ hy

3

i ^ hy

2

; y

3

` y

1

i:

Herein the gates hy

2

; y

3

` y

1

i are analogously de�ned to the above case. Let x = (A;B; i),

y = (C;D; j), y

1

= (E;G; j

1

), y

2

= (H; I; j

2

), and y

3

= (K;G; j

3

). Then y

1

, y

2

, and y

3

are further

restricted by j

2

� j + 1 � d

i�j+1

2

e < j

1

� j + 1.

Lemma 10 For each binary tree belonging to the realizable node x resp. pair of nodes (x; y) the

realizable (pairs of) nodes (x; y), y

1

, y

2

resp. (x; y

1

), (y

2

; y), and y

3

are uniquely determined by

the above construction.

Proof. Lemma 10 is an immediate consequence of Lemma 3 and Lemma 4 of [LR90]. 2

This completes the construction of the simulating circuit.

In order to prove Theorem 9 we have to do some technical groundwork, presented in the

following three lemmata. Herein, the �rst two lemmata relate the number of computation paths

to the number of binary trees. Eventually, the third lemma provides for the changeover from

number of di�erent binary trees for some node x resp. pairs of nodes (x; y) to the ambiguity of

the corresponding gate in the constructed circuit.

Subsequently, it is assumed that both the children of a node in a binary tree are always ordered

according to a logspace-computable ordering of their labelings. Note that for the proof of Theorem

9 we don not need Lemma 11 and Lemma 13 in its full sharpness, but they will be needed in such

a form for proving Theorem 8.

7



LCNS, Vol 583, pp. 387–400, Springer 1992

Lemma 11 If there exist exactly k > 0 di�erent computation paths of length l = 2m between two

con�gurations A, B with same stack height of AuxPDA M , then there exist exactly k di�erent

binary trees with root x = (A;B;m+ 1).

Proof. (idea) The proof is done by induction on the length l of computation paths. Observe that

l always is an even number because of the assumptions of the introductionary section and the

same pushdown store height of con�gurations A and B.

There are two things to be shown: First, each computation path has a unique corresponding

tree and, second, for two di�erent computation paths the corresponding binary trees also di�er.

2

Lemma 12 If there exist at most k > 0 computation paths between two arbitrary con�gurations

of AuxPDA M , then there exist at most k

2

di�erent binary trees with root x and gap y belonging

to some (realizable) pair of nodes (x; y).

Proof. (idea) The central idea of proof is as follows. A binary tree belonging to the pair of nodes

(x; y) represents a computation with gap. Let (x; y) = ((A;B; i); (C;D; j)). Then the above means

that the binary tree stands for a computation path from A to C, then there is a gap between C

and D, and �nally for a computation path from D to B. But this means that trees belonging to

(x; y) represent at most k

2

di�erent computation paths (with gap). Eventually, we can conclude

in an analogous way to Lemma 11 that there are at most k

2

binary trees belonging to (x; y). 2

Lemma 13 1. Let x be a realizable node with m di�erent binary trees corresponding to x Then

gate hxi exactly has ambiguity m.

2. Let (x; y) be a realizable pair of nodes with n di�erent binary trees corresponding to (x; y).

Then gate hx; yi exactly has ambiguity n.

Proof. Let x = (A;B; i) and y = (C;D; j) where i � j. The proof is done by induction on i for

nodes x and by induction on i � j + 1 for pairs of nodes (x; y), i.e., the number of leaves of the

binary tree.

1. i = 1: This means x = (A;A; 1) (because x is realizable) and m = 1. Then hxi � 1 and,

therefore, the claim follows by the de�nition of circuit ambiguity.

i = 2: It is obvious from the de�nition of the binary trees that there are as many binary trees

(namelym) as di�erent E exist, in which there is a computation in two steps from A via E to

B. They all have the following structure: The root is labeled x = (A;B; 2) and both leaves

and, at the same time, children of x are labeled y = (E;E; 1; ) resp. z = (B;B; 1), that is

y; z ` x. Thus, the gate labeled hxi is an OR-gate over all inputs of shape hx; xi ^ hyi ^ hzi.

Note that all the three gates in the preceding conjunction evaluate to 1. Furthermore, x and

z are uniquely determined and the number of `di�erent' hyi-gates depends on the number

of di�erent E. Seeing that, it is evident that the circuit with output gate x exactly has

ambiguity m.

2. i� j + 1 = 1: This means (x; y) = (x; x) and it is analogous to i = 1 in the upper case, that

is, n = 1 must hold.

i� j +1 = 2: As can be easily seen from the de�nitions of binary trees resp. the ``'-relation

on nodes, there are only two possibilities for gap y, namely y = (C;D; i� 1) (D 6= B) and

y = (C;B; i�1). (These y stem from (C;D; i�1); (B;B; 1) ` x and (E;E; 1); (C;B; i�1) ` x.

Because of the de�nition of ``' y = (A;D; i�1) is impossible.) First, assume y = (C;D; i�1).

Then z = (B;B; 1) and, because everything in this is uniquely �xed, n = 1 must hold.

Second, assume y = (C;B; i� 1). Then z = (E;E; 1) holds and the number n of di�erent

8



LCNS, Vol 583, pp. 387–400, Springer 1992

binary trees belonging to (x; y) exactly corresponds to the number of di�erent z (i.e., the

number of di�erent E). Because of the input gates of the gate labeled hx; yi (observe y

1

= x,

y

2

= y, y

3

= z, and hx; xi � hy; yi � 1) we can conclude in an analogous way like above that

gate hx; yi has ambiguity n in both cases for y mentioned above.

Induction step:

1. i > 2: At �rst, we subdivide the m di�erent binary trees in equivalence classes. By

Lemma 10, y, y

1

, and y

2

from the construction of the circuit with output gate hxi are

uniquely determined for each binary tree. Two binary trees are said to be equivalent i� they

have exactly the same y, y

1

, and y

2

. Let r denote the number of equivalence classes. Then

m =

P

r

i=1

jith equivalence classj =:

P

r

i=1

e

i

.

From the construction of the circuit we have that there is always one AND-gate of value 1

for each equivalence class; that is, r inputs of the OR-gate for hxi have value 1.

In the following, we make use of the division of a binary tree into three subtrees, namely

one with root x and gap y (i.e., the tree belonging to (x; y)), one with root y

1

, and one with

root y

2

. Let Bintrees(x) resp. Bintrees(x; y) denote the number of di�erent binary trees

with root x resp. root x and gap y. For each equivalence class the number of di�erent binary

trees only depends on the number of trees belonging to (x; y), y

1

, and y

2

. Now for this

subtrees the induction hypothesis applies. For the r di�erent equivalence classes we denote

the r di�erent values for (x; y), y

1

, and y

2

by (x; y)

k

, y

k

1

, and y

k

2

, respectively. So we have

m =

P

r

k=1

e

k

=

P

r

k=1

(Bintrees((x; y)

k

) � Bintrees(y

k

1

) � Bintrees(y

k

2

))

=

P

r

k=1

(GAmb(hx; yi

k

) �GAmb(hy

1

i

k

) �GAmb(hy

2

i

k

))

=

P

r

k=1

GAmb(AND(hx; yi

k

; hy

1

i

k

; hy

2

i

k

))

= GAmb(hxi);

i.e., the ambiguity of the circuit with output gate hxi.

2. i � j + 1 > 2: The n binary trees are subdivided into equivalence classes in an analogous

way like above, but now according to the values of y

1

, y

2

, and y

3

. The rest of the proof is

done in an equal manner as in 1.

2

Finally, we unify the preceding three lemmata into the proof of Theorem 9.

Proof. (Theorem 9) As a result of Lemma 11 and Lemma 12, for the AuxPDA with ambiguity

a(n) there exist at most a

2

(n) di�erent binary trees corresponding to node x resp. pair of nodes

(x; y) each.

According to Lemma 13 the simulating circuit of the given construction has at most ambiguity

a

2

(n), because due to the above the ambiguity of each gate hxi resp. hx; yi is bounded by a

2

(n).

The depth and size properties follow from the proof in [LR90] because we use essentially the

same circuit construction. 2

2.3 Simulating Ambiguous Circuits by Unambiguous AuxPDA

At this point, we come to a main proof technique of this paper | inductive counting on leveled

circuits. With help of this technique we are able to give a simulation of ambiguity bounded circuits

by unambiguous AuxPDA. In this way, the last precondition for simulating ambiguity bounded

AuxPDA by unambiguous ones is created.

9



LCNS, Vol 583, pp. 387–400, Springer 1992

Theorem 14 Let m(n) = max(a(n); 2

d(n)

; z(n)). Then

Semiunbounded-SZDP-AMBIGUITY (z(n); d(n); a(n))

� UnambAPDA-TISP (m(n)

O(1)

; log(z(n))).

By means of the technique of Theorem 14 we naturally get the corresponding result for the

complement of the above ambiguity bounded complexity classes.

Corollary 15 Let a(n) = O(z(n)) and m(n) = max(2

d(n)

; z(n)). Then

Co-Semiunbounded-SZDP-AMBIGUITY (z(n); d(n); a(n))

� UnambAPDA-TISP (m(n)

O(1)

; log(z(n))).

Proof. (sketch) Let C be the given, semi-unbounded circuit. First of all, it should be mentioned

that we assume C to be leveled. This is admissible, because (inter alia) for semi-unbounded circuits

it is possible to construct an equivalent, leveled one, which has the same depth and the size is only

increased by some polynomial. Observe that the construction of leveled circuits mentioned in the

introductionary section preserves the ambiguity of the circuit (and, in particular, the ambiguity

of the output gate) obtained from Theorem 9.

The main tool now is inductive counting on leveled circuits. For each layer i of C we will count

the sum LA

i

over the ambiguities of all gates in layer i. In this way we will �nd out the ambiguity

of the output gate g of C and, therefore, whether C accepts or rejects input x. Clearly, C accepts

i� g has ambiguity greater than 0.

Subsequently, we assume to have a subroutine which for any gate g of C veri�es that g has an

ambiguity not less than a given value. Moreover, if the given value and the actual ambiguity of g

coincide, then the veri�cation is done unambiguously. The subsequent Lemma 16 will show the

existence of such an subroutine with suitable space and time bounds.

For the layer of the input gates of C we already know the sum LA

1

. It equals n according to

the ambiguity de�nition and the fact that all inputs of C are given in negated and nonnegated

form. Now suppose that we already know LA

i�1

. To determine the ambiguity sum LA

i

of layer i,

for each gate h of layer i the simulating AuxPDA M carries out the following: For each gate f of

layer i� 1, M guesses its ambiguity value amb and veri�es by means of the algorithm of Lemma

16 that f actually has at least ambiguity amb. Furthermore, a counter U for the ambiguity sum

of layer i � 1 is increased by amb. If f is an input gate to h, then amb will serve to compute

the ambiguity of h in a straightforward way. Finally, if we went through all the gates of layer

i� 1, M checks whether U is equal to LA

i�1

. If not, M rejects because in this case we must have

guessed a too low ambiguity value for at least one gate in layer i� 1. Such we may ascertain the

ambiguity value of each gate h of layer i and, therefore, LA

i

. Subsequently, we will refer to the

above algorithm as SUM UP .

The following observation implies the unambiguity of SUM UP . The AuxPDA of Lemma 16

checks in SUM UP whether the ambiguity of some gate was not guessed too big. But it does not

detect whether the guessed value for the ambiguity of the gate is too small. Now the auxiliary

variable U comes into play. If U 6= LA

i�1

, then SUM UP aborts. But if U = LA

i�1

and at

least one ambiguity value for some gate in layer i� 1 was guessed too small, then there must have

been some gate of layer i � 1 where the ambiguity value was guessed too big and, therefore, the

AuxPDA of Lemma 16 would have rejected.

From this and the unambiguity of the AuxPDA of Lemma 16 for correctly guessed ambiguity

values, we conclude the unambiguity of SUM UP . This works even if the ambiguity bound a(n) is

not space constructible, since, in this case, we can make use of the following fact. For layer i � 1

we know the ambiguity sum LA

i�1

of layer i� 1 and LA

2

i�1

is an upper bound for the ambiguity

of each gate in layer i

y

.

y

Buntrock, Hemachandra, and Siefkes required the ambiguity of space bounded Turing machines to be space

constructible in [BHS90]. This restriction can be dropped by essentially the same technique.

10



LCNS, Vol 583, pp. 387–400, Springer 1992

To proof Corollary 15 simply change the mode of acceptance in the proof of Theorem 14: Now

M accepts i� the output gate of the simulated circuit C equals 0. 2

As can be seen above (and in later theorems), it is of great importance to have an appropriate

unit of measure for gates. That is, on the one hand, it should have as small values as possible

(because of `space reasons') and, on the other hand, it should enable an veri�cation algorithm

which works unambiguously for correctly guessed values. It will turn out that a decisive point for

our proof technique is to �nd such suitable units of measure. In Lemma 16 it is shown that in the

case of ambiguity bounded AuxPDA ambiguity is such an appropriate unit of measure.

Lemma 16 Let C be a semi-unbounded circuit of depth d(n), size z(n), and ambiguity a(n) =

O(z(n)) and let m(n) = max(2

d(n)

; z(n)). Then there exists an m(n)

O(1)

time and log(z(n)) space

bounded auxiliary pushdown automaton M which accepts the language L = f (x; amb) j x 2 f0; 1g

n

is an input to circuit C with output gate g, amb = O(a(n)), and GAmb

C

(g; x) � amb g.

If even GAmb

C

(g; x) = amb holds, then M works unambiguously.

Proof. First, we show how M works. If amb = 0, then M accepts at once. Now let amb > 0.

If g is an input gate of C, then M accepts i� g has value 1. If g = AND(g

1

; g

2

) holds, then M

guesses two numbers a

1

and a

2

, checks whether a

1

� a

2

= amb, and, �nally, makes two recursive

calls to verify that g

1

resp. g

2

have ambiguity not less than a

1

resp. a

2

. If g = OR(g

1

; : : : ; g

k

),

then M guesses k numbers a

1

; : : : ; a

k

, checks whether

P

k

i=1

a

i

= amb, and makes in the case of

need recursive calls to verify that the g

i

(1 � i � k) have ambiguity greater than or equal to a

i

.

The correctness and the space bound of the above algorithm are straightforward. To prove the

time bound we need the following lemma.

Lemma 17 The number of recursive calls of M for a �xed circuit C of depth d and a given

number amb is bounded by O(2

d

� amb).

Proof. (idea) The proof is done per induction on the depth d of the circuit. 2

Finally, we show unambiguity for M in the case of GAmb

C

(g; x) = amb. We only give a idea

of proof, which is formally done by induction on the circuit depth d.

For example, let g = AND(g

1

; g

2

). W.l.o.g. assume that a

1

� a

2

= amb holds and we have

guessed a too high ambiguity value for g

2

, that is, a

2

> GAmb

C

(g

2

; x) holds. But then the

recursive call to verify that g

2

has ambiguity not less than a

2

will fail and M rejects by de�nition,

because it will eventually reach an input gate which has ambiguity less than its guessed value. All

the other cases are handled in a similar way. 2

Eventually, it remains to give the proof of Theorem 8.

Proof. (of Theorem 8) In proof of Theorem 9, i.e., by means of Lemma 11 and Lemma 13,

we have that the number of accepting computation paths exactly transfers to the ambiguity of

the output gate; that means that the ambiguity of the output gate (which corresponds to some

realizable node x = (S; F; i) (where S is the starting con�guration and F the unique accepting

con�guration) coincides with the number of accepting paths of the simulated AuxPDA.

Finally, with the help of Theorem 14 the ambiguity of the output gate is determined and such

it su�ces to modify the accepting condition according to the MOD

q

-mechanism. 2

3 Strongly Unambiguous Circuits and AuxPDA

In Section 3 and 4 we will deal with semi-unbounded circuit classes and, in particular, their unam-

biguous restrictions. In the beginning, we give the de�nitions of theses classes. The class SAC

k

consists of all languages recognizes by polynomial size and O(log

k

n) depth bounded circuits, which

11



LCNS, Vol 583, pp. 387–400, Springer 1992

are composed of AND and OR gates of bounded fan-in and, moreover, OR gates of unbounded

fan-in [Ven87]. Starting from this notion, Lange [Lan90] developed the two strongly unambiguous

classes UnambSAC

k

and UnambRAC

k

. For this purpose, he introduced the notion of vulnera-

ble OR gates. For vulnerable OR gates multiple 1-input is forbidden. In this way UnambSAC

k

is de�ned as the class of all languages accepted by SAC

k

circuits, where each unbounded OR

gate may be replaced by a vulnerable one. Now, UnambRAC

k

is the subclass of SAC

k

circuits,

which consists of all languages accepted by circuits where even all OR-gates can be replaced by

vulnerable ones.

This section is organized as follows. In the �rst part, we present some complementation results

for semi-unbounded circuits. In the second part, we give an simulation for UnambSAC -circuits by

unambiguous AuxPDA.

3.1 Inductive Counting and Semi-unbounded Circuits

In the beginning, we present an application of our proof technique for an already known re-

sult. Borodin et al. [BCD

+

89] proved the closure under complementation of the circuit class

SAC

k

by directly constructing a `complementary' circuit. In contrast to them, we make use of

Venkateswaran's [Ven87] AuxPDA characterization of SAC

k

to recognize the complement of an

SAC

k

-circuit by an AuxPDA. For this purpose, it is important to assume the simulated circuits

to be leveled. The idea behind is that, on the one hand, circuits possess a regular and simple

structure (especially if they are leveled), consist of only polynomially many gates (in opposite

to the superpolynomial number of AuxPDA con�gurations), and, on the other hand, counting

and recursive calls can easily be done on AuxPDA. By this, a variation of our inductive counting

technique of Subsection 2.3 well applies.

Proposition 18 [Ven87] SAC

k

= NAPDA-TISP(c

log

k

n

; logn).

Proposition 18 states a result of Venkateswaran, which will be the `veri�cation tool' of Theo-

rem 19.

Theorem 19 [BCD

+

89] SAC

k

= Co-SAC

k

.

Proof.(sketch) The proof is done in the following manner. For a given logspace-uniform circuit C

we describe an auxiliary pushdown automaton M which accepts on input w i� C rejects. In this

way, Theorem 19 follows by application of Proposition 18.

We use inductive counting technique to determine the number of gates which evaluate to 1 for

each layer i of the given, leveled circuit C. Note that the number of layers of C coincides with its

depth. We will ascertain the value of the output gate, which lies in the highest layer of C. M will

accept i� the output gate evaluates to 0.

In layer 1, i.e., the layer of the input gates of C, the number G1

1

of gates with value 1 (1-gates

for short) coincides by de�nition of SAC

k

(each circuit is provided with the input word w and

its negations) with n. Now suppose that we already know the number G1

i�1

of 1-gates in layer

i� 1. Here we show how to �nd out G1

i

, i.e., the number of 1-gates in layer i. For each gate g in

layer i its value is ascertained by considering all the gates in layer i � 1 each time. In the course

of this, M guesses the values of each gate h in layer i � 1. If M guessed value 1 then it makes

use of Venkateswaran's algorithm to verify this. If the veri�cation succeeds then M additionally

increases a counter U for the number of 1-gates in layer i � 1 and checks, whether h is an input

to g. If so, then the value for h will serve in a straightforward manner to compute the value of g

(and, in this way, the value of G1

i

). Finally, after M went through all gates in layer i � 1 (what

was done only to �nd out the value of one gate g of layer i), it checks whether the above counter

U is equal to G1

i�1

. If not (that is, U is less than G1

i�1

), this means that M didn't make out all

the 1-gates of layer i�1 and, therefore, M rejects. Otherwise, i.e., if U = G1

i�1

, the computation

proceeds by determining the value of the next gate in layer i in the same way as above. 2

12



LCNS, Vol 583, pp. 387–400, Springer 1992

Above, we gave a new proof for the closure under complementation of SAC

k

. Hereafter, we

show one advantage of the proof of [BCD

+

89], that is, the fact that it also serves to prove the

closure under complement of UnambSAC

k

(even with exactly the same construction).

Theorem 20 UnambSAC

k

= Co-UnambSAC

k

.

Proof. As mentioned above, we exactly use the construction of [BCD

+

89]. Therefore, we do

not go into the details of the generation of the `complementing' circuit of Borodin et al. It is

only veri�ed that the resulting circuit again is an UnambSAC

k

-circuit. (The reader who wants to

follow our explanations should have [BCD

+

89] at hand and especially regard their Figure 2.)

Let C be some UnambSAC

k

-circuit. Then the constructed `complementing' circuit

~

C of

[BCD

+

89] mainly consists of two parts. First, C is transformed into some normal form (leveled,

�xed width, strictly alternating) yielding circuit

^

C.

^

C is easily seen to be again an UnambSAC

k

-

circuit. The second part is responsible for complementation. The only thing to show is that

all unbounded OR-gates used in this part are vulnerable. But the inputs of these unbounded

OR-gates are AND-gates, which themselves have so called `COUNT '-gates as inputs. There is

always exactly one `COUNT '-gate evaluating to 1 and, because of this, at most one of the above

AND-gates may have value 1. Observe that the `THRESHOLD '-gates additionally used in this

part, may actually be built up with `AKS' sorting networks [AKS83], which are NC

1

-circuits and

such clearly UnambSAC

1

-circuits. Herein one should note that the AKS sorting networks do not

need the negations of the bits of the given input word. By this means, we get a circuit

~

C only using

vulnerable OR-gates, i.e., an UnambSAC

k

-circuit

~

C recognizing the complement of the language

of C. 2

At this point, one should realize that this result could not be obtained by our proof technique,

because we have no AuxPDA characterization of UnambSAC

k

. But even if we had one, our

technique probably wouldn't work for reasons discussed after Theorem 22.

Next, we are going to show the inclusion of the complement of strongly unambiguous AuxPDA

classes in AuxPDA classes, where, informally spoken, the strong unambiguity is restricted to

con�gurations reachable from the start con�guration.

ReachUnambAPDA

pt

(logn) is the class of languages recognized by logarithmically space and

polynomially time bounded AuxPDA which satisfy for any input x and any con�guration A that

there is at most one path from the start con�guration to A.

The proof of the above announced can be done by using the algorithm of Theorem 19 with

two modi�cations. One of these concerns the circuit characterization of StUnambAPDA

pt

(logn).

Proposition 21 [LR90] UnambRAC

1

= StUnambAPDA

pt

(logn).

Proposition 21 plays the same role in the subsequent proof as Proposition 18 did in the proof

of Theorem 19.

Theorem 22 Co-StUnambAPDA

pt

(logn) � ReachUnambAPDA

pt

(logn).

Proof. (sketch) Like in the proof of Theorem 19 the number of 1-gates is counted for each circuit

layer and the simulating AuxPDA M will use nearly the same algorithm. There are only two

modi�cations: First, after nondeterministically guessing the value v of a gate, v is pushed on the

store. Second, a guessed 1 isn't veri�ed any longer with the help of the algorithm of Venkateswaran,

but by means of the strongly unambiguous algorithm of Proposition 21. That is all the new of the

construction.

So it remains to show the correctness of the above construction. First of all, observe that the

pushdown store is only needed for the veri�cation of 1-gates. Therefore, the pushed values v will

not be popped until the accepting state is reached. (Remember that all our AuxPDA accept by

13



LCNS, Vol 583, pp. 387–400, Springer 1992

empty pushdown store.) Because the contents of the pushdown store is part of the con�guration,

we will guarantee in such a way the unique reachability for the con�gurations of M .

The veri�cation of guessed gate values is done strongly unambiguous according to Proposi-

tion 21. Moreover, because we can make use of the pushdown store to record the computation

path, the computation is strongly unambiguous until M begins to empty the store (in the accept-

ing case). In this way, it is clear that all computations starting in the initial con�guration of M

are strongly unambiguous (that is, in particular, the (accepting) end con�guration ofM is reached

by exactly one path from the start con�guration.

If M rejects then the protocol of the guessed gate values on the pushdown store guarantees the

strong unambiguity (for reachable con�gurations). It is important to remark that none of these

guessed values is popped unless M accepts. 2

Perhaps one is tempted to assume that the above simulation even yields a strongly unambiguous

AuxPDA and, with that, the closure under complementation of the class StUnambAPDA

pt

(logn).

But, to this, let us regard the following situation. Suppose that the simulating AuxPDA M is

in a con�guration which assumes a too low value to be known for the sum of the values of layer

i � 1 and is going to determine this sum for layer i. Some simple considerations show that there

now may be di�erent ways to reach the accepting con�guration (what stands in contradiction to

strong unambiguity). To be brief, the proper reason for the failure is the case when we start in a

con�guration of M in which the normally by inductive counting ascertained number is pretended

wrongly.

3.2 Simulating UnambSAC-Circuits by Unambiguous AuxPDA

To do an unambiguous simulation of UnambSAC

1

-circuits by AuxPDA, we make use of the same

technique as in Theorem 14 and Theorem 19. In particular, we are going to employ inductive

counting over an appropriate unit of measurement for the gates of a leveled circuit. This mea-

sure again has to ful�ll two important restrictions. On the one hand, it has to be polynomially

bounded (so that it can be counted in logarithmic space) and, on the other hand, it must allow the

unambiguous veri�cation of correctly guessed values for this measure for any gate of the simulated

circuit. In the simulation of ambiguity bounded circuits ambiguity was used as a measure. Here,

a new measure is introduced (namely the saturation of a gate) because the ambiguity measure is

not polynomially bounded for UnambSAC

1

-circuits.

A gate is considered as saturated if it is an input gate with value 1 or if it is an OR-gate with

exactly two 1-inputs. The following de�nition generalizes this concept by making the saturation

dependent on the saturation of its inputs.

De�nition 23 Let C be an UnambSAC -circuit and g be any gate in C. Then the saturation of

g is de�ned as follows:

1. If g is an input gate of C, then it has saturation 1 if g = 1 and 0, otherwise.

2. If g = AND(g

1

; g

2

), then its saturation is the sum of the saturations of g

1

and g

2

if both

these saturations are greater than 0 and the saturation of g is 0, otherwise.

3. If g is an OR-gate (of arbitrary fan-in) then we have to consider two cases. If g has at most

one input with saturation greater than 0 (i.e., g has at most one input which evaluates to

1), then the saturation of g is de�ned as the saturation of this input gate. Otherwise, if

g two 1-inputs, then g is a bounded OR-gate and the saturation of g is the sum over the

saturations of all the inputs of g plus 1 (because g itself is a saturated OR-gate).

Note that the output gate of circuit C on input x has saturation greater than 0 i� C accepts x.

Obviously, the saturation is polynomially bounded for all the gates of UnambSAC

1

-circuits.

14



LCNS, Vol 583, pp. 387–400, Springer 1992

Now we present our `veri�cation lemma' which corresponds to Lemma 16 of the preceding

section. Just as there, it is not necessary that the veri�cation of a guessed value less than the

actual value of the considered gate is unambiguous. It su�ces that the veri�cation is unambiguous

if the guessed and the actual value coincide.

Lemma 24 Let g be the output gate of an UnambSAC

1

-circuit C and k be some polynomially

bounded number. Then there exists a polynomially time and logarithmically space bounded AuxPDA

M which accepts the language L = f (x; k) j x 2 f0; 1g

n

is an input to C and the saturation of g

is not less than k g.

If C accepts x and the saturation of g exactly is k then M works unambiguously on input (x; k).

Proof. First, we show how M works. If k = 0, then M accepts at once. Now let k > 0. There

are several cases. If g is an input gate of the circuit, then M accepts i� k = 1 and g has value

1. If g = AND(g

1

; g

2

), then M guesses two numbers k

1

and k

2

(both greater than 0), checks

whether k

1

+ k

2

= k holds, and, �nally, makes two recursive calls to verify that g

1

resp. g

2

have

saturation greater or equal than k

1

and k

2

, respectively. If g is a bounded OR-gate, then M �rst

of all guesses whether g itself is a saturated gate (i.e., both the inputs have value 1). If so, then

M guesses two numbers k

1

and k

2

greater than 0, checks whether k

1

+ k

2

= k � 1, and, �nally,

makes two recursive calls like in the preceding case. If M guessed that g itself is not a saturated

gate or if g is an unbounded OR-gate (and, therefore, must be vulnerable), then M guesses one

input g

i

of g and recursively veri�es that g

i

has saturation greater equal than k.

Second, we come to complexity bounds and correctness ofM . In each recursive callM branches

into at most two recursive calls. Because of the at most logarithmic depth of the circuit with output

g, the polynomial time bound is immediate. The logarithmic space bound and the correctness

are straightforward and the case of coincidence of guessed and actual saturation is treated in an

analogous way like the corresponding case in Lemma 16. 2

The following proposition is the equivalent to Theorem 14 of the preceding section and Theorem

19. In an fully analogous way to there we employ the inductive counting technique on leveled

circuits in combination with the veri�cation algorithm of Lemma 24. This proposition serves as

fundamental constituent of our �nal result, the inclusion of UnambSAC

k

in UnambAPDA

k

.

Proposition 25 UnambSAC

1

� UnambAPDA

1

.

Proof. The proof results from a straightforward translation of the proof of Theorem 14. While

there ambiguity was used as a unit of measure, we here make use of the saturation of gates. 2

Finally, we are ready to state one of our main results. This theorem solves an open problem

posed by Lange [Lan90] in generalized form.

Theorem 26 UnambSAC

k

� UnambAPDA

k

.

Proof. A leveled circuit of depth log

k

n can be regarded as a circuit of log

k�1

n circuit layers,

each of depth logn (that is, each of these circuit layers is an UnambSAC

1

-circuit). The essential

trick is that we now do a simulation for each of these layers similar to that of Proposition 25. Here

the problem arises that, when simulating such an UnambSAC

1

-circuit layer by an AuxPDA M ,

in general we do not have automatically the values of the input gates at disposal. Therefore, M

recursively computes those values each time they are needed. (Note that the simulation starts in

the highest (that is, output-) UnambSAC

1

-layer of the given circuit.)

Observe that at the transition from one circuit layer to another we forget in some respect

information. That is, to compute the value of an input gate g of some circuit layer i, M begins

a (re)computation which actually provides the saturation of g. But then M is only interested in

whether g has saturation greater than 0 (i.e., g has value 1) or g has saturation 0 (i.e., g has value

15



LCNS, Vol 583, pp. 387–400, Springer 1992

0). This is necessary because, otherwise, the saturation values were not any longer polynomially

bounded. (About this, especially observe the subsequent Remark 27.)

Nevertheless, the whole simulation obviously remains unambiguous. The logarithmic space

bound and the correctness of the simulation are straightforward and such the only interesting

thing which remains to be shown is the time bound c

log

k

n

(= n

O(log

k�1

n

)).

For each UnambSAC

1

-circuit layer only polynomially many recursive calls are performed by

M due to the polynomial time bound of the simulation for UnambSAC

1

-circuits of Proposition 25.

Thus, the recursion depth of log

k�1

n yields a total running time of n

O(log

k�1

n)

. 2

Remark 27 We separated an UnambSAC

k

-circuit in layers of depth O(logn). This is the only

possibility we had because if the layers were chosen `thicker' than O(logn), then the space of the

simulating AuxPDAM would become greater than O(logn) and if the layers were chosen `thinner'

than O(logn), then the simulation time would become greater than 2

O(log

k

n)

.

Assume that we separate C in circuit layers of arbitrary depth D. Let T (D) resp. S(D) denote

the time resp. space that are needed for the simulation of such a circuit layer with the help of

the techniques of Proposition 25. Then clearly the following holds. (Observe that for D > 0 we

have to assume a polynomial size for each of those circuit layers.) T (D) = max(d

D

; n

O(1)

) for

some constant d and S(D) = max(O(D); O(logn)). Obviously, D = O(logn) is optimal to gain a

simulation in c

log

k

n

time and logarithmic space.

For the running time t(n) of the whole simulation analogous to Theorem 26 it holds

t(n) = T (D)

log

k

n

D

� n

O(

log

k

n

D

)

= c

log

k+1

n

D

.

Consequently, if D = o(logn), then t(n) = !(c

log

k

n

).

4 Other applications

In this section, we will utilize the mutual characterization of AuxPDA and circuits especially for

unambiguous classes. First, we deal with the restriction of pushdown heights of unambiguous

AuxPDA and, second, we introduce the notion `oblivious' for AuxPDA and show that in the

most interesting cases it is no restriction to demand obliviousness. In addition, oblivious and

unambiguous AuxPDA classes will prove to conincide with WeakUnambRAC

k

and UnambRAC

k

for arbitrary k. In this way, we extend a result of [LR90], where only a characterization for k = 1

was given.

4.1 AuxPDA with restricted pushdown height

For Turing machines there is a great interest in simultaneous resource bounds, i.e., restricting time

and space bounds at the same time. As far as AuxPDA are concerned, one most of the time deals

with simultaneous bounds on running-time and working space. But what is about the unlimited

pushdown store? There has also been a lot of research to restrict the size of the pushdown store.

Harju [Har79] showed (also see [Ruz80] for an alternative proof) that deterministic AuxPDA with

polynomial running-time and logarithmic working-tape can be simulated by deterministic Aux-

PDA with logarithmic space and O(log

2

n) pushdown-height. However, the simulation yields a

superpolynomial running-time. But later on, Dymond and Ruzzo [DR86] could prove the above

result where even the polynomial running-time can be preserved. The dual result for nondeter-

ministic AuxPDA (with also preservation of the polynomial running-time) could be shown earlier

by Ruzzo [Ruz80]. This result can be generalized: s(n) space and r(n) reversal bounded nondeter-

ministic AuxPDA can be simulated within same space and reversal bounds and with a pushdown

height bounded by O(s(n) � log(r(n))) [Kin81, BH89]. Herein, the reversal bound refers to the

restriction of the number of pushdown reversals. Observe that according to [BH89] for polynomial

16



LCNS, Vol 583, pp. 387–400, Springer 1992

reversal and logarithmic space bounded AuxPDA we get a polynomial time bound. From this, we

can deduce Ruzzo's result.

Subsequently, we will restrict pushdown size for unambiguous and strongly unambiguous Aux-

PDA. For this purpose, we make use of the characterization of AuxPDA by circuits and vice

versa. This is done in the following way. Assume that we have a circuit C (which only has

bounded AND-gates) of depth d(n) and size z(n) simulating an AuxPDA M . Then we again

simulate C by an AuxPDA N in the usual way (for example, cf. [Ven87]): Starting at the output

gate, for AND-gates we examine both children and for OR-gates only one guessed child. Because

we only need to store constant many parameters (with a space requirement of O(log(z(n)))) of

the recursive calls, a pushdown-height of O(d(n) � log(z(n))) is immediate. Because of the equality

of the considered AuxPDA and circuit class, we clearly have that N has the same time and space

complexity as M . Our �rst application of the described technique yields a generalization of the

above mentioned result of Ruzzo [Ruz80].

Theorem 28 L is accepted by a NAuxPDA in logn space and 2

O(log

k

n)

time i� L is accepted by

such a machine which, furthermore, uses at most O(log

k+1

n) pushdown-height.

Proof. Just make use of Venkateswaran's result, given in Proposition 18. 2

Making use of two main results of [LR90], we further gain the proposed restriction of the

pushdown heights for unambiguous and strongly unambiguous AuxPDA. Unfortunately, we have

such a result only for polynomial time AuxPDA.

Theorem 29 L is accepted by an unambiguous resp. strongly unambiguous AuxPDA in logn

space and polynomial time i� L is accepted by such a machine which, furthermore, uses at most

O(log

2

n) pushdown-height.

Proof. Only make use of the equalitiesWeakUnambRAC

1

= UnambAPDA

1

resp. UnambRAC

1

=

StUnambAPDA

1

to be found in [LR90]. 2

Note that in [BHS90] a small pushdown size was obtained for a special case of unambiguous

AuxPDA. The above technique now yields small pushdown sizes even for an arbitrary, unambigu-

ous AuxPDA.

4.2 Obliviousness for AuxPDA

An automaton is called oblivious if the movements of all its heads are independent from the input

except its length. This property is easily achieved for space bounded Turing machines. Roughly

speaking, we just move the heads to and fro the two ends of the respective tape contents.

For AuxPDA obliviousness is not so easy to attain because of the pushdown store head. But

here the characterization of AuxPDA by circuits and vice versa helps. The main idea behind

again is to simulate a circuit by an AuxPDA. If the circuit has a regular structure, namely strictly

alternating (i.e., for all i � 0, all gates on level 2i + 1 are OR-gates and all gates on level 2i + 2

are AND-gates) and leveled, then the shape of the diagram which plots pushdown height versus

time (subsequently called pushdown-diagrams) will also be very regular. This special shape of a

pushdown-diagrams is calledW-cycle

z

(cf. Figure 1.). Note that the above mentioned normal form

for circuits is easily achieved by an only doubled circuit depth and a polynomially enlarged circuit

size. (See [BCD

+

89] for details.) Because we only consider logspace and at least polynomially

time bounded AuxPDA, for the input and working tapes of the AuxPDA we can use the above

mentioned technique for space bounded Turing machines and, therefore, we altogether get an

oblivious AuxPDA.

z

This name is taken from numerical mathematics, where it is used in the theory of multigrid methods.

17



LCNS, Vol 583, pp. 387–400, Springer 1992

Figure 1: W-cycles

To simulate an circuit C (which itself simulates an given AuxPDA M ), we employ nearly the

same technique as in the preceding subsection. The only di�erence is that when we evaluate an

AND-gate, we do this in a slightly modi�ed way. First, we push the left gate on the store, then

we evaluate it, afterwards we pop it from the store, and, �nally, we compute the right input of the

AND-gate and do the analogous computation for the right input. (Note that we only need the

store for the evaluation of AND-gates.) Because of the symmetry of both the subcircuits of the

AND-gate this altogether yields a pushdown-diagram in which the following holds. If we divide

it into two equal parts (left and right) both are symmetric to each other and this also holds for a

recursive division of these parts. In this way, we gain pushdown-diagrams in W-cycle form, i.e., a

special case of obliviousness.

The following classes with preceding `W-cycle' are de�ned in the intuitive way.

Theorem 30 1. NAPDA

k

= (W-cycle)NAPDA

k

.

2. UnambAPDA

pt

(log(n)) = (W-cycle)UnambAPDA

pt

(log(n)).

3. StUnambAPDA

pt

(log(n)) = (W-cycle)StUnambAPDA

pt

(log(n)).

The proof of Theorem 30 is similar to the proofs of Theorem 28 and 29. In [LR90] the questions

whether UnambAPDA

k

= WeakUnambRAC

k

and whether StUnambAPDA

k

= UnambRAC

k

hold

for k > 1 remained open. We cannot fully answer this question, but if we con�rm the consideration

to W-cycle-oblivious AuxPDA classes, we get the desired equality.

Theorem 31 1. (W-cycle)UnambAPDA

k

= WeakUnambRAC

k

.

2. (W-cycle)StUnambAPDA

k

= UnambRAC

k

.

Proof.(sketch) The `�'-direction was implicitely proven in [LR90] respectively follows from the

proof of Theorem 29.

To prove the reverse direction, we make use of the `totally symmetric' shape of the pushdown-

diagrams for W-cycle-oblivious AuxPDA. Again, we consider pairs of surface con�gurations (cf.

Subsection 2.2), but the structure of the constructed circuit is simpler now. We mainly need gates

of shape hA;Bi, which compute whether there exists a computation from surface con�guration A

to B, where the level of the pushdown store is the same for A and B and does not go below this

level during the computation (cf. Figure 2). These gates are de�ned as

hA;Bi � 9

C;:::;G

hC;Di ^ hF;Gi ^ hA! C;E ! Di ^ hE ! F;G! Bi;

where, for example, hA ! C;E ! Di computes whether there is an one-push-step from A to C

and an one-pop-step from E to D (where �rst the symbol a is pushed and then popped).

The correctness and the weak resp. strong unambiguity of such de�ned circuit are straightfor-

ward. Because there are only polynomially many surface con�gurations and we recursively divide

computation paths in two equal sized paths, the depth O(log

k+1

n) and the polynomial size of the

circuit are immediate. 2

.

18



LCNS, Vol 583, pp. 387–400, Springer 1992

B

G

E

FDC

A

Figure 2:

5 Conclusion

This paper contains three sections. In the �rst section we showed how nondeterministic auxil-

iary pushdown automata whose ambiguity is low can be simulated by unambiguous ones. The

second section contains results about the circuit classes UnambSAC

k

, for which in contrast to

UnambRAC

k

no nontrivial properties were known by now. In the third section certain normal

forms of auxiliary pushdown automata are considered.

The �rst two sections use the same proof techniques: Inductive counting is combined with

simulations between circuits and auxiliry pushdown automata. Often circuits played only a role

in proofs to show a result for AuxPDA, while sometimes results about circuits themselves were

proved. This proof technique works very well for semi-unbounded fan-in circuits and auxiliary

pushdown automata, but it does not seem to be able to prove new results for space bounded

classes. Nevertheless, it can be applied here, too, if we use the characterization of NL in terms of

skew-circuits (see [Ven88]). In this way, we can even �nd a uniform proof for the closure under

complementation for both NL and LOGCFL. Finally, the third section makes use of already

known, mutual characterizations of AuxPDA and circuits to gain results about pushdown-height

and obliviousness of AuxPDA. The essential trick here is to simulate the (poly)logarithmic depth-

bounded and regularly structured circuits by AuxPDA. An interesting question is whether also

time bounded, deterministic AuxPDA can be made oblivious.

For strong unambiguous circuit and AuxPDA classes many results are known now. However,

many of them only hold for O(logn) depth circuits, respectively polynomially time bounded auxil-

iary pushdown automata. Some open questions that arise in this context are: Is StUnambAPDA

k

contained in UnambRAC

k

and thus StUnambAPDA

k

= UnambRAC

k

for k > 1?. This question

seems very hard to answer, but maybe at least StUnambAPDA

k

� UnambSAC

k

can be obtained.

A similar question arises for the restriction of pushdown store height. While it is easy to see

that nondeterministic auxiliary pushdown automata with running time bounded by c

log

k

n

use

w.l.o.g. only O(log

k+1

n) pushdown store space for arbitrary k, the same result was proved for

deterministic, unambiguous, and strongly unambiguous AuxPDA only for k = 1.

References

[AKS83] M. Ajtai, J. Koml�os, and E. Szemer�edi. Sorting in c logn parallel steps. Combinatorica,

3:1{19, 1983.

[All86] E. W. Allender. The complexity of sparse sets in P. In Proc. of 1st Structure in

Complexity Conf., volume 223 of Lecture Notes in Computer Science, pages 1{11.

Springer, 1986.

19



LCNS, Vol 583, pp. 387–400, Springer 1992

[BCD

+

89] A. Borodin, S. A. Cook, P. W. Dymond,W. L. Ruzzo, and M. Tompa. Two applications

of inductive counting for complementation problems. SIAM Journal on Computing,

18(3):559{578, 1989.

[BGH90] G. Beigel, J. Gill, and U. Hertrampf. Counting classes: Threshold, parity, mods,

and fewness. In Proc. of 7th Symposium on Theoretical Aspects of Computer Science,

number 415 in Lecture Notes in Computer Science, pages 49{57. Springer, 1990.

[BH89] G. Buntrock and A. Hoene. Reversals and alternation. In Proc. of 6th Symposium on

Theoretical Aspects of Computer Science, number 349 in Lecture Notes in Computer

Science, pages 218{228. Springer, 1989.

[BHS90] G. Buntrock, L. A. Hemachandra, and D. Siefkes. Using inductive counting to simulate

nondeterministic computation. In Proc. of 15th Symposium on Mathematical Founda-

tions of Computer Science, number 452 in Lecture Notes in Computer Science, pages

187{194. Springer, 1990. (to appear in Information and Computation).

[BJLR90] G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguousness and few-

ness for logarithmic space. Forthcoming paper, December 1990.

[Coo71] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded com-

puters. Journal of the ACM, 18:4{18, 1971.

[DR86] P. Dymond and W. L. Ruzzo. Parallel RAMs with owned global memory and deter-

ministic language recognition. In Proc. of 13th International Colloquium on Automata,

Languages and Programming, number 226 in Lecture Notes in Computer Science, pages

95{104. Springer, 1986.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.

SIAM Journal on Computing, 17:309{335, 1988.

[Har79] T. Harju. A simulation result for the auxiliary pushdown automaton. Journal of

Computer and System Sciences, 19:119{132, 1979.

[Kin81] N. K. King. Measures of parallelism in alternating computation trees. In Proc. of 13th

ACM Symposium on Theory of Computing, pages 189{201, 1981.

[Lan90] K.-J. Lange. Unambiguity of circuits. In Proc. of 5th Structure in Complexity Conf.,

pages 130{137, 1990.

[LR90] K.-J. Lange and P. Rossmanith. Characterizing unambiguous augmented pushdown

automata by circuits. In Proc. of 15th Symposium on Mathematical Foundations of

Computer Science, number 452 in LNCS, pages 399{406. Springer, 1990.

[Ruz80] W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences,

21:218{235, 1980.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sci-

ences, 22:365{383, 1981.

[Ryt87] W. Rytter. Parallel time O(logn) recognition of unambiguous context-free languages.

Information and Computation, 73:75{86, 1987.

[Sni82] M. Snir. On parallel searching. In Proc. SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, pages 242{253, Ottawa, Canada, 1982.

20



LCNS, Vol 583, pp. 387–400, Springer 1992

[SV85] S. Skyum and L. G. Valiant. A complexity theory based on boolean algebra. Journal

of the ACM, 32:484{502, 1985.

[Val76] L. Valiant. The relative complexity of checking and evaluating. Information Processing

Letters, 5:20{23, 1976.

[Ven87] H. Venkateswaran. Properties that characterize LOGCFL. In Proc. of 19th ACM

Symposium on Theory of Computing, pages 141{150, 1987.

[Ven88] H. Venkateswaran. Circuit de�nitions of nondeterministic complexity classes. In Proc.

of 8th Annual Conference FST & TCS, number 338 in Lecture Notes in Computer

Science, pages 175{192. Springer, 1988.

21


