
Unauthorized Cross-App Resource Access on MAC OS X and iOS

Luyi Xing
Indiana University

Bloomington
luyixing@indiana.edu

Xiaolong Bai
Indiana University

Bloomington, Tsinghua
University

bxl12@mails.tsinghua.edu.cn

Tongxin Li
Peking University

litongxin@pku.edu.cn

XiaoFeng Wang
Indiana University

Bloomington
xw7@indiana.edu

Kai Chen
Indiana University

Bloomington, Chinese
Academy of Sciences

chenkai010@gmail.com

Xiaojing Liao
Georgia Institute of

Technology
xliao@gatech.edu

Abstract
On modern operating systems, applications under the same
user are separated from each other, for the purpose of pro-
tecting them against malware and compromised programs.
Given the complexity of today’s OSes, less clear is whether
such isolation is effective against different kind of cross-app
resource access attacks (called XARA in our research). To
better understand the problem, on the less-studied Apple
platforms, we conducted a systematic security analysis on
MAC OS X and iOS. Our research leads to the discovery of
a series of high-impact security weaknesses, which enable a
sandboxed malicious app, approved by the Apple Stores, to
gain unauthorized access to other apps’ sensitive data. More
specifically, we found that the inter-app interaction services,
including the keychain and WebSocket on OS X and URL
Scheme on OS X and iOS, can all be exploited by the mal-
ware to steal such confidential information as the passwords
for iCloud, email and bank, and the secret token of Ever-
note. Further, the design of the App sandbox on OS X was
found to be vulnerable, exposing an app’s private directory
to the sandboxed malware that hijacks its Apple Bundle ID.
As a result, sensitive user data, like the notes and user con-
tacts under Evernote and photos under WeChat, have all
been disclosed. Fundamentally, these problems are caused
by the lack of app-to-app and app-to-OS authentications.
To better understand their impacts, we developed a scanner
that automatically analyzes the binaries of OS X and iOS
apps to determine whether proper protection is missing in
their code. Running it on hundreds of binaries, we confirmed
the pervasiveness of the weaknesses among high-impact Ap-
ple apps. Since the issues may not be easily fixed, we built
a simple program that detects exploit attempts on OS X,
helping protect vulnerable apps before the problems can be
fully addressed. We further discuss the insights from this
study and the lessons learnt for building a securer system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
The pervasiveness of computing technologies and emerg-

ing security threats they are facing have profoundly changed
the security designs of modern operating systems (OS). Mov-
ing away from the traditional threat model in which all appli-
cations (app for short) under the same user trust each other
with their information assets, today’s OSes tend to separate
those apps and their resources, in an attempt to prevent
a malicious or compromised program from causing damage
to others. This has been achieved through a variety of app
isolation mechanisms: each app is confined in its partition
with a minimum set of privileges, called sandbox, and needs
to explicitly require additional capabilities (e.g., access to
camera, audio, etc.) from the OS or the user. Such a secu-
rity model has been adopted by most mainstream systems,
including Windows, MAC OS X, Android, iOS, etc. With
its popularity, the effectiveness of the technique, however,
has still not been fully understood, due to the complexity of
a modern OS, which makes comprehensive protection chal-
lenging.

Unauthorized cross-app resource access. Recent stud-
ies show that sandboxed Android apps can still get access to
other apps’ resources and acquire system capabilities with-
out proper authorization [26]. For example, the developer
could accidentally make public an app’s interface for inter-
process communication (IPC), through which its internal
service or activity can be triggered by a message (called In-
tent) from an unauthorized app to acquire sensitive data [23]
or elevated privileges (e.g., access to audio, GPS, etc.) [16,
22, 18]. Fundamentally, the problem is caused by the mi-
gration of the threat model and the transitional pain that it
comes with: both the OS designer and the app developer are
less used to the mindset that all apps, even when they all be-
long to the same user, should treat each other as untrusted,
and proper security checks should always be performed in
all aspects of app-to-app and app-to-system interactions.

In those attacks, malicious code under some isolation con-
straints manages to gain access to other apps’ resources or
affect the way they are used by legitimate apps, when it
is not authorized to do so. We call such a security threat
unauthorized cross-app resource access or XARA. Although
specific instances of XARA are found on the Android plat-
form, less known is whether it is indeed a generic issue. Par-
ticularly, we do not know whether app isolation works effec-

1

tively on MAC OS X and iOS, which are widely considered
to be securer than Android. These operating systems offer
unique mechanisms to confine apps and support cross-app
interactions, very different from those provided by Android.
Specifically, the construction of Apple sandboxes is signif-
icantly different from that of Android, in which each app
is given a unique User ID (UID), allowing the Linux user
protection to separate the apps. In contrast, an Apple app
is identified by its Apple ID, which contains a Bundle ID
(BID) token used by the OS to enforce sandbox policies.
The uniqueness of the token is ensured by the Apple Store.
Also, OS X supports complicated cross-app resource sharing.
For example, its keychain service allows multiple apps to
share credentials among them through an access-control list
(Section 3.1), which is not supported on other systems like
Android. In addition to cross-app resource sharing, other
cross-app interactions, i.e., IPC on Apple platforms, also
differ from those on Android. Examples includethe URL
Scheme uniquely associated with one single app, for launch-
ing it with an URL1. So far, little has been done to under-
stand whether the construction of app isolation on Apple
platforms is secure and whether its cross-app mechanisms
can bring in XARA risks never known before.

Our work. We conducted the first study on the XARA risks
of Apple’s isolation mechanisms, and discovered surprising
security-critical vulnerabilities: major cross-app resource-
sharing mechanisms (such as keychain) and communication
channels (including WebSocket and Scheme) turn out to be
insufficiently protected by both the OS and the apps using
them, allowing a malicious program to steal from these apps
sensitive user data; also the BID-based sandbox construction
is found to be less reliable than expected, and its resource-
sharing mechanism can be exploited by the malicious app
to break the sandbox confinement on OS X, gaining full
access to other apps’ directories (called container). Note
that not only does our attack code circumvent the OS-level
protection but it can also get through the restrictive app
vetting process of the Apple Stores, completely defeating its
multi-layer defense.

Looking into the root cause of those security flaws, we
found that in the most cases, neither the OS nor the vulner-
able app properly authenticates the party it interacts with.
To understand the scope and magnitude of this new XARA
threat, we developed an analyzer for automatically inspect-
ing Apple apps’ binaries to determine their susceptibility to
the XARA threat, that is, whether they perform security
checks when using vulnerable resource-sharing mechanisms
and IPC channels, a necessary step that has never been made
clear by Apple. In our study, we ran the analyzer on 1,612
most popular MAC apps and 200 iOS apps, and found that
more than 88.6% of the apps using those mechanisms and
channels are completely exposed to the XARA attacks (Sec-
tion 4.2), and every app’s container directory has been fully
disclosed. The consequences are dire: for example, on the
latest Mac OS X 10.10.3, our sandboxed app successfully
retrieved from the system’s keychain the passwords and se-
cret tokens of iCloud, email and all kinds of social networks
stored there by the system app Internet Accounts, and bank
and Gmail passwords from Google Chrome; from various

1On Android, an Intent-based Scheme is different as it can be
connected to multiple apps, which the user can choose once the
scheme is triggered.

IPC channels, we intercepted user passwords maintained by
the popular 1Password app (ranked 3rd by the MAC App
Store) and the secret token of Evernote (ranked 3rd in the
free “Productivity” apps); also, through exploiting the BID
vulnerability, our app collected all the private notes under
Evernote and all the photos under WeChat. We reported
our findings to Apple and other software vendors, who all
acknowledged their importance. . We also built an app that
captures the attempts to exploit the weaknesses.

Our study also shows that this XARA hazard is indeed
general, across different platforms. Even though iOS drops
many useful functionalities of OS X (e.g., keychain’s ac-
cess control list for sharing passwords or tokens across apps)
and therefore less vulnerable, it is still not immune to the
threat. Particularly, its major IPC channel, Scheme, is
equally subject to the hijacking attack we discovered on
MAC OS X (Section 3.4). Further, the WebSocket problem
(Section 3.3) actually comes from HTML5, which happens
when a browser extension is connecting to a local program.
We found that the same attack can also succeed on iOS and
Windows. Interestingly, compared with OS X and iOS, An-
droid looks pretty decent in terms of its protection against
the XARA threat: at the very least, it offers a mechanism to
protect its Intent-based IPC, through assigning a private

attribute to the service and activity or guarding them with
permissions, which are missing on the Apple platforms. We
further discuss the lessons learnt from our study, particu-
larly the need for clarifying the responsibilities for protect-
ing a cross-app mechanism between the OS provider and
the app developer, and present key principles for avoiding
XARA pitfalls when building new systems (Section 5).

Contributions. The contributions of the paper are out-
lined as follows:

• New understanding of the XARA threat. We are the first
to identify the generality of the XARA problem and system-
atically investigate the threat on the Apple platforms. Our
study brings to light a series of unexpected, security-critical
flaws that can be exploited to circumvent Apple’s isolation
protection and its App Store’s security vetting. The con-
sequences of such attacks are devastating, leading to com-
plete disclosure of the most sensitive user information (e.g.,
passwords) to a malicious app even when it is sandboxed.
Such findings, which we believe are just a tip of the ice-
berg, will certainly inspire the follow-up research on other
XARA hazards across platforms. Most importantly, the new
understanding about the fundamental cause of the problem
(Section 5) is invaluable to the development of better app-
isolation protection for future OSes.

• New effort to mitigate the threat. We developed new tech-
niques for identifying the apps vulnerable to the XARA
threat, and the attempts to exploit them during an oper-
ating system’s runtime.

Roadmap. The rest of the paper is organized as follows:
Section 2 provides the background information for our re-
search and the assumptions we made; Section 3 elaborates
the security analysis we performed on OS X and iOS, and
the security problems we discovered; Section 4 describes the
design and implementation of the automatic analyzer, the
findings made by running the tool on popular apps and the
app-level mitigation we developed; Section 5 highlights the
lessons learnt from our study; Section 6 reviews the related
prior research and Section 7 concludes the paper.

2

2. BACKGROUND
In this section, we describe how app isolation techniques

work on popular systems like Android, MAC OS X and iOS,
the way they handle inter-app communication and security
risks that come with such a strategy. Also, we present the
adversary model underlying our study.

App sandboxing. App sandboxing plays a critical role
in the Android security architecture. Each Android app is
given a unique UID and runs as the user. Sensitive resources
are assigned to Linux groups such as GPS, Audio, etc. This
treatment automatically isolates one app from others under
the Linux user and process protection. To access system
resources, an app needs to request permissions from the OS
or the user. A permission can also be defined by the app
for sharing its resources with authorized parties (those with
the permission) through the interfaces like content providers,
Intent receiver, etc.

The Apple sandbox first appears on MAC OS X, which
utilizes the TrustedBSD mandatory access control frame-
work to enforce its security policies at the system-call level.
Since OS X 10.7.5 Lion, all apps submitted to the MAC App
Store are required to be sandboxed, with some exceptions
given to those that need to run as native code. On the OS
side, a service called Gatekeeper blocks the apps not signed
by either the Apple Store or a trusted developer from being
installed2. This ensures that with proper security configu-
rations, most apps running on a MAC device are under the
sandbox confinement. In the meantime, OS X maintains
its compatibility with the traditional OS security design,
hosting trusted native programs that run with the user’s
privileges. On iOS, however, apps are much simpler (e.g.,
without intensive document operations) and can therefore
all be sandboxed.

Unlike Android, which isolates an app solely based upon
its UID, the Apple platforms just utilize UIDs to classify
apps into groups. For example, on OS X all the apps from
the MAC app store operate under the UID of the current
OS user, and those on iOS under the user mobile. On
these platforms, separation is actually enforced through the
TrustBSD’s API interpositions. Each app is identified by its
Apple ID, a two-part string that consists of a Team ID Apple
assigns to the app developer, and a Bundle ID supplied by
the developer: for example, A1B2C3D4E5.com.apple.mail

where the first part is the Team ID and the rest compo-
nents form the BID. Any app submitted to the Apple Stores
goes through a verification process that among other things,
ensures the uniqueness of the app’s BID. On OS X, this
identity also serves as the name of the app’s container di-
rectory. Every sandboxed app on the Apple platforms is
given a container when it is first launched. The directory is
used to hold the app’s internal data and cannot be accessed
by other sandboxed apps from different developers.

An app within the sandbox has only limited privileges.
By default, it can only read and write files within its con-
tainer and some public directories. This policy is enforced
by checking the developer’s signature on the app against
an access-control list (ACL) associated with each directory
(see Section 3.2). Also, it is not allowed to access network
sockets, built-in camera, microphone, printer and other re-
sources. Whenever use of such resources becomes necessary,
the app explicitly requires them by declaring a set of entitle-

2This setting can be turned off.

ments within its property file (called plist file, very much like
the Android manifest file). Each entitlement is a key-value
pair that identifies a specific capability (e.g., access to cam-
era). They are reviewed by the Apple Stores to determine
whether the capabilities should be granted. For some capa-
bilities, such as access to GPS locations, camera, etc., the
OS further asks for the user’s permission during the app’s
runtime.

IPC on the Apple platforms. Among the small set of
operations that a sandboxed app is allowed to do by de-
fault is the capabilities to perform some types of interprocess
communication. OS X supports a variety of IPC channels,
including traditional UNIX ones (e.g., pipe, UNIX domain
socket, shared memory) and Apple-specific mechanisms like
distributed objects and URL schemes. One unique IPC
mechanism for both OS X and iOS is Scheme: an app can
invoke another specific app to work on a task with a URL
click if the latter registers with the OS the scheme part of the
URL. For example, the URL yelp://search?terms=Coffee,
once triggered, let one app launch the Yelp app to search for
“Coffee” nearby. Here, the “yelp://” part is a scheme. Al-
though this mechanism is also used on Android, which has
been implemented using Intent, it is different from that for
OS X and iOS since Apple’s OSes only allow one single app
to be associated with a scheme on a device, while on An-
droid, the user is asked to choose a scheme’s owner when
there are more than one. This major difference enables our
scheme hijacking attack (Section 3.4) which, however, does
not pose a threat on Android. To register a scheme, an
Apple app needs to register it with the OS. This is done on
OS X and iOS by simply declaring the scheme in the app’s
plist file. Such a channel can be used by any sandboxed app
without specifying any entitlement.

Adversary model. In our research, we studied what an
isolated app can still do to collect sensitive data and utilize
critical sources that belong to other apps, when it is not
entitled to do so. For this purpose, we assume that ma-
licious apps are submitted to the Apple Stores, which puts
them to the test of Apple’s restrictive review process. In the
case that they get published, the apps are supposed to be in-
stalled by the user who also runs security-critical apps on her
device (laptop or smartphone). This is realistic, since apps
downloaded from the Apple Stores are widely considered to
be trusted, and particularly, almost all of them are confined
within the sandboxes. For the malware installed in this way,
we assume that they are isolated and only granted a small,
inconspicuous set of capabilities: in addition to what are of-
fered by the OSes by default, they may need the networking
permission (only for the attack in Section 3.3). Note that
these entitlements are among the most innocent ones.

3. XARA MENACES
In our research, we conducted a systematic study on the

XARA threat over the Apple platforms, MAC OS X in par-
ticular. Our focus is on how inter-app interaction channels
and services are protected under the sandboxing model, and
how isolation has been enforced on untrusted apps. Follow-
ing we elaborate our findings, including the security-critical
flaws we discovered in the OS X keychain, BID-based sepa-
ration as well as various IPC channels, i.e., WebSocket and
Scheme on both MAC OS X and iOS. Note that all our
attack apps were uploaded to the Apple App Stores and

3

passed their inspections3.

3.1 Password Stealing
On the Apple platforms, a sandboxed app by default is

still allowed to access some security-critical services. A promi-
nent example is Apple’s keychain. Keychain is Apple’s cre-
dential management service, through which an app can store
the user’s passwords, secret keys and certificates there. These
credentials will then be automatically used by authorized
apps after the user “unlocks” the keychain through entering
her password, in a way similar to the transparent single-sign-
on authentication (though more powerful) from the user’s
point of view. When the keychain is locked, all the creden-
tials there are encrypted and no one can access their content.
The keychain service running on OS X is powerful, support-
ing multiple keychains, explicit and implicit unlocking and
complicated access control. Particularly, a default keychain
is created for each user account and serves most system ser-
vices and many popular apps. It is automatically unlocked
whenever the user logs in, if its password is identical to that
for login.

Although keychain is not part of the Apple sandbox, it
can be viewed as a secure storage system that provides a
strong isolation between apps. Even when it is unlocked,
each app cannot touch another’s keychain item unless this
is permitted by the item’s creator, as specified by its ACL.
For a sandboxed app, other apps’ items are very much like
being inside their individual container directories, which it
is not allowed to access. However, we show how a subtle
design weakness enables the malicious code to bypass the
isolation and steal user credentials from other apps.

Security weakness. The simplified keychain structure is il-
lustrated in Figure 1. Each keychain item carries the creden-
tial (e.g., password, secret key, etc.) under protection and a
set of attributes, such as account name, service name, path,
etc. Types of attributes an item has depend on its class,
typically Internet passwords or generic passwords. Figure 2
further shows how the keychain should be used according
to Apple [11]. An app first searches the keychain using a
set of attributes to find out whether its item has already
been there4. If so, the item should be updated to keep the
app’s current credential, after the app has been authenti-
cated (signature verification) and authorized (ACL lookup)
by the OS. Otherwise, the app creates a new item and set
attributes to index it.

item1 Attributes, Credential, ACL

item3
…

item2 Attributes, Credential, ACL
Attributes, Credential, ACL

Keychain
Database

 Attributes (account name, service name, path, …)

ACL (trusted app 1, trusted app 2, …)

Figure 1: Simplified Keychain Structure

On OS X, the creator of a keychain item can also attach
to it an access control list. The ACL includes the operations
that can be performed on the item (e.g., read, write, etc.)
and a set of trusted apps with the permissions to do so.
Whenever an app attempts to access an item, the service

3To avoid causing damages to Apple users, after the apps were
confirmed to be approved, we immediately removed them from
the Apple Store.
4This happens, for example, when the app has been upgraded
from a lower version already in the system.

first checks whether the access is allowed to happen and
denies it when it is not. Then, the service further looks up
the ACL: when the app is not there, the user’s permission
is required to let the operation proceed.

status	
 =	
 FindGenericPassword(args1);	

If(status	
 ==	
 found)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Authen<cateUser(args2);	

	
 	
 	
 	
 	
 	
 	
 	
 …	

	
 	
 	
 	
 	
 	
 	
 	
 UpdatePasssword(args3);	

}	
 else	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 AddGenericPassword(args4);	

}	

Figure 2: Workflow of Keychain Template Code by
Apple

With its careful design, this access-control mechanism was
found in our research to still contain security-critical vulner-
abilities, allowing a malicious app to hijack a target app’s
keychain item. One scenario for this exploit is that when the
malware runs before the victim app creates a password (or
rather a keychain item) in the keychain. What the attacker
can do here is to use the attributes of the target app (the vic-
tim) to claim an item and also craft an ACL that includes the
target as a trusted app. When the target uses the keychain
to store password, it discovers the item with its attributes
already there and treats the item as its own secure storage
(illustrated by the Apple’s template code in Figure 2). Note
that this is reasonable given that an app’s older version or
other apps from the same developer may have already been
installed on the system. Since the target is on the ACL of
the item (which is controlled by the attacker), the OS al-
lows all its operations to proceed. Therefore, at no point
the target gets any indications from the keychain that it is
just a guest user of the item, and the owner is untrusted.
This confusion will cause the target to divulge its secrets to
the attacker, whenever it updates the user’s credentials to
the keychain.

Apparently, the attack can only succeed when the at-
tributes of the victim’s keychain item are predictable. This
is mostly the case and the attributes typically remain con-
stant for specific apps or services. Also, the attacker needs to
create the keychain item first. These restrictions, however,
turn out to be unnecessary: we found that the attributes
of any keychain item are actually public, though their con-
tent (credential) is protected. And most importantly, we
found a second flaw in keychain that an existing keychain
item can be deleted by an unauthorized sandboxed app. As
a result, all the attacker needs to do is just identifying an
existing item, removing it from the keychain and creating
a new one of its own with the same attributes to wait for
the target app to put its secret there. Fundamentally, the
problem comes from the challenge for an app to authenti-
cate the owner of an existing keychain item. Apple does
not offer a convenient way to do so. Little information is
given to an app even for identifying the owner of an item,
not to mention any authentication support. The only way
that could mitigate the threat is for the target app to in-
spect an existing item’s ACL, making sure that its name is
not on the list together with untrusted parties. However,
Apple has never mentioned that this should be done. As a
result, protection is not in place within apps, leaving them
completely vulnerable to our attacks.

A straightforward solution is to strip some functionalities
from the keychain, making it simple. Actually, iOS does not

4

have this issue, because its keychain does not support the
ACL at all: every app is only allowed to access its own item
and there is no flexibility to let a group of apps share secrets
except those by same developers. This works because iOS
apps are pretty simple and do not need much collaboration,
which is not the case on OS X. For example, Safari manages
the user’s passwords for different websites stored by other
browsers such as Chrome, which is made possible through
the keychain’s access control mechanism. Also, given the
trend that the iOS apps become increasingly complicated,
the demand for such collaboration may show up in the fu-
ture.

Attacks. In our study, we utilized an automatic tool to
identify hundreds of vulnerable apps (Section 4). Here we
elaborate our end-to-end attacks on two prominent exam-
ples, Apple’s Internet Accounts and Google Chrome. Inter-
net Accounts is an OS X system app that manages the user’s
various Internet accounts, e.g., those for iCloud, Email, Twit-
ter, Facebook and others. The app stores those accounts’ se-
cret tokens in the default keychain, each in a different item.
In a similar way, Chrome also keeps the user’s passwords for
each web account.

In our research, we built a sandboxed attack app against
Apple’s Internet Accounts on OS X 10.10, the most recent
version when we found the problem, and Chrome v40.0.2214.94.
The attack app managed to hijack the keychain item the
Internet Accounts app uses for keeping the iCloud token
and the item in which Chrome stores the user’s Facebook
password. Note that all other information these apps put
there is equally vulnerable to the same attack. Specifically,
iCloud utilizes the user’s email address as her account name
and sets the serviceName attribute to “Apple ID Authen-
tication”. Other attributes the Internet Accounts needs to
create and retrieve a keychain item are just the string length
of these two attributes (accoutName and serviceName). Our
attack app, running before the service was set up, first cre-
ated an item using these attributes and deliberately granted
the full access permission to the Internet Accounts. As a re-
sult, the Apple service unwittingly updated to the item the
user’s iCloud token. In a similar way, the tokens of Gmail,
Facebook, Twitter, etc. managed by Internet Accounts are
also exposed to the attack app.

When it comes to Chrome, the browser also utilizes at-
tributes serviceName (www.facebook.com), accoutName (email
address of the user) and their lengths. Other attributes in-
volved are the URL path (a constant ‘/’), port (always ‘0’),
protocol (kSecPro
tocolTypeHTTPS) and authentication type (kSecAuthentic
ationTypeHTMLForm). Our app successfully hijacked the key-
chain item and obtained the user’s Facebook password. It
further got through the MAC App Store’s security checks.
Video demos for both attacks are posted online [13].

We reported this vulnerability to Apple on Oct. 15, 2014,
and communicated with them again in November, 2014 and
early 2015. They informed us that given the nature of the
problem, they need 6 months to fix it. We checked the most
recent OS X 10.10.3 and beta version 10.10.4 and found that
they attempted to address the iCloud issue using a 9-digit
random number as accountName. However, the account-

Name attribute for other services, e.g. Gmail, are still the
user’s email address. Most importantly, such protection,
based upon a secret attribute name, does not work when
the attacker reads the attribute names of an existing item

and then deletes it to create a clone under its control, a new
problem we discovered after the first keychain vulnerability
report and are helping Apple fix it.

3.2 Container Cracking
The security weaknesses within the keychain happen when

sandboxed apps want to share resources (i.e., passwords)
across sandbox boundary. However, even for the private re-
sources inside each app’s sandbox which are never designed
for sharing, XARA attacks can still happen, due to a weak-
ness in the unique BID-based separation design on OS X.

BID conflict. As introduced in Section 2, each sandboxed
app has a BID, which needs to be unique. This is im-
portant because once the app is installed, its BID is used
to create a container directory that other sandboxed apps
cannot touch. On OS X, all apps’ containers are under
the directory ∼/Library/Containers/, e.g., ∼/Library/

Containers/com.evernote.Evernote/.
Their directory names, the BIDs, bind them to their indi-
vidual apps: the OS verifies app signatures whenever access
attempts are made, and only those from the owners of the
directories or the parties on their ACLs are allowed to go
through. To ensure the uniqueness of BIDs, the MAC App
Store checks submissions to deny those using the BIDs of
the apps already in the store5.

What causes a complication here is the embedded pro-
grams within an app, that is, the sub-targets of the app’s
project. A sub-target can be a helper program, XPC Service
(another MAC IPC mechanism), or framework, etc. each of
which has its own plist and BID. Particularly, the helper
(e.g. 1Password mini program) and the XPC Service also
have their individual container directories, while the frame-
work is a directory for shared resources (e.g., libraries). For
apps published by the Apple Stores, their helpers and XPC
Services are all sandboxed. Once installed, their containers
are also placed under ∼/Library/Containers/, alongside
with those of their main programs. Interestingly, we found
in our research that the MAC Store fails to verify whether a
sub-target’s BID is in conflict with those belonging to other
apps or their sub-targets, except for the Apple reserved BID
(those starting with com.apple). This allows one to publish
an attack app whose helpers or XPC Services are using the
BIDs of other apps, their helpers or XPC Services. Once
the attack app is launched, whenever the OS finds out that
the container directory bearing the sub-target’s BID (as its
name) already exists, the sub-target is automatically added
onto the directory’s ACL. As a result, the malicious app
gains the full access to other apps’ containers, which com-
pletely breaks its sandbox confinement.

The cause of the problem could be the convenience given
to the app developer to share frameworks, helpers or XPC
Services in different apps. Particularly, in our study, we
scanned 1,612 apps from the Mac App Store and found 40
frameworks shared by different developers, e.g., Dropbox-

OSX.framework used by 14 apps for subscribing the Dropbox
service. This security risk is not present on iOS, on which
the containers of main programs and sub-targets are put un-
der different parent directories, and most importantly, they
are named with randomly generated UUIDs. Again, the sim-
plicity of the container structures here could be the result

5Note that Gatekeeper typically blocks the installation of un-
trusted third-party apps.

5

of limited functionalities of iOS apps, which do not need to
extensively share resources among them.

Attack. This BID conflict threat affects every sandboxed
app running on OS X. In our study, we implemented end-to-
end attacks on a few high-profile apps, including Evernote,
WeChat, QQ (a popular online chat app), Money Control (a
popular Finance app) and others (Section 4.2). For example,
from the container of Evernote, our attack app, involving an
XPC Service that hijacked the target app’s BID, successfully
stole all the contacts of the user and her private notes from
∼/Library/Containers/com.evernote.

Evernote/account/. Also, it recovered all the message pho-
tos under WeChat and QQ. Again, our app got through the
security check of the MAC App Store. The video demos of
the attacks can be found at [13]. In Section 4.2, we further
present the consequences of the attacks on other apps.

3.3 IPC Interception
Breaches of cross-app resource sharing (i.e., keychain) and

BID based sandbox isolation mechanism unwittingly grant
the adversary unauthorized access to other apps’ resources.
The problem, unfortunately, does not stop here: in our re-
search, we found that major cross-app communication (IPC)
channels on OS X and those deployed across platforms, such
as WebSocket and Scheme (Section 3.4), are also designed
with flaws. This exposes critical information, e.g. all Web
passwords in major browsers, to the adversary in even more
various ways. Below we elaborate our findings.

WebSocket and beyond. WebSocket is a generic pro-
tocol for a server and a client to establish a full-duplex
single socket connection. Its specification [14], which has
been developed as part of the HTML5 standard, introduces
a JavaScript interface through which the web content inside
a browser or an app’s webview instance can directly talk
to another app. This channel is often used by browser ex-
tensions to communicate with an app on the local system
through a predetermined TCP port. Specifically, the app
runs a WebSocket server to listen on the port, which is con-
nected by the script code of the extension to exchange data.
The problem is that in the absence of proper authentication,
a malicious program (with the network permission when it
is sandboxed) can preemptively claim the port before the le-
gitimate server does. This enables it to receive data from the
target extension. Such a security risk can also happen on the
browser side: a malicious extension can impersonate the au-
thorized one to talk to the local app through its port. Note
that other inter-app communication through TCP port, like
the local web server used by popular app Pushbullet, can
also be attacked in this way.

It turns out that the Apple platforms do not provide
any means for an extension to authenticate a local Web-
Socket server. There is no way for the extension to find
out the identity of the local app through an API call. The
only solution is a custom authentication mechanism built
by the app/extension developer. On the other hand, major
browsers, e.g. Google Chrome, embed the ID of an exten-
sion in their message delivered to the local program, which
helps the latter to determine whether the message comes
from the right party. However, since the extension imper-
sonation threat has not been identified, the developer has
not been informed about the importance of building proper
protection into her app.

Attacks. The security risks of intercepting the IPC com-
munication through these vulnerable channels are realistic
and serious. As an example, here we just elaborate our
end-to-end attacks on three popular apps. We analyzed the
1Password app for OS X, which is one of the most popular
password management apps and ranked 3rd by the MAC
App Store [1]. The app comes with a browser extension
for each major browser that collects the passwords from the
user’s web account and passes them to the app through a
WebSocket connection. In our research, our sandboxed app
created a local WebSocket server that took over the port
6263, before the 1Password app did, and was successfully
connected to the password extension and downloaded the
password whenever the user logged into her web account.
We reported our findings to the 1Password security team,
which acknowledged the gravity of this problem. This attack
succeeded on OS X 10.10 (latest version when we reported
the problem), against Chrome, Firefox and Safari. Our at-
tack code passed the vetting process of the MAC Store. The
attack demo is here [13].

The similar attack was also successful on Pushbullet, an
Apple-recommended popular app for exchanging notes, links,
pictures and files between multiple devices. The app au-
thenticates a user by running Google Single Sign On (SSO)
within a browser. After the user signs in, Google redirects
the browser to the app’s local web server that listens on the
port 20807, together with a secret token. In our attack, this
port was first taken over by the malicious app, which then
got the redirection link from Google and stole the token. Af-
ter that, the attacker released the port to Pushbullet, which
later got the token resent by Google.

3.4 Scheme Hijacking
As mentioned earlier, URL Scheme, an inter-app commu-

nication channel, is different on the Apple platforms. Specif-
ically, Apple’s OSes automatically associate a scheme with
one app even with the presence of multiple apps claiming
the same scheme. This design leads to a unique problem to
Apple’s OSes, as elaborated below.

Scheme takeover. Essentially, a URL scheme is a simple
protocol that an app defines for communicating with others.
The app specifies a URL format in its plist file and lets other
apps invoke it and pass parameters through the URL. Once
this URL is triggered within the browser or a webview in-
stance inside another app, an HTTP redirection is launched
towards the “location” part of the URL, e.g., “yelp:”, and
thus activates the app claiming the scheme, using the data
delivered by the remaining part of the URL. Also, a scheme
invocation can be initiated by an app with the API openURL.
Apple extensively utilizes URL schemes to run system apps,
e.g., mailto (for opening the Mail app), tel, facetime and
sms (for launching their corresponding apps).

Things become a bit tricky when two different apps reg-
ister the same URL scheme with the OS. This conflict is
resolved on the Apple platforms according to the nature of
the scheme. Specifically, Apple has a list of system schemes
(e.g., sms, Facetime, etc.) that cannot be taken by any
third-party apps, and another list of schemes whose affil-
iations can be changed under the user’s consent, e.g., the
default browser for opening http. For a scheme not on the
lists, it will be bound to the first app that registers it on OS X
and the last on iOS, as discovered in our study. Given this
conflict resolving strategy, a malicious program can hijack

6

a target app’s scheme to get the service request or even the
data sent to it. Particularly on iOS, the attack works even
when the malware is installed after the target app.

This scheme hijacking attack can be detected on OS X
using the API URLForApplicationToOpenURL or LSCopyDe-

fault

HandlerForURLScheme, which returns the identity of the app
that successfully registers a given scheme. However, no cor-
responding API exists on the other Apple’s OS, i.e., iOS. In
the absence of such OS-level supports, an app can do nothing
to authenticate the party it invokes through a URL. There-
fore, all third-party apps running on iPhone and iPad are
completely unprotected from this threat. Note that Apple
has never explicitly asked its developers to verify the apps
launched by URLs, nor does it check duplicated scheme def-
initions at the App Stores, as observed in our study. The
consequence is that oftentimes, even OS X apps are less
protected than they should, and vulnerable to the scheme
hijacking attack (Section 4.2). Following we elaborated our
end-to-end attacks on some high-profile OS X and iOS apps.
Note that our attack apps were successfully uploaded to both
the MAC and iOS App Stores.

Attack on OS X. In our research, we implemented an at-
tack on Wunderlist, a popular free app (ranked 5th in the
“Productivity” category on the MAC Store) for managing
MAC users’ to-do lists. The app uses Google SSO: the user
logs in Google in the browser and then is redirected to the
URL wunderlist://oauth/goo

gle?token=ya29XXX, which invokes Wunderlist, passing to
it a secret token. In our attack, an unauthorized app first
registered the scheme “wunderlist://”. As a result, our
app stole the token from the browser. More interestingly,
our malicious app then immediately delivered the token to
Wunderlist by calling openURLs:withAppBundleID (an OS X
specific API), acting as a man-in-the-middle. This actu-
ally lets the SSO go through and therefore make the attack
stealthy. (The attack demo here [13].)

Attack on iOS. Scheme hijacking poses an especially se-
rious threat to iOS, which heavily relies on URLs for inter-
app interactions (Section 4.2). As an example, we exploited
this weakness and successfully obtained the victim’s Face-
book token for Pinterest, the most famous personal media
management app. Specifically, Pinterest and other apps all
support the SSO login through the Facebook app. When-
ever the user clicks on “continue with Facebook” in these
apps, the Facebook app is invoked to ask for the user’s per-
mission to let the authentication go through and also grant
Pinterest (and other apps) access to some of her Facebook
data. With the user’s consent, Facebook triggers a scheme
fb274266067164://access_token=CAAAAP9uIENwBAKk&X=Y to
deliver a secret access token to the app. In our research, our
attack app registered “fb274266067164://” and took over
this scheme. As a result, Facebook unwittingly launched our
app and passed to it Pinterest’s access token. Actually even
the scheme for invoking the Facebook app (“fbauth://”)
was successfully hijacked in another attack, which enabled
the attacker to become a man-in-the-middle, performing the
whole SSO within its webview instance on behalf of the real
Facebook app. Most importantly, once it got the secret to-
ken from Facebook, the attacker forwarded it to the Pin-
terest app through “fb274266067164://”, which completely
hid the attack from the user. Note that this last step can be

detected using the API openURL:sourceApplication, which
returns to the caller (here, Pinterest) the party that initi-
ates the scheme communication. However, the protection is
not in place within any apps that we scanned (Section 4.2),
including Pinterest. This may be due to the fact that Apple
never explicitly informs the developers to do this inspection.
Interestingly, again there’s no corresponding API for detec-
tion on the other Apple’s OS, i.e., OS X this time. We suc-
cessfully launched the attack. (The attack demo here [13].)

4. MEASUREMENT AND DEFENSE
In this section, we elaborate an automatic analysis tool

we built for detecting vulnerable apps and a measurement
study that reveals the scope and magnitude of the XARA
problem. We further show that though a generic solution
to the problem needs a significant effort from Apple and its
app developers, a simple native program operating on MAC
OS X can help mitigate the threats.

4.1 Detection of Vulnerable Apps
Among all the security weaknesses reported in Section 3,

some (e.g., the scheme hijacking on iOS, the BID conflict)
are caused entirely by the security flaws within the system
(OS or the Apple Store), and only a system-level solution
can fix them. Other threats, however, are more contingent
upon what an app does, particularly, whether it properly
authenticates the party it interacts with. To better under-
stand the impacts of those security weaknesses, we devel-
oped Xavus, an XARA vulnerability scanner that statically
inspects Apple apps’ binaries to identify those susceptible to
the XARA threat. This analyzer was then used to evaluate
the security qualities of a set of popular apps (Section 4.2).
Note that Xavus can also serve the developer by helping her
identify XARA weaknesses in her app, which is important
given the challenges in fixing the problems on the system
level: e.g., the keychain issue we reported last October is
still not successfully fixed in the most recent OS X 10.10.3
and beta version 10.10.4.

Design. The idea for detecting the XARA vulnerability
within an app is to find out whether the app authenticates
other parties associated with a service (e.g., keychain) or a
channel (e.g., WebSocket or Scheme) before using it. Since
typically, one needs to first claim such a service or chan-
nel, what we need to do is to inspect the control-flow graph
(CFG) between the program location for the claim and that
for the use and find out whether the authentication has hap-
pened. To this end, Xavus is designed to include five mod-
ules, as illustrated in Figure 3, for disassembling an app’s
binary, determining whether a specific service or channel is
utilized, and if so constructing CFG and define-use chains,
and identifying the presence of authentication on the define-
use chains. Following we describe how this design works and
how it was implemented in our research.
Apple code analysis. The first step for analyzing an
MAC or iOS app is to disassemble its binary. Most Ap-
ple’s apps are built with Objective-C and their binaries are
in the Mach-O format. Disassembling such binaries is done
within our implementation of Xavus through Hopper [6], a
popular tool for reverse-engineering Mach-O files [10], which
converts the MAC binaries into Intel x64 instructions and
iOS app code into ARMv7 instructions under our settings.
Note that iOS apps are encrypted and need to be decrypted
before they can be analyzed by Xavus. In our research, we

7

Service/Channel
Finding

App
Dissembling

CFG

Define-Use
Chain

Construction

Flaw
Detection

Reference
of service

use

use

vulnerable chain
without

authentication

Figure 3: Detection of XARA Vulnerability

ran Clutch [2] to decrypt iOS apps and then collect their
binaries.

To determine the type of services or channels an app uses,
our analyzer inspects its instructions for related API calls,
e.g., SecKeyc
hainFindGenericPassword for keychain access. The names
of these functions are all kept under a specific section of
the app’s Mach-O file. Such a function is invoked by the
Objective-C binary in a unique way: it is triggered by send-
ing messages to the function’s object, which happens through
passing a pointer to the message receiver, the name of the
function (called selector, a null-terminated string), together
with other parameters to the runtime function objc_msgSend.
This operation can be observed from an app’s recovered in-
struction set when the selector (i.e., function name) is stored
to the RSI register for preparing the objc_msgSend call.
Leveraging this observation, Xavus can find out the program
location where a service or channel is claimed and where it
is used.

To detect vulnerable apps that claim and use services
or channels without authentication, we need to not only
search for the presence of authentication API, but also check
whether the authentication actually happens to the services
or channels in use. To this end, our approach first searches
for the invocation of the API for claiming a service or chan-
nel, and runs Hopper scripts to construct a CFG for the pro-
cedure involving that API call (Figure 3). Then, from the
location of the claim, Xavus performs a define-use analysis:
from the reference of the service/channel (e.g., a pointer to
a keychain item, or the constant string for a scheme), as
returned by the API for the resource claim, our approach
identifies all the program locations where the reference is
utilized before it has been redefined (e.g., the variable hold-
ing the reference is assigned with a different value). The
objective here is to locate another API for using the service
or channel (e.g., updating a password to a keychain), so as
to find out whether proper authentication happens before
the use. Typically, the claim (getting the reference) for a
service/channel and the use of the service/channel (through
the reference) stay in the same procedure. Occasionally,
these API calls are placed in different functions, and need
to be linked by constructing an inter-procedure CFG. This
can be done using the techniques described in the prior re-
search [17]. Along the execution path identified during the
construction of the define-use chain, our analysis module
further checks whether the reference of the service/channel
is passed to any authentication operation, according to the
types of the services and channels in use.

#BasicBlock1:
 ...
 1. lea rcx, qword [ss:rbp - 0x30]
 2. mov qword [ss:rsp+0x8], rcx
 3. call SecKeychainFindGenericPassword
 4. mov r8d, eax
 5. cmp r8d, 0xffff9d2c
 6. jne BasicBlock2
…

#BasicBlock2:
 7. test r8d, r8d
 8. jne BasicBlock3

#BasicBlock3:
 9. mov r15, qword [ss:rbp - 0x30]
 ...
 10. mov rdi, r15
 11. call SecKeychainItemModifyAttributesAndData

3.
SecKeychainFindGenericPassword
(…, &[ss:rbp - 0x30], …)

10. mov rdi, r15

9. mov r15, qword [ss:rbp - 0x30]

11.
SecKeychainItemModifyAttributesA
ndData(rdi, …)

get reference [ss:rbp - 0x30] of
keychain item through
SecKeychainFindGenericPassword()

CFG Assembly Code Define-Use Chain

use reference rdi of keychain item for
updating password through
SecKeychainItemModifyAttributesAnd
Data()

reference propagation

reference propagation

…

Figure 4: Detection of Evernote’s Vulnerable Code
for Keychain Password Updating

Figure 4 shows an example for the analysis on Mac Ev-
ernote app (Version 6.0.9), which does not authenticate the
owner of a keychain item before updating to it the user’s
password. Specifically, Xavus first builds the CFG of an Ev-
ernote procedure [ENKeychai

nHelper saveValue:toKeyChainItem], and locates the claim
for the keychain service, i.e., getting a reference of an item
through the API SecKeychainFindGenericPassword
(Line 3 under Assembly Code in Figure 4). The reference is
returned in memory [ss:rbp - 0x30]. Then Xavus follows
the propagation of the reference and identifies one instance
of using it, i.e., updating passwords through the OS X API
SecKeychainIt

emModifyAttributesAndData. Xavus reports that Evernote
is vulnerable due to the absence of authentication before the
use of the reference.

Flaw detection. As mentioned earlier, Xavus is designed
to detect missing authentication of the parties that share a
service or a channel with an app before it is utilized by the
app, a necessary condition for the presence of the XARA
weakness. To this end, we built into our analyzer a set of
features to fingerprint the authentication operation for each
channel or service, as elaborated below.

• Keychain. The claim of this service happens when the app
calls SecKeychainFindGenericPassword or SecKeychainF

indInternetPassword. Both APIs return itemRef, the ref-
erence to the item. This reference will ultimately be used
to update a password to the keychain item through either
SecKeychainIt

emModifyAttributesAndData or SecKeychainItemMo

difyContent. The only possible way that app could find
out whether the item is created by a trusted party is to in-
spect its ACL that documents all the apps allowed to access
the item. This is done through the API SecACLCopyCon-

tents. The absence of a call to the API on the execution
path (between the claim and the use locations) indicates the
existence of a XARA risk within the app.

• WebSocket. WebSocket servers are typically built over a
few popular open-source frameworks, such as CocoaHTTPServer [3]
and QtWebKit [12]. All of them provide a receiver method
for getting messages from browser extensions, which is used
by Xavus to fingerprint this channel, and a response method
for replying to the extensions. The invocations of these
two methods are identified as the claim and the use of the
channel, respectively. Between them, the server is supposed

8

to access the HTTP header Origin that includes extension
IDs attached by the browser and check the signature of the
browser through the API SecCodeCheckValidity. If these
operations are not found, the app is considered vulnerable
to the threat from a malicious extension or app. On the
other hand, the attack from a malicious server against an
extension cannot be detected through any existing APIs.

• Scheme. The most popular ways for one app to launch
another through the Scheme channel is to trigger a constant
link embedded in the app or a URL returned from its we-
bview instance. The former can be directly found from the
app, while the latter comes from one of the four methods of
WebPolicyDelegate, an object that lets an app control the
operations on the web content within the webview. On the
list are decidePolicyForMIMEType:reques

t:, decidePolicyForNavigationAction:request:, d
ecidePolicyForNewWindowAction:request: and wil

lPerformClientRedirectToURL:. The program location where
any of these methods is invoked or the constant string is ac-
cessed is considered to be a claim for the Scheme channel.
The use of the channel happens when the URL is invoked
through openURL.

On OS X, between the claim and the use, the app can run
URLFor

ApplicationToOpenURL or LSCopyDefaultHandlerFor

URLScheme to find out which app will be launched by a given
scheme. In the absence of any of these calls, it is highly likely
that the app is vulnerable to the scheme hijacking attack.
An exception is when the scheme here is actually claimed
by the OS, for example, mail, facetime, etc., which can be
easily identified when the URL is a constant string within
an app. In the case that it actually comes from the web, the
chance is that it is indeed vulnerable, as the webview can be
used to open any links. Note that for iOS, an app does not
have any means to find out the owner of a scheme.

• BID. The BID confusion problem is completely caused by
the Apple Store and the design of the MAC OS X sand-
box. Nevertheless, Xavus is built to find out whether apps
deposit data to their containers, which indicates that sensi-
tive information could be exposed through this vulnerability.
This data-storing activity can be easily identified from the
function call NSHomeDirectory.

Discussion. Our current implementation of Xavus works
effectively on most apps over the Apple platforms, as ob-
served in our research (Section 4.2). Even though Xavus
was implemented for detecting the XARA on known chan-
nels, the idea behind it, authentication check between the
claim and the use of a channel, could find its application to
detecting similar flaws within other cross-app mechanisms.
However, there are situations when a vulnerable app falls
through the crack: for example, when the app dynamically
generates the scheme to be invoked. On the other hand,
the app developer might implement some ad-hoc protection
that our analyzer misses. This happens to those using the
keychain or WebSocket. An app could delete its keychain
item and create a new one each time when it updates new
credentials there, an approach that Apple does not recom-
mend [9]. Also, a browser extension may authenticate a
local program using a secret over the WebSocket channel. In
our research, we manually analyzed the apps randomly sam-
pled from those flagged as vulnerable by our implementation
to ensure that the results were accurate, and concluded that

they indeed were in a vast majority of cases.

4.2 Impacts
With the help of Xavus, we were able to analyze a large

number of popular Apple apps to understand their suscep-
tibility to the XARA threat. In our study, we downloaded
1,612 free apps from the MAC App Store. These apps cover
all 21 categories of the store, including social networking,
finance, business, and others. In each category, we picked
up all the free apps when less than 100 of them are there,
and top 100 otherwise. Also from the iOS App Store, we col-
lected 200 most popular apps, 40 each from“All Categories”,
“Finance”, “Business”, “Social Networking” and “Productiv-
ity”, after removing duplications. The decrypted versions of
these apps were extracted using Clutch [2].

All the apps were first quickly scanned to determine whether
they utilize vulnerable services or channels, or export to
their container directories. This was done by running the
utility otool to extract Mach-O sections “__objc_selrefs”
and “__objc_msgrefs” from each app’s binary and look for
the functions fingerprinting different services, channels and
operations, as described in Section 4.1. The apps discovered
at this stage were further analyzed using Xavus for missing
authentication operations. A problem is that Hopper does
not support a batch mode. To analyze an app, we had to
manually load it into Hopper before it could be automati-
cally evaluated by Xavus. This process was time-consuming,
taking from about 1 to 30 minutes per app. The developer
of Hopper informed us that the batch mode will be sup-
ported in the near future. For the time being, however, we
could only analyze 200 randomly-chosen apps in the case
that more were found to be associated with a channel or a
service.

Vulnerable apps. Table 1 summarizes our findings. Specif-
ically, among all 1,612 MAC apps, 198 of them use the key-
chain. Xavus did not find that any security check is per-
formed by these apps between their claim of the keychain
item and use of it to store sensitive data. We further ran-
domly chose 20 samples from the 198 apps and inspected
them manually. It turns out that all of them can be easily
attacked except todo Cloud and Contacts Sync For Google
Gmail, which delete their current keychain items and create
new ones before updating their data. Note that this practice
(deleting an existing item) is actually discouraged by Apple,
which suggests to modify the item instead [9].

Channel
apps with the
channel /total

vulnerable/
scanned

exploitable/
sampled

Keychain 198/1,612 198/198 18/20
Scheme (iOS) 138/200 106/138 20/20
Scheme(OS X) 982/1,612 132/200 20/20

BID 468/1,612 468/468 20/20

Table 1: Vulnerable Apps

We did not find in our collection any free app using Web-
Socket. However, there are popular paid apps claiming this
channel. Particularly, 1Password is a leading paid app,
which, as described in Section 3.3, is completely vulnera-
ble. Other examples include LastPass (a popular password
management app), Adobe Creative Cloud (an Adobe service
app) and LiveReload (for dynamic web content reloading).
These apps were all vulnerable to the attacks from malicious
apps (Section 3.3).

When it comes to Scheme, we discovered 982 MAC apps

9

XARA types Secrets exposed Apps/Services affected
Password Stealing

(keychain)
passwords/

authentication tokens
iCloud, Gmail, Google Drive, Facebook, Twitter,

any web account used in Chrome.

IPC Interception
authentication tokens/

OS X username and password
Keychain Access, 1Password, Evernote, Pushbullet.

Scheme Hijacking
passwords/

authentication tokens
Dropbox, Pinterest, Evernote, 1Password,
Dashlane, Kindle, Instagram, Whatsapp.

Container Cracking
email/cookies

Foxmail, App for Gmail, Mailtab for Gmail,
Mailtab for Outlook.

notes/contacts/instant message pictures Evernote, QQ, WeChat.
cookies Money Control, Inspire Finance Lite, Tumblr, AnyDo, Pocket.

Table 2: Examples of XARA Consequences

using this channel. From them, 200 apps were randomly
picked and analyzed by Xavus, which reported that 132 were
vulnerable. We further manually looked into 20 samples
and successfully built end-to-end attacks. The remaining 68
apps either use Apple reserved schemes or dynamically cre-
ate their URLs from network traffic or other sources, which
our current implementation cannot handle. Among the 200
iOS apps, 138 were detected to trigger URL schemes. 106 of
them were reported to be vulnerable. Through random sam-
pling, we confirmed that this finding is accurate. Also, those
that could not be confirmed are very much in line with their
MAC counterparts, either running reserved schemes or too
complicated to analyze. Finally, 468 out of the 1,612 MAC
apps were detected to write to their container directories,
which can all be read by unauthorized apps hijacking their
BIDs. Overall, at least 88.6% of the scanned apps using
these cross-app channels are vulnerable to XARA attacks.

Consequences. Attacks on these vulnerable apps will have
serious consequences. Table 2 lists some examples of the
findings made in our research. Specifically, keychain creden-
tials for high-profile services (e.g. iCloud, Gmail, Google
Drive, Facebook, Twitter, LinkedIn, etc.) and any web ac-
counts in Google Chrome are completely exposed. All their
passwords and secret tokens can be collected by the adver-
sary. Those vulnerable to the IPC interception include Key-
chain Access, Evernote, 1Password, Pushbullet, etc. Their
sensitive data, such as authentication tokens and even cur-
rent OS user’s username and passwords are up for grabs.
The scheme vulnerability was found in 1Password, Dash-
lane, Evernote, Kindle, Adobe Revel, Wunderlist, etc., on
OS X, through which app users’ credentials can be gathered.
On iOS, popular apps like Pinterest, Instagram, U.S. Bank
(banking), Citi Mobile (banking), PayPal, Amazon, What-
sApp, Dropbox, etc., were found to be exploitable. Their
authentication tokens and other information can be stolen.

The BID confusion problem also has a significant impact.
For example, our study shows that popular mail clients, such
as App for Gmail, Mailtab for Gmail and Outlook, all expose
MAC users’ emails and their cookies to the app hijacking
their BID. Other apps that expose cookies include popular
Finance apps Money Control and Inspire Finance Lite, as
well as Tumblr, AnyDo, Pocket and more. Note that all the
attack apps were successfully released by the Apple Stores.
So, the security threats are indeed realistic.

4.3 Mitigation
Addressing the XARA problems is more difficult than it

appears to be. Oftentimes, the OS itself does not know

how to protect the resource of a third-party app. Proper
interfaces may need to be given to the app developers to
let them specify and enforce their individual policies. A
prominent example is the keychain, for which the OS is in no
position to decide whether a set of attributes for retrieving
an item should be used by one app but not others. Due
to such complexity, these security weaknesses will likely be
there for a while, before Apple figures out a way to work
with the developers to fix them together. Indeed, since we
reported the keychain issue to Apple in last October, so
far, Apple did nothing except using a random username to
patch some of its own apps, which turns out to be futile
(Section 3.1).

Given the challenges in finding a long-term solution, it is
important to have some protection in place to mitigate the
threat. In this section, we describe a simple, lightweight
scanner app, which automatically detects XARA attempts
on OS X. As a third-party program running in the user land,
this scanner can be easily deployed to provide the Apple user
immediate protection.

Idea and implementation. The idea of our XARA scan-
ner is to inspect public information whenever a change to
the system happens (e.g., write to a file, installation of a
new app) to detect whether a service, resource or channel
claimed by one app has been hijacked by another. This de-
sign enables the scanner to work efficiently and as we will
show later, also effectively. Specifically, our app registers
file system event with API FSEvents, which is issued when
a specific file has been modified. Specifically, the scanner
monitors the keychain files under /Library/Keychains/ and
∼/Library/Keychains/. Whenever they’re modified, our
app uses the API SecItemCopyMatching to find out whether
a new item has been added, and if so further retrieves its
ACL using SecACLCopyContents and inspects all the apps
on the list. Typically, a system app does not share the list
with a third-party app. Once this is detected, the scanner
notifies the user of the potential risk. When it comes to a
third-party app, all we can do is to build profiles for popular
MAC apps through an offline analysis. Each profile contains
the ACL an app is supposed to use, which is compared with
the one retrieved from the keychain to detect an exploit at-
tempt.

For Scheme and BID, our scanner keeps track of newly
installed programs through the event API FSEvents. When-
ever an app is installed, the scanner goes through its plist to
find out whether the URL scheme it registers or the BIDs of
its helper programs or XPC Services are in conflict with the
ones already in the system. Such a conflict indicates an ex-

10

ploit attempt, either from the new app or existing ones, and
therefore triggers an alarm. Note that on scheme conflicts,
even Apple does not know which app is legitimate to bond
to a scheme. What Apple’s OSes do is to arbitrarily asso-
ciate the scheme with an app claiming that scheme (Section
3.4) while XARA scanner reports which app is associated
with a scheme and the apps that fail to do so.

Evaluation. We evaluated our implementation (a native
app) against aforementioned XARA attacks (Section 3) ex-
cept that on WebSocket. Our scanner detected all the ex-
ploits on the keychain, URL schemes (on OS X) and BIDs,
before the malicious attempts could be executed. Note
that since such contention of app-specific resources, chan-
nels or services does not exist during the system’s normal
operations, our scanner will not cause a false alarm, though
it might miss some exploit attempts. We further measured
its performance on a MacBook Pro (Mid 2014 model, 2.6
GHz Intel i5, 8 GB memory, SSD), under OS X 10.10.2. It
utilizes no more than 0.2% of CPU during operations. More
details are available in Section A (see Appendix).

5. LESSONS LEARNT
Almost all the XARA weaknesses we discovered in this

research come from Apple’s unique design of cross-app re-
source sharing and communication mechanisms, e.g., key-
chain for sharing passwords, BID based separation and URL
scheme for app invocation (different from Android). Other
XARA problems, i.e., the WebSocket issues may also exist
on other OSes, such as Windows and Android. This demon-
strates that the XARA weakness is indeed pervasive and
serious. A natural question here is how those problems have
been introduced and what we can learn from them. In the
section, we try to answer the question, presenting the in-
sights gained from analyzing those vulnerabilities and the
principles for designing a securer system.

Insights. The fundamental cause for the XARA flaws is
unprotected cross-app resource sharing and communication.
Comparing OS X with iOS, the latter is relatively securer
simply because it does not support credential sharing (among
different apps) through a keychain item and sub-target shar-
ing (e.g., framework) through containers, nor does it provide
any complicated IPC mechanism like distributed objects.
For every avenue opened across apps, proper authentication
should always be in place. Otherwise, an XARA risk may
show up.

Apparently, XARA is an instance of the classic Unveri-
fied Ownership or Resource Squatting problem [4, 5, 21], in
which software fails to verify which party owns a piece of
critical resource. The unique challenge in addressing the is-
sue, however, is that when it comes to the interactions across
third-party apps, less clear are who should perform the ver-
ification and how to do so. For example, when an app de-
posits the user’s credential to another party’s keychain item
on OS X, as long as it is indeed on the item’s ACL, the op-
erating system is not at a position to judge the legitimacy of
the operation, since this is allowed for credential sharing. As
another example, neither OS X nor iOS has any idea which
app is entitled to a specific URL scheme. The authentica-
tion here (on the owner of the keychain item or the scheme
before delivering data to it) can only be performed by the
app. Yet, the OS provider still has the responsibility to as-
sist the app developer in implementing such protection (e.g.
providing proper APIs) and further verify its presence in her

app, which is essential for fostering a secure ecosystem.
Following we summarize the above insights into three key

principles for avoiding XARA hazards in cross-app interac-
tions.

Design Principle 1: Determine what the OS can protect
and what it cannot for every cross-app channel. When a new
way for cross-app resource sharing or communication is pro-
vided, the OS designer always needs to determine whether
authenticating the parties involved can be done at the OS
level or only by individual apps. The OS needs to address the
security issues whenever possible to ensure the effectiveness
of the protection and makes it clear what should be taken
care of by the app developer. Among all the XARA cases we
discovered, container sharing should be fully secured by the
OS: it has sufficient information to decide what is allowed
to share (e.g., framework) and what is not (e.g., the helper
program’s directory). On the other hand, the keychain item,
parties in an IPC and the scheme owner often can only be
checked by the app. It is important to identify how to divide
the responsibilities of security protection at the early stage
of developing cross-app channels.

Design Principle 2: Inform the app developer required
app-side security checks and provide means to do so. When-
ever a cross-app channel is found to need the app developer’s
involvement to secure, the OS provider should explicitly in-
form the developer what she is supposed to do and pro-
vide proper technical supports. Our study shows that this
is exactly what Apple falls short. Oftentimes, it does not
offer any APIs for the required authentication: examples in-
clude Keychain and WebSocket, etc. Even when the API is
available, e.g., for finding the app to be launched through
a scheme, rarely have we found any instructions for the de-
veloper to do that. In the absence of such supports, XARA
flaws become inevitable.

Design Principle 3: Detect missing security checks at the
app store. Even with the proper information and technical
means, we believe that the OS provider can do more to help
the app developer and secure its app ecosystem. What can
be leveraged here is how the apps are disseminated today:
they are mainly downloaded and installed from a centralized
app store under the control of the provider, which enables
the provider to make vulnerability detection part of its app
vetting process. This is complete feasible, given the fact that
today the Apple Store takes more than a week to approve
an app while the automatic tools like Xavus can be built to
detect missing authentication within the app in minutes.

6. RELATED WORK
XARA attacks on Android. Security flaws related to
XARA have been discovered on Android, e.g., different types
of confused deputy problems within Android apps [18, 15,
19, 22]. Most relevant to our work is the prior research on
mobile origin crossing [23], which reports an attack that a
malicious Android app registers the scheme of a URL not
meant for invoking apps and runs it in a browser to get a
Facebook token. This problem is not a scheme hijacking,
since the scheme here is not associated with any legitimate
app. Actually, preempting another app’s scheme is hard on
Android because whenever there are two apps registering the
same scheme, Android always notifies the user and let her
make the decision. Also such a problem has already been
fixed by Facebook, yet the scheme hijacking is an issue they

11

are not aware of. Also related is the study on the Pileup [26]
attacks, in which a malicious app can gain an elevated priv-
ilege through a system upgrade. The problem here is not
in the design of isolation protection but the mechanism to
grant an app additional permissions, which has been circum-
vented in the upgrade process.

Security on the Apple platforms. Compared with An-
droid, the Apple platforms are much less studied in terms of
their security protection. A technical blog [7] talked about
insecure handling of schemes in the invoked apps on iOS,
which is not the scheme hijacking on both OS X and iOS,
as discussed in this paper. Prior academic research almost
solely focuses on various techniques to bypass the security
checks on iOS private APIs [25, 20] and use of them to prop-
agate malware infections [24]. Understanding the security
implications of Apple’s inter-app interactions and sandbox
design has never been done before. Simultaneously and in-
dependently, Fireye found the risk of hijacking iOS schemes
and put a blog online [8]. However, they just briefly discuss
this security risk without giving much detail, with a demo
that apparently shows a simple phishing attack. By compar-
ison, our work is much more thorough, deeper and broader.
We built end-to-end attacks on several high-impact apps
(e.g., Facebook, Pinterest, etc.), identified the impacts of the
threat over a thousand apps, and more importantly demon-
strate that the attacks can be made stealthy (through differ-
ent man-in-the-middle tricks on MAC OS and iOS, passing
the stolen token to the victim app, to completely conceal
the attack), which is nontrivial (see Section 3.4). Also we
completely circumvented the restrictive security checks of
the Apple Stores: actually, our attack apps were approved
by the App Store on January 23, 2015, almost one month
earlier than the blog (February 19), which did not mention
any study on the protection provided by the App Store. Fur-
ther, we discovered that the problem exists on both iOS and
OS X and different strategies these OSes took to resolve con-
flicts in Scheme claims (Section 3.4), which is important to
the success of the attack. Finally, we developed techniques
for automatically detecting such exploits and mitigating this
risk.

Related to Xavus is PiOS [17], a general-purpose code
analysis tool for iOS apps, which has not been made publicly
available so far. By comparison, our approach was designed
specifically for detecting XARA flaws within both MAC OS
and iOS apps.

7. CONCLUSION
In this paper, we identify a new category of security weak-

nesses, called XARA, that pose a serious threat to the app
isolation protection on modern OSes. Our study on the
threat over the Apple platforms, the first of this kind, reveals
its pervasiveness and significant impacts: critical system ser-
vices and channels, including the keychain, WebSocket and
Scheme, can all be exploited to gain access to other apps’
resources, and even the Apple Sandbox on OS X can be
cracked, exposing an app’s container directory to the unau-
thorized party. The consequences of these attacks are seri-
ous, including leaks of user passwords, secret tokens and all
kinds of sensitive documents. Our research shows that fun-
damentally the problem comes from lack of authentication
during app-to-app and app-to-system interactions, and fur-
ther proposes new techniques to detect and mitigate such

a threat. This preliminary effort contributes to a better
understanding of this understudied security problem, an im-
portant step for building a more effective app isolation mech-
anism on future OSes.

8. ADDITIONAL AUTHORS
Additional authors: Shi-Min Hu (Tsinghua University,

email: shimin@tsinghua.edu.cn) and Xinhui Han (Peking
University, email: hanxinhui@pku.edu.cn).

9. REFERENCES
[1] 1Password - Password Manager and Secure Wallet.

https://itunes.apple.com/us/app/

1password-password-manager/id443987910?mt=12.

[2] Clutch. https://github.com/KJCracks/Clutch.

[3] CocoaHTTPServer. https:
//github.com/robbiehanson/CocoaHTTPServer.

[4] CWE-283: Unverified Ownership. https:
//cwe.mitre.org/data/definitions/283.html.

[5] CWE-377: Insecure Temporary File. https:
//cwe.mitre.org/data/definitions/377.html.

[6] Hopper V3, the OSX and Linux Disassembler.
http://www.hopperapp.com/.

[7] Insecure Handling of URL Schemes in Apple’s iOS.
http:

//software-security.sans.org/blog/2010/11/08/

insecure-handling-url-schemes-apples-ios/.

[8] iOS Masque Attack Revived: Bypassing Prompt for
Trust and App URL Scheme Hijacking.
https://www.fireeye.com/blog/threat-research/

2015/02/ios_masque_attackre.html.

[9] Keychain Services Reference. https://developer.
apple.com/library/mac/documentation/Security/

Reference/keychainservices/index.html#//apple_

ref/c/func/SecKeychainItemDelete.

[10] OS X ABI Mach-O File Format Reference. https://
developer.apple.com/library/mac/documentation/

DeveloperTools/Conceptual/MachORuntime/index.

html#//apple_ref/doc/uid/TP40000895.

[11] OS X Keychain Services Tasks. https://developer.
apple.com/library/ios/documentation/Security/

Conceptual/keychainServConcepts/03tasks/tasks.

html#//apple_ref/doc/uid/TP30000897-CH205-TP9.

[12] QtWebKit.
http://qt-project.org/wiki/QtWebSockets.

[13] Supporting materials.
https://sites.google.com/site/xaraflaws/.

[14] The WebSocket API.
http://www.w3.org/TR/websockets/.

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys
’11, pages 239–252, New York, NY, USA, 2011. ACM.

[16] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on android.
In Proceedings of the 13th International Conference on
Information Security, ISC’10, Berlin, Heidelberg,
2011. Springer-Verlag.

[17] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In

12

Proceedings of the Network and Distributed System
Security Symposium (NDSS), San Diego, CA,
February 2011.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In USENIX Security Symposium, 2011.

[19] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In the 19th Annual Symposium
on Network and Distributed System Security, 2012.

[20] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. H. Deng,
D. Gao, Y. Li, and J. Zhou. Launching generic attacks
on ios with approved third-party applications. In
ACNS, 2013.

[21] Hayawardh Vijayakumar and Joshua Schiffman and
Trent Jaeger. STING: Finding Name Resolution
Vulnerabilities in Programs. In Proceedings of the 21st
USENIX Security Symposium (USENIX Security
2012), August 2012.

[22] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
statically vetting android apps for component
hijacking vulnerabilities. In In Proc. of the 2012 ACM
conference on Computer and communications security,
CCS 2012, ACM.

[23] R. Wang, L. Xing, X. Wang, and S. Chen.
Unauthorized origin crossing on mobile platforms:
Threats and mitigation. In the 20th ACM conference
on Computer and communications security. ACM,
2013.

[24] T. Wang, Y. Jang, Y. Chen, S. Chung, B. Lau, and
W. Lee. On the feasibility of large-scale infections of
ios devices. In 23rd USENIX Security Symposium
(USENIX Security 14), San Diego, CA, Aug. 2014.
USENIX Association.

[25] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll
on ios: When benign apps become evil. In Proceedings
of the 22Nd USENIX Conference on Security, SEC’13,
pages 559–572, Berkeley, CA, USA, 2013. USENIX
Association.

[26] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang.
Upgrading your android, elevating my malware:
Privilege escalation through mobile os updating. In
Proceedings of the 2014 IEEE Symposium on Security
and Privacy, 2014.

APPENDIX
A. OVERHEAD OF THE XARA SCANNER
Our exploit scanner is designed to use three events it reg-
isters for exploit detection (Section 4.3). Specifically, those
events are issued when a new app is installed or updated,
new system log is generated or a keychain file is changed.
We measured the performance overhead of the scanner to
respond to the three events and perform corresponding de-
tection operations, as presented in Table 3. Specifically, for
new app installation, we calculated the average time (t1) for
installing each of the top 20 popular apps. Then we mea-
sured the average time our scanner needs to check (t2) a
newly installed app. The ratio t2/t1 is found to be 0.97% in
our experiment, which indicates that compared to each app’s
installation time, the delay caused by checking its scheme
and BID is negligible. The second event is triggered when

the system log file is updated, which causes the scanner to
inspect the new log for the contest on an IPC connection. In
our research, we measured the processing time the scanner
took in 5 minutes, during the system’s normal operation.
By repeating the experiments ten times, we found that on
average, only 0.66% of the time during this period was spent
on detecting the possible IPC attack. The third event is for
keychain update. The overhead for our scanner to respond
to the event and detect malicious attempts was found to be
completely negligible, as this only happens when new apps
start using the keychain or existing ones need to update user
credentials, which are not frequent.

Events Overhead of the Exploit Scanner

app updating
/installations

installation time
t1 per app

detection time
t2 per app

t2/t1

22.63s 0.22s 0.97%

new system
log

period t1
measured

detection time
t2 during t1

t2/t1

5 min 1.99s 0.66%

keychain
changes

period t1
measured

detection time
t2 during t1

t2/t1

1 day 0.5s 0.00%

Table 3: Overhead of the XARA Exploit Scanner

13

