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ABSTRACT. 

This paper describes a fast algorithm to obtain the steady 
state unbalance response of a multi-mode rotor supported on 
short squeeze film dampers (SFDs). The presented algorithm is 
developed based on planar modal theory. Undamped critical 
speed analysis is first performed to obtain the rotor critical speeds 
and their associated mode shapes. The modal analysis technique 
is then applied to the linear part of the rotor-SFD assembly to 
obtain the system differential equations. The rotor is assumed to 
execute circular centered orbits, hence all differential equations 
are reduced to algebraic ones. The resulting equations are 
manipulated algebraically to form a polynomial in rotor 
rotational speed. The roots of the polynomial are found and the 
fill unbalance response is obtained. A conventional rotor is used 
to describe the developed algorithm numerically. Results show 
that the proposed algorithm gives accurate response in 
comparison to that obtained by integrating the system differential 
equations numerically. The great advantage of the proposed 
algorithm is the saving in the execution time which is extremely 
dramatic with respect to numerical integration, in addition to 
other advantages such as the possibility of obtaining all solutions 
occurring in regions of multiple steady state. Accuracy and speed 
of execution are quite advantageous regarding parametric studies 
on multi-mode rotors. These parametric studies can help in the 
optimization of SFDs design. 

NOMENCLATURE 

B = gR,L31Mcia?„1 = bearing parameter, nondimensioruil 
c = clearance, m 
C,,, Cr, = damping coefficients, Ns/m 

= damping coefficients, nondimensional 
d = deflection at disk location, m 

D =clic= deflection at disk location, nondimensional 

e = eccentricity, m 
Ed, Fa= damping forces, N 

n

• 

r, rut = Fd, Fel IMC 41= damping forces, nondimensional 
Fr, F,, F,= external complex forces constitutitig force vector, N 
Fm = transmissibility, nondimensional, k = 1 for left or r for right 

01 = ii by 1 complex force vector including the external forces, N 
to= n by 1 force vector including the external forces, 
nondimensional 

= reduced force vector of size Niby 1, nondimensional 
g .= unbalance, m 
g = g/c = unbalance, nondimensional 

= identity matrix 

L = journal length, in 
in = number of modes 
n = number of shaft stations 
Nr number of forces' locations 
P = polynomial of order 2m with complex coefficients 
Pn,d, Pmaginwy  = real part and imaginary part of P respectively 
(q)= in by 1 complex vector containing modal displacements, in 

{/} = (q}lc = in by 1 complex vector containing modal 

displacements, nondimensional 	• 

= in by 1 complex vector containing the modal 

displacements at the steady state, nondimensional 
R = polynomial of order 2m with complex coefficients 

–journal radius, m 

&we, Rimarnary = real part and imaginary part of R respectively 
[Urn by in modal matrix including system eigenvectors 
[U]r, = reduced modal matrix of size Niby in 

{z}= n by 1 complex vector containing the global displacements 

= 	n by 1 complex vector containing the global 

displacements, nondimanional 
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FORCES IN SFDs 

Figure 1 Squeeze Film Damper 

a, A 5= phase angles (Figure 3), rad 
E= etc = eccentricity, nondimensional 
p= fluid viscosity, Ns/m2  
0= angle (Figure 1), rad 
tr= 3.141592654.... 
r = nondimensional time 

yr= angles (Figure 1), rad 
(Au = first natural frequency of the rotor, rad/s 
{a?} = m by m diagonal matrix containing square of system 
eigenvalues, rad/s2  
{ to } = in by in diagonal matrix containing square of system 
eigenvalues, nondimensional 
C2 = rotor rotational speed, rad/s 
0 .  = Cl/manondimensional rotor rotational speed 
( = differentiating with respect to time 

= differentiating with respect to nondimensional time 

Subscripts 

i = index for mode number 
c = denotes rotor midspan 
1 = denotes left damper 
r = denotes right damper 

INTRODUCTION 

Squeeze film dampers (SFDs) are effective damping devices 
that are used in gas turbine engines. They proved their ability to 
attenuate the amplitude of engine vibrations and to decrease the 
transmitted force to the engine support. Many efforts have been 
exerted to predict the behavior of SET) supported rotors. Cooper 
(1963) observed "bistable" operation of a rotor incorporating a 
SFD, that is the rotor is exhibiting multiple steady state at the 
same frequency. White (1972) studied theoretically and 
experimentally the dynamics of a rigid rotor on SFDs. He 
calculated the forces acting in the damper based on Reynolds 
equation. He also predicted three steady state orbits of the rotor 
journal at the same frequency, which agreed with Cooper's work. 

Mohan and Hahn (1974) were able to obtain the steady state 
response of a rigid rotor-SFD system, and they performed 
parametric studies to determine the effect of the damper's 
parameters on the rotor behavior. They concluded that, from 
parametric studies, the SFD is generally an effective damping 
devise, but for a badly designed damper, the transmitted force can 
be magnified rather than attenuated. 

Taylor and Kumar (1980) did an investigation of the 
numerical integration techniques used to determine the response 
of a rigid rotor in SFDs. They were able to demonstrate the 
drawbacks of numerical integration, and this motivated them 
(Taylor and Kumar, 1983) to find closed-form steady-state 
solutions for a rigid rotor in squeeze film dampers by assuming a 
circular orbit. 

Recently, El-Shafei (1990, 1991a) studied the dynamics of a 
Jeffcott rotor incorporating short and long SFDs. He obtained the 
steady state imbalance response of the rotor executing circular  

centered orbit He considered in his model the effects of fluid 
inertia. 

All the above mentioned analyses are based on single mode 
rotors. Perhaps the first attempt to obtain the response of multi-
mode rotors supported by SFDs, is the work of Greenhill and 
Nelson (1981) who used an iterative loop using a modified secant 
method to obtain the response of rotors executing circular 
centered orbits in SFDs. Later, Mclean and Hahn (1983) 
developed an algorithm that exploits the characteristics of a 
circular centered orbit to obtain the response of a multi-mode 
rotor on SFDs, however their technique needs to be developed 
mathematically for each particular rotor, and the mathematics can 
be cumbersome for a complicated rotor. Recently, Bonneau et al. 
(1989) obtained the dynamical behavior of an elastic rotor with 
SFD. Also, Hathout et al. (1995) used the modal analysis theory 
to obtain the transient and steady state response of a multiple 
mode rotor to control the rotor vibrations by using hybrid 
squeeze film dampers. They considered the fluid inertia effects in 
their model. 

In this paper, modal analysis theory is exploited, using 
planar modes, to develop a fast algorithm to obtain the unbalance 
response of a multi-mode rotor supported on short cavitated 
squeeze film dampers executing circular centered orbits. A 
critical speed analysis is first performed to obtain the rotor planar 
modes, including gyroscopic effects. Planar modes, by definition 
imply circular orbits (Gunter et al. 1978), which fits well with the 
assumption of circular centered orbits for the SFDs. In addition, 
planar modes allow the use of traditional modal analysis rather 
than the complex modes usually required for modal analysis of 
rotor systems (Gunter et al., 1978). Through modal analysis and 
the assumption of circular centered orbits, an extremely fast 
algorithm is developed to obtain the full unbalance response of 
multi-mode rotors. The algorithm shows major computer time 
savings versus numerical integration and also the iterative 
algorithm developed by Greenhill and Nelson (1981). This 
allows the current algorithm to be used as a basis for an advanced 
optimization routine of SFDs, or in its current format can be used 
for parametric studies of SFD supported rotors. 
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Tatar 

Figure I shows a side view of the SFD And the coordinate 
frames used. The forces in the SFD are developed from Reynolds 
equation (White, 1972). 

These damping forces can be derived for a cavitated damper 
with the journal executing a circular centered whirl for both 
radial and tangential directions to take the form: 

= 	 ( 1) 
= 	 (2) 

where 
= BC; , C, = BC; 

where C and C are damping coefficients which are given for the 

short cavitated damper with a it-film as: 

	

2e 	 n 	I 
= 

(I — e)' 	 2 (1 — e)v: 
noting that for 2ff-film extent Cp, becomes zero and C,, is 
doubled. 

As shown above, the forces of SFDs are highly nonlinear in 
the eccentricity ratio 6, which is the reason for the system 
nonlinearities. 

DEVELOPMENT OF ROTOR-SFDs MODEL USING 
PLANAR MODAL THEORY 

Figure 2 shows a layout of a generic assembly of rotor-SFDs 
which can be used in various applications. The shaft is supported 
by two dampers through rolling element bearings at particular 
locations as shown in the Figure. A set of unbalanced disks are 
located on the rotor. The dampers and the disks can be located 
anywhere on the rotor. 

	

sprin 	N 1 di 
d i s k 2
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Figure 2 Lay-out of a rotor-SFDs assembly 

Implementing the modal analysis technique to such 
nonlinear rotor-SFDs assembly was developed recently by 
Hathout et al., (1995). They performed the modal analysis 
method on the linear part of the rotor and transferred all nonlinear 
forces to the right hand side as external forces acting on each 
damper in addition to the unbalance forces acting on the dicks  

To apply modal analysis to the assembly shown above, an 
undamped critical speed analysis is performed on the rotor 
without including the SFDs taking into consideration the bearing 
and support stiffness. This analysis is performed on the shaft 
which is divided into n stations, using available computer 
programs based either on transfer matrix methods or finite 
element methods, which include the rotor and disks gyroscopics  

in the analysis. The analysis would result in In undamped critical 
speeds of interest with their associated planar modes. 

Based on the critical speed analysis and the modal analysis 
theory (Meirovitch, 1986), and since planar modes are being 
used, one can obtain the rotor system's differential equations in 
the modal coordinates as follows (Gunter et al., 1978) 

{4} +(ø']{q} = pr{f} 	 (3) 

where {q} is an In by 1 vector with complex values (sty) 

containing the m modal displacements for the m modes of 
interest, [01 is an m by m diagonal matrix with coefficients as 

the system in natural frequencies squared, tur is an in by n 

matrix which is the transpose of the modal matrix comprising the 
in planar mode shapes obtained from the critical speed analysis. 
Finally, (f) is an n by 1 complex vector comprising of non-zero 
elements only at the stations at which the external forces acting 
on the system are located. The force vector {f} can be defined as 

damping force at the left damper location (F,) 
0 

0 

unbalance force at the location of disk 1 (F.,) 
0 

0 

unbalance force at the location of disk N 2 (F„,) 
0 

0 
unbalance force at the location of disk N 3 (F,,) 

0 

0 

damping force at the left damper location (F) 

Using the modal transformation, one can obtain 

{z} = [U]{q} 	 (4) 

where {z} is an n by 1 vector with complex values comprising the 
global displacements of the rotor stations. 

Equations (3) and (4) can be written in nondinumsional form 
(Hathout, et al., 1995) as 

=pr{r)  
(n=ruig) 

(5)  

(6)  

It should be noticed that the right hand side of equations set 
(5) would result in an m by 1 vector whose values are only 
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dependent on the elements of the eigenvector corresponding to the 
stations at which the forces are acting, since the elements of the 
eigenvectors corresponding to the other stations would be 
multiplied by the zero values of the force vector W. Thus, it is 
enough to obtain mode shapes data only at the stations at which 
dampers and disks are located (i.e. locations which are sources of 
the external forces). This means that it would be sufficient to use 
the reduced modal matrix Pia which will be reduced to an Nf by 
in matrix and the force vector (f) will be also reduced to an N1 
by 1 vector, where Nf is the number of points on the rotor at 
which the external forces are located. 

STEADY STATE ANALYSIS 

For the purpose of the following analysis we will assume 
that only one disk, which is chosen to be the disk # 2, is 
exhibiting an imbalance. This assumption can be easily removed 
without affecting the analysis. As a result of this assumption the 
reduced force vector Oa will be of size Np3, due to the forces 
at the two damper locations and the disk location. 

Figure 3 shows a side view of the rotor of Figure 2. Point 0 
represents the center of bearings. Point E l  represents the left 
journal center, while point E, represents the right journal center 
with phase shift a. Thus the distance 0E1 is equal to the 
eccentricity (et) of the journal in the left damper, and distance 
OE, is the eccentricity (e,) of the right journal. Point S represents 
the geometric center of the disk with the imbalance, thus the 
distance OS is the deflection (d) of the rotor at the disk # 2. 
Point G represents the center of gravity of the disk, thus the 
distance SG is the unbalance (g). 

Figure 3 Side view 
of rotor 

Also, shown in Figure 3, the notation and the coordinate 
frames used in the steady state analysis. The (x,y) frame is a 
stationary frame whose origin is at the bearing center O. The 
rotating (r,t) frame which is rotating at the whirl frequency of the 
system, with its r-axis coinciding with the eccentricity (0E0 in 
the left damper. This rotating frame is chosen to be a reference 
for the eccentricity and forces in the right damper also. 

Finally, shown in Figure 3, the general directions of 
deflections at the specified locations on the rotor (i.e. locations of 
the acting forces). A phase angle a is considered between the 
left and right eccentricities. The deflection of the rotor at the disk  

location (d) makes an angle 5 with the positive r-axis (which 
makes an angle iv with the positive x-axis). The unbalance (g) is 
chosen to make a general angle ft with the positive r-axis. 

DEVELOPMENT OF THE STEADY STATE MODEL 

Assuming the rotor is executing a circular centered orbit 
with synchronous whirl at the speed of the rotor rotational speed 

and by referring to the system geometry shown in Figure 3, 
the equation relating the angular speed of the unbalance and the 
rotor rotational speed 0i is given by 

= 	 (7) 

The elements of the vector la) comprising the displacements 
at the left journal, center of the disk, and the right journal can be 
assumed to exhibit a circular centered orbit at steady state. Thus 
the vector {z.} can be expressed as 

{:7}=IDefi ty' 
e,efin  

(8) 

According to equation (7) the unbalance force acting on the 
disk can be defined in nondimensional form as 

F. = gt2nea 
	

(9) 

Thus the reduced force vector {J.  la can be given in the 
following complex form as 

{FL = 
{—ce,ST — jce . C2* 

— jce,S2le 
	 (10) 

The modal displacement vector { (7) can be acting in a 

general motion, and can be given by 

03= {etn} 

whereQ is a complex value and i can take the values 1 to m. 

By substituting equation (11) into equation (5), all 
derivatives will be terminated. Hence, one can obtain a set of 
algebraic, time invariant, equations representing the modal 
displacement in the steady state as follows 

PI- RP/{0=Eutti. 	 (12) 

Also, substituting for {F} from equation (8) and for 

1,71 from equation (11) into equation (6), one can get 
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e
De .[UL{} 
c,es 

l,0 1 
(13) 

usually more stable and faster. Also, this polynomial can be 
transferred, using the state-space theory (Friedland, 1986), into a 
matrix whose eigenvalues are the roots of the polynomial To do 
so, the IMSL subroutine DEVLRG is used to obtain the matrix 
eigenvalues. 

The equations set (12) constitute m complex algebraic, 
nonlinear, equations, i.e. 2m real algebraic equations, and 
equations set (13) constitute 6 (2Ni) real algebraic equations. The 
two sets can be solved numerically by several numerical methods 
such as Newton-Raphson method or so. But due to their 
nonlinearities, this way will lead to a tedious trial and error in 
addition to false convergence in the regions of multiple solutions 
(Taylor and Kumar, 1980). 

Further algebraic manipulations on the two sets of equations 
(12) and (13) are performed with the purpose of obtaining a 
polynomial in 0 *  whose coefficients are function in the source of 
the nonlinearities (a, a). El-Shafei (1990, 1991) was successful 
to do so for a Jeffcott rotor, exhibiting a single mode, to obtain 
the fill unbalance response directly. In doing so, one should 
firstly eliminate the phase angles a and /3 that appear in the 
equations set (12) enclosed in the force vector (10). To eliminate 
the phase angle a, it is chosen to substitute for it from the third 
row of equations set (13) into equation (10). As a result of this 
substitution, a new set of in complex equations coupled in CM is 

obtained which are manually manipulated since it is necessary to 
. obtain the elements of the vector {U} individually. 

Consequently, the vector (u) is substituted into equations set 

(13) and by considering the first row, the following equation can 
be obtained 

Res  = P 	 (14) 

where P and R are polynomials in 0 * , of order 2m each, with 
complex coefficients which are functions in a and e, . To 
eliminate the angle A equation (14) is divided into two real 
equations as follows 

cos131,  
sinfl 	P (15)  

(16)  

(17)  

[

R„, 
R 12,„, 

which can be solved using Cramer's rule to give 

P R —P 	R 
cos/3 = 

+ 
P •••••■■•• 

" """" 
12 1  
+ R 	P •••••., sinj3 — 

RL + R' 

Finally, by adding the square of equation (16) to the square 
of equation (17) we can eliminate the angle fl and hence we can 
obtain the desired polynomial of order 8m with real coefficients 
function in a  and e,. The roots of this polynomial can be 
obtained by using an 1MSL subroutine such as DZYLRC or 
DZPORC. We chose the subroutine DZPORC because it is 

All the above steps are organized in an algorithm to be 
executed by a digital computer. The algorithm is written in a 
FORTRAN code, and it has the facility to constitute the 
coefficients of the desired polynomial (as shown above) for in 
modes. 

It should be emphasized that the developed algorithm would 
permit any changes in the rotor configurations such as changing 
the dampers position or shifting the disk location, as well as 
adding more disks to the rotor. 

To conduct the previous steps numerically, a conventional 
rotor is considered and it is required to predict its behavior when 
supported by a short squeeze film damper. Table 1 shows the 
operating conditions and the dimensions of rotor-disk-SFDs 
assembly used for the numerical analysis. First a critical speed 
analysis was performed on the rotor using the available program 
CRIISPD, which resulted in five undamped critical speeds, 
namely at 30 Hz, 68 Hz, 136 Hz, 348 Hz, and 370 Hz. Figure 4 
shows the rotor used in the numerical analysis and its five mode 
shapes. 

Table 1 The specifications of the rotor-disk-SFDs assembly. 
SFDs Specifications Rotor-Disk Specifications 

Journal 
length (14 

25 mm rotor length 1000 mm 

journal 
radius (R) 

37.5 mm rotor total weight 11.57 Kg 

fluid 
viscosity Os) 

0.014 
Ns/m2  

disk weight 6.12 Kg 

fluid density 

(P) 
917 Kg/m 3  

at 70°  C 
rotor diameter 25.4 mm 

bearing 
parameter 

(B) 
0.125 disk thiclmess 58.0 mm 

journal radial 
clearance (c) 

0.75 (mm) support stiffness 2452 
N/mm 

By assuming values for both eccatricities (a and 4) to be 
equal (since our rotor is symmetric), the polynomial coefficients 
can be calculated by the computer code. For other general rotors, 
an iteration loop has to be included. The roots of the polynomial 
can then be obtained by calling the IMSL subroutine, and these 
roots represent the rotor speed 0 at steady state. Complex roots 
are ignored since they do not represent a steady state. Since the 
rotor can rotate either clockwise or counterclockwise, the routine 
obtains both positive and negative roots. The negative roots are 
neglected and the positive roots are retained. By repeating these 
steps to cover the range of the eccentricity ratio (0 to 1), one can 
obtain the full unbalance response for such a rotor-SFDs system. 

5 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/G
T1996/78767/V005T14A006/4465137/v005t14a006-96-gt-023.pdf by guest on 16 August 2022



Knowing a, en  and 0* , it is possible to obtain the vector 

pi by substitution in equation set (12), after terminating a. 

Hence, one can get the deflection of any point on the rotor, for 
example we can obtain the response at the unbalanced disk 

location D by direct substitution for {U} in the second row of the 

equation set (13). To confirm the program output, we can 

calculate 4, by direct substitution for {-0} in the third row of the 

equation set (13). This is an additional check to assure that the 
program has converged to the correct roots. 

Also, it is possible to calculate the transmissibility F, to the 
support, which is defined as the ratio of the magnitude of the 
force acting in the damper (left or right) to the magnitude of the 
unbalance force acting on the center disk. Thus the 
transmissibility is given by 

(18) 

where k can take the subscript for the left damper on -for for the 
right one. 

The above technique is performed using a program 
MULMOD. The program obtains the unbalance response for both 

a cavitated model (r-fihn) and an uncavitated model (2r-film) 
The execution time of the program is approximately 13 minutes 

regardless of the model used on an IBM 486 DX2-66 personal 
computer. 

ALGORITHM VERIFICATION 

To verify the technique described in previous sections, 
equations sets (5) and (6) are solved by numerical integration 
using Rimge-Kutta 4 method by a program written to obtain the 
transient response for both models indicated above. The program 
is run, at 3 given rotor speed until a steady state is reached. 
This process is repeated at each speed until covering the required 

speed range. To do so, we need approximately 6 hours for the 
uncavitated model and about 20 hours for the cavitated model on 
the same computer. A comparison between this response and that 
obtained by the algorithm, described in the previous section, is 
shown to indicate the robustness of the proposed technique. This 
comparison is investigated for each model individually, with 
nondimensional imbalance value g equal to 0.1, as shown in 
Figures 5 and 6. Each Figure is divided into two groups, group 
(a) for the response obtained by the suggested technique, while 
group (b) is for that obtained by numerical integration. Each 
group shows the steady state behavior for the eccentricity ratio e 
(either left or right), the deflection D, and the transmitted force 
F,, each versus the rotation speed C2 *. 

It is evident from Figure 5, which illustrates the behavior of 
the uncavitated model, that the presented algorithm gives very 
close results to those obtained by numerical integration. Also, an 
agreement between the two methods is observed in Figure 6  

which shows the behavior of the cavitated model, regardless of 
the higher values appearing in group (a) which represent other 

steady states (El-Shafei, 1990, 1991). These additional steady 
states in the nonlinear model appear in regions of multiple 
solution and are due to the nonlinearity. They are difficult to 
obtain by numerical integration since they require tedious trial 
and error (Taylor and Kumar, 1980) 

It should be noted that only the odd modes appear in Figures 

5 and 6, since, due to the symmetry of the rotor, the even modes 
have nodes at the location of the exciting force as shown in Figure 
4, and thus are not excited. 

To demonstrate the facilities of the suggested algorithm, 
further program runs are performed on distinct cases, by changing 

the system parameters for example for different values of the 
unbalance. Figures 7 and 8 illustrate the effect of increasing the 
value of the unbalance g *  considering both models. Higher 
unbalance values increase the possibility of the appearance of 
nonlinear phenomena such as jump resonance, that is, the rotor 
would exhibit a jump from a certain whirling orbit to another at 
same frequency, which is obvious in Figure 8. 

As discussed in the previous paragraph, it is possible to 
study the effect of the different parameters such as the unbalance 
value g and the bearing parameter B. Also, it is possible to 
investigate the effect of the bearing and the support stiffness on 

the behavior of the rotor-bearing assembly through critical speed 
analyses. It is not possible to achieve this facility by numerical 
integration, since the execution time needed for one program run 
would be extremely huge, which emphasizes the algorithm's 
capabilities. In addition, this algorithm can be used for the 
optimum design of SFDs, and it is planned to develop the 
optimum design algorithm in the future. 

DISCUSSION 

Several important points should be highlighted to emphasize 
the contributions made by this paper: 

1. Squeeze Film Dampers are nonlinear devices. Modal 
analysis is a linear process. One major contribution of this 
paper is the use of modal analysis for a nonlinear device, i.e. 
using modal analysis for a nonlinear system is generally 
novel. 

2. Gyroscopic effects are included in the model through the 
critical speed analysis to obtain the planar modes. For 

planar modes, which by definition assume similarity in the x 
and y directions and imply circular orbits, one does not need 
to include the Gyroscopic effects in the modal analysis, 
since left and right eigenvectors are not obtained (see Gunter 
et al., 1978). However, the gyroscopic effects were included 
in the Transfer Matrix program used to obtain the critical 
speeds. 

3. Regarding the speed of the proposed algorithm, the iterative 
algorithm developed by Greenhill and Nelson (1981) was 
tested by El-Shafei and Eranki (1994) and later by Bayountr 
(1995), using a Finite Element program. For each point on 
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the unbalance response curve the iterative algorithm of 
Greenhill and Nelson (1981) took about! minute for each 
point when implemented on the same 486 computer, and the 
speed of execution will depend on the complexity of the 
rotor system (Bayoumi, 1995). The power and speed of the 
proposed algorithm in this paper, and the benefit of using a 
polynomial in fl, is that the full unbalance response curve 
(about 300 points) is obtained in 13 minutes, independent of 
the complexity of the rotor. So in comparison to the steady 
state algorithm of Greenhill and Nelson to obtain the full 
unbalance response one is comparing 5 hours (300 points x 1 
minute) versus 13 minutes! This is quite a tremendous 
computer saving that the proposed algorithm provides since: 

a) The Finite Element program is not used on line, but 
rather the proposed algorithm can be considered as 
post-processing for the results of either the Finite 
Element or Transfer Matrix, which are only used to 
obtain the planar modes. 

b) Modal analysis is used as a basis for algorithm 
development, thus the algorithm is independent of 
the complexity of the rotor system. 

c) The power of the algorithm of a polynomial in 
frequency is fully exploited to obtain the full 
unbalance response. 

The result is an elegant algorithm relying on the previous 
work of Gunter et al. (1978), Taylor and Kumar (1980) and El-
Shafei (1990) to obtain an extremely fast algorithm to obtain the 
firll nonlinear unbalance response of a multi-mode rotor on 
Squeeze Film Dampers. In comparison, the work of Mclean and 
Hahn (1983) did not use modal analysis, but rather developed an 
algorithm that exploits the characteristics of a circular orbit to 
obtain the response of a multi-mode rotor on squeeze film 
dampers, however their technique needs to be developed 
mathematically for each particular rotor, and the mathematics can 
be cumbersome for a complicated rotor, while our algorithm does 
not depend on the rotor configuration, rather all what is needed 
are the rotor modes. 

CONCLUSION 

A fast algorithm to obtain the steady state unbalance 
response for a multiple-mode rotor incorporating short squeeze 
film dampers is developed based on planar modal analysis theory. 
The modal analysis is implemented on the linear part of the rotor 
equations, since SFDs add nonlinearities to the model. 
Undamped critical speed analysis is done to obtain the rotor 
eigenvalues and eigenvectors. The rotor is assumed to exhibit a 
centered circular whirl, thus the system differential equations are 
reduced to nonlinear algebraic ones. Further algebraic 
manipulations are done to obtain a polynomial in the rotor 
rotation speed with the purpose of obtaining full unbalance 
response directly avoiding tedious trial and error and false 
convergence. The developed algorithm is applied to a 
conventional rotor to obtain its imbalance response. Results are 
compared to those obtained from numerical integration of the 
system differential equations. The comparison, as applied to both 
uncavitated and cavitated models, showed that both methods  

agreed well together. 	The introduced technique proved its 
robustness and efficiency in saving execution time, which is 
extremely dramatic in comparison to the numerical integration. 
In addition, it has the facility of obtaining all possible solutions. 
This fag algorithm allows parametric studies to be performed and 
can be used in the optimum design of SFDs. 
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