
 Open access Proceedings Article DOI:10.1109/CCC.2007.38

Unbalanced Expanders and Randomness Extractors from Parvaresh-Vardy Codes
— Source link

Venkatesan Guruswami, Christopher Umans, Salil Vadhan

Institutions: University of Washington, California Institute of Technology, Harvard University

Published on: 13 Jun 2007 - Conference on Computational Complexity

Topics: Randomness, Expander graph and Bipartite graph

Related papers:

 Randomness conductors and constant-degree lossless expanders

 Correcting errors beyond the Guruswami-Sudan radius in polynomial time

 Compressed sensing

 Expander graphs and their applications

 Randomness is Linear in Space

Share this paper:

View more about this paper here: https://typeset.io/papers/unbalanced-expanders-and-randomness-extractors-from-
1zujg2vfmw

https://typeset.io/
https://www.doi.org/10.1109/CCC.2007.38
https://typeset.io/papers/unbalanced-expanders-and-randomness-extractors-from-1zujg2vfmw
https://typeset.io/authors/venkatesan-guruswami-rt5fl0c5x8
https://typeset.io/authors/christopher-umans-ehkudqyulv
https://typeset.io/authors/salil-vadhan-sr31e51y0i
https://typeset.io/institutions/university-of-washington-2tqpyv72
https://typeset.io/institutions/california-institute-of-technology-3qpga2aa
https://typeset.io/institutions/harvard-university-3suqum0d
https://typeset.io/conferences/conference-on-computational-complexity-2f1epxxu
https://typeset.io/topics/randomness-v8v7rk18
https://typeset.io/topics/expander-graph-9nbze9j0
https://typeset.io/topics/bipartite-graph-2hturlnx
https://typeset.io/papers/randomness-conductors-and-constant-degree-lossless-expanders-2q674m947d
https://typeset.io/papers/correcting-errors-beyond-the-guruswami-sudan-radius-in-4alsanyl1f
https://typeset.io/papers/compressed-sensing-3z461x7qos
https://typeset.io/papers/expander-graphs-and-their-applications-wbsb8gxfw2
https://typeset.io/papers/randomness-is-linear-in-space-wj82hrphy7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/unbalanced-expanders-and-randomness-extractors-from-1zujg2vfmw
https://twitter.com/intent/tweet?text=Unbalanced%20Expanders%20and%20Randomness%20Extractors%20from%20Parvaresh-Vardy%20Codes&url=https://typeset.io/papers/unbalanced-expanders-and-randomness-extractors-from-1zujg2vfmw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/unbalanced-expanders-and-randomness-extractors-from-1zujg2vfmw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/unbalanced-expanders-and-randomness-extractors-from-1zujg2vfmw
https://typeset.io/papers/unbalanced-expanders-and-randomness-extractors-from-1zujg2vfmw

Unbalanced Expanders and Randomness Extractors

from Parvaresh-Vardy Codes∗

VENKATESAN GURUSWAMI
†

Dept. of Computer Science & Engineering

University of Washington

Seattle, WA 98195

venkat@cs.washington.edu

CHRISTOPHER UMANS
‡

Computer Science Department

California Institute of Technology

Pasadena, CA 91125

umans@cs.caltech.edu

SALIL VADHAN
§

School of Engineering and Applied Sciences

Harvard University

Cambridge, MA 02138

salil@eecs.harvard.edu

Abstract

We give an improved explicit construction of highly un-

balanced bipartite expander graphs with expansion arbi-

trarily close to the degree (which is polylogarithmic in

the number of vertices). Both the degree and the number

of right-hand vertices are polynomially close to optimal,

whereas the previous constructions of Ta-Shma, Umans,

and Zuckerman (STOC ‘01) required at least one of these

to be quasipolynomial in the optimal. Our expanders have

a short and self-contained description and analysis, based

on the ideas underlying the recent list-decodable error-

correcting codes of Parvaresh and Vardy (FOCS ‘05).

Our expanders can be interpreted as near-optimal “ran-

domness condensers,” that reduce the task of extracting ran-

domness from sources of arbitrary min-entropy rate to ex-

tracting randomness from sources of min-entropy rate arbi-

trarily close to 1, which is a much easier task. Using this

connection, we obtain a new construction of randomness

extractors that is optimal up to constant factors, while be-

ing much simpler than the previous construction of Lu et al.

(STOC ‘03) and improving upon it when the error parame-

ter is small (e.g. 1/poly(n)).

Keywords: expander graphs, randomness extractors,

∗A preliminary version of this paper appeared on ECCC under the title

“Extractors and Condensers from Univariate Polynomials” [10].
†Supported by NSF CCF-0343672, a Sloan Research Fellowship, and

a David and Lucile Packard Foundation Fellowship.
‡Supported by NSF CCF-0346991, BSF 2004329, a Sloan Research

Fellowship, and an Okawa Foundation research grant.
§Supported by NSF CCF-0133096, ONR N00014-04-1-0478, and US-

Israel BSF 2002246.

error-correcting codes, list decoding, condensers.

1 Introduction

One of the exciting developments in the theory of pseu-

dorandomness has been the discovery of intimate connec-

tions between a number of fundamental and widely stud-

ied objects — expander graphs, randomness extractors, list-

decodable error-correcting codes, pseudorandom genera-

tors, and randomness-efficient samplers. Indeed, substantial

advances have been made in our understanding of each of

these objects by translating intuitions and techniques from

the study of one to the study of another. In this work, we

continue this in tradition. Specifically, we use ideas from

recent breakthrough constructions of list-decodable codes,

due to Parvaresh and Vardy [22], to give improved and sim-

plified constructions of both unbalanced bipartite expander

graphs and randomness extractors.

1.1 Unbalanced expander graphs

Expanders are graphs that are sparse yet very highly con-

nected. They have a wide variety of applications in theoret-

ical computer science, and there is a rich body of work on

constructions and properties of expanders. (See the survey

[11]). The classic measure of the connectivity of an ex-

pander is vertex expansion, which asks that every set S of

vertices that is not too large has significantly more than |S|
neighbors. This property is formalized for bipartite graphs

through the following definitions.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

Definition 1.1. A bipartite (multi)graph with N left-

vertices, M right-vertices, and left-degree D is specified by

a function Γ : [N]× [D] → [M], where Γ(x, y) denotes the

y’th neighbor of x. For a set S ⊆ [N], we write Γ(S) to

denote its set of neighbors {Γ(x, y) : x ∈ S, y ∈ [D]}.

Definition 1.2. A bipartite graph Γ : [N] × [D] → [M] is

a (K,A) expander if for every set S ⊆ [N] of size K, we

have |Γ(S)| ≥ A ·K. It is a (≤Kmax , A) expander if it is a

(K,A) expander for all K ≤ Kmax .

The typical goals in constructing expanders are to max-

imize the expansion factor A and minimize the degree

D. In this work, we are also interested minimizing the

the size M of the right-hand side, so M ≪ N and the

graph is highly unbalanced. Intuitively, this makes ex-

pansion harder to achieve because there is less room in

which to expand. Using the probabilistic method, it can

be shown that very good expanders exist — with expan-

sion A = (1 − ε) · D, degree D = O(log(N/M)/ε), and

M = O(KmaxD/ε) = O(KmaxA/ε) right vertices. Thus,

if M ≤ N c for some constant c < 1, then the degree is log-

arithmic in N , and logarithmic degree is in fact necessary

if M = O(KmaxA).1 However, applications of expanders

require explicit constructions — ones where the neighbor

function Γ is computable in polynomial time (in its input

length, log N + log D) — and the best known explicit con-

structions still do not match the ones given by the proba-

bilistic method.

Most classic constructions of expanders, such as [19, 5,

18, 20], focus on the balanced (or non-bipartite) case (i.e.

M = N), and thus are able to achieve constant degree

D = O(1). The expansion properties of these construc-

tions are typically proven by bounding the second-largest

eigenvalue of the adjacency matrix of the graph. While such

‘spectral’ expansion implies various combinatorial forms

of expansion (e.g., vertex expansion) and many other use-

ful properties, it seems insufficient for deducing vertex ex-

pansion beyond D/2 [14] or for obtaining highly imbal-

anced expanders with polylogarithmic degree [38]. This

is unfortunate, because some applications of expanders re-

quire these require these properties. A beautiful example

of such an application was given by Buhrman et. al. [1].

They showed that a (≤ Kmax , A) expander with N left-

vertices, M right-vertices, and expansion A = (1 − ε)D
yields a method for storing any set S ⊆ [N] of size at

most Kmax/2 in an M -bit data structure so that member-

ship in S can be probabilistically tested by reading only one

bit of the data structure. An optimal expander would give

M = O(Kmax log N), only a constant factor more than

what is needed to represent an arbitrary set of size Kmax/2

1More generally, the degree must be at least

Ω(log(N/Kmax)/ log(M/(KmaxA))), as follows from the lower

bounds on the degree of dispersers [23].

(even without supporting efficient membership queries).2

Explicit constructions of expanders with expansion A =
(1 − ε)D were obtained by Ta-Shma, Umans, and Zuck-

erman [33] for the highly imbalanced (and nonconstant-

degree) case and Capalbo et al. [2] for the balanced (and

constant-degree) case. The constructions of Ta-Shma et

al. [33] can make either one of the degree or right-hand side

polynomially larger than the nonconstructive bounds men-

tioned above, at the price of making the other quasipoly-

nomially larger. That is, one of their constructions gives

D = poly(log N) and M = quasipoly(KmaxD)
def
=

exp(poly(log(KmaxD))), whereas the other gives D =
quasipoly(log N) and M = poly(KmaxD). The

quasipolynomial bounds were improved recently in [32],

but remained superpolynomial.

We are able to simultaneously achieve D = poly(log N)
and M = poly(KD), in fact with a good tradeoff between

the degrees of these two polynomials.

Theorem 1.1. For all constants α > 0, every N ∈ N,

Kmax ≤ N , and ε > 0, there is an explicit (≤Kmax , (1 −
ε)D) expander Γ : [N] × [D] → [M] with degree D =
O((log N)(log Kmax)/ε)1+1/α and M ≤ D2 · K1+α

max
.

Moreover, D is a power of 2.

The construction of our expanders is based on the recent

list-decodable codes of Parvaresh and Vardy [22], and can

be described quite simply. The proof of the expansion prop-

erty is inspired by the list-decoding algorithm for the PV

codes, and is short and self-contained. An overview of this

‘list-decoding approach’ to proving expansion is provided

in Section 2.1.

1.2 Randomness extractors

One of the main motivations and applications of our

expander construction is the construction of randomness

extractors. These are functions that convert weak ran-

dom sources, which may have biases and correlations, into

almost-perfect random sources. For general models of weak

random sources, this is impossible, so the extractor is also

provided with a short ‘seed’ of truly random bits to help

with the extraction [21]. This seed can be so short (e.g. of

logarithmic length), that one can often eliminate the need

for any truly random bits by enumerating all choices for

the seed. For example, this allows extractors to be used for

efficiently simulating randomized algorithms using only a

weak random source [39, 21]. Extractors have also found a

2We note that to implement the data structure of [1], it is not sufficient

that the expander be explicit in terms of its neighbor function Γ being effi-

ciently computable, but it is also necessary that the expander have efficient

‘decoding algorithms’. Such expanders were constructed by Ta-Shma [31].

Our expanders also have efficient decoding algorithms, but they only pro-

vide improvements over [1, 31] for this application when the set size is

relatively small, e.g. (log N)ω(1) ≤ Kmax ≤ exp((log log N)3).

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

wide variety of other applications in theoretical computer

science beyond their original motivating application, and

thus a long body of work has been devoted to providing

efficient constructions of extractors. (See the survey of

Shaltiel [26].)

To formalize the notion of an extractor, we need a few

definitions. Following [3, 39], the randomness in a source

is measured by min-entropy: a random variable X has min-

entropy at least k iff Pr[X = x] ≤ 2−k for all x. A random

variable Z is ε-close to a distribution D if for all events

A, Pr[Z ∈ A] differs from the probability of A under the

distribution D by at most ε. Then an extractor is defined as

follows:

Definition 1.3 ([21]). A function E : {0, 1}n × {0, 1}d →
{0, 1}m

is a (k, ε) extractor if for every X with min-entropy

at least k, E(X,Y) is ε-close to uniform, when Y is uni-

formly distributed on {0, 1}d
. An extractor is explicit if it is

computable in polynomial time.

The competing goals when constructing extractors are to

obtain a short seed length and to obtain a long output length.

Nonconstructively, it is possible to simultaneously have a

seed length d = log n + 2 log(1/ε) + O(1) and an output

length of m = k + d− 2 log(1/ε)−O(1). It remains open

to match these parameters with an explicit construction.

Building on a long line of work, Lu et al. [17] achieved

seed length and output length that are within constant fac-

tors of optimal, provided that the error parameter ε is

not too small. More precisely, they achieve seed length

d = O(log n) and output length m = (1 − α)k for

ε ≥ n−1/ log(c) n, where α and c are any two positive con-

stants. For general ε, they pay with either a larger seed

length of d = O((log∗ n)2 log n + log(1/ε)), or a smaller

output length of m = k/ log(c) n for any constant c.

In this work, we also achieve extractors that are optimal

up to constant factors, but are able to handle an error param-

eter ε that is even exponentially small:

Theorem 1.2 (extractor). For every constant α > 0, and

all positive integers n, k and all ε > exp(−n/2O(log∗ n)),
there is an explicit construction of a (k, ε) extractor E :

{0, 1}n×{0, 1}d → {0, 1}m
with d = O(log n+log(1/ε))

and m ≥ (1 − α)k.

Our extractor is also substantially simpler than that of

[17], which is a complex recursive construction involving

many tools. The key component in our construction is the

interpretation of our expander graph as a randomness con-

denser:

Definition 1.4. A function C : {0, 1}n×{0, 1}d → {0, 1}m

is an k →ε k′ condenser if for every X with min-entropy

at least k, C(X,Y) is ε-close to a distribution with min-

entropy k′, when Y is uniformly distributed on {0, 1}d
. A

condenser is explicit if it is computable in polynomial time.

A condenser is called lossless if k′ = k + d.

Observe that a k →ε k′ condenser with output length

m = k′ is an extractor, because the unique distribution

on {0, 1}m
with min-entropy m is the uniform distribu-

tion. Condensers are a natural stepping-stone to construct-

ing extractors, as they can be used to increase the entropy

rate (the ratio of the min-entropy in a random variable to

the length of the strings over which it is distributed), and

it is often easier to construct extractors when the entropy

rate is high. Condensers have also been used extensively

in less obvious ways to build extractors, often as part of

complex recursive constructions (e.g., [12, 25, 17]). Non-

constructively, there exist lossless condensers with seed

length d = log n + log(1/ε) + O(1), and output length

m = k + d + log(1/ε) + O(1).
As shown by [33], lossless condensers are equivalent to

bipartite expanders with expansion close to the degree. Ap-

plying this connection to Theorem 1.1, we obtain the fol-

lowing condenser:

Theorem 1.3. For all constants α > 0, and every n ∈ N,

k ≤ n, and ε > 0, there is an explicit (k →ε k + d)
(lossless) condenser C : {0, 1}n ×{0, 1}d → {0, 1}m with

d = (1 + 1/α) · (log n + log k + log(1/ε)) + O(1) and

m ≤ 2d + (1 + α)k.

Consider the case that α is a constant close to 0. Then

the condenser has seed length O(log(n/ε)) and output min-

entropy rate roughly 1/(1+α). Thus, the task of construct-

ing extractors for arbitrary min-entropy is reduced to that

of constructing extractors for min-entropy rate close to 1,

which is a much easier task. Indeed, when ε is constant,

we can use a well-known and simple extractor based on ex-

pander walks. When ε is sub-constant, we use Zuckerman’s

extractor [40] to obtain the proper dependence on ε. Thus,

we obtain Theorem 1.2.

1.3 Organization

We begin in Section 2 with a high level overview of our

construction and proof method. In Section 3 we describe

and analyze our expander construction. This expander con-

struction implies a lossless condenser construction, which

is discussed in Section 4. By applying extractors for high

min-entropy to the output of this condenser, we obtain our

new extractors, also in Section 4. In Section 5, we analyze

a lossy version of our main construction, which allows us to

minimize the seed lengths of the resulting condensers and

extractors. In Section 6 we analyze a variant of the con-

struction that utilizes Reed-Solomon codes and is a univari-

ate analogue of [27], and whose analysis is based on [8].

Finally we conclude in Section 7 with some open problems.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

1.4 Notation

Throughout this paper, we use boldface capital letters for

random variables (e.g., “X”), capital letters for indetermi-

nates, and lower case letters for elements of a set. Also

throughout the paper, Ut is the random variable uniformly

distributed on {0, 1}t
. The support of a random variable X

is supp(X)
def
= {x : Pr [X = x] > 0}. The statistical dis-

tance between random variables (or distributions) X and Y

is maxT |Pr [X ∈ T]−Pr [Y ∈ T] |. We say X and Y are

ε-close if their statistical distance is at most ε. All logs are

base 2.

2 Overview of our approach

In this section we give a high level overview of our con-

struction and the proof technique.

2.1 Expansion via list-decoding

Before explaining our approach, we briefly review the

basics of list-decodable codes. A code is mapping C :
[N] → [M]D, encoding messages of bit-length n = log2 N
to D symbols over the alphabet [M]. (Contrary to the

usual convention in coding theory, we use different alpha-

bets for the message and the encoding.) The rate of such a

code is ρ = n/(D log2 M). We say that C is (ε,K) list-

decodable if for every r ∈ [M]D, the set LIST(r, ε)
def
=

{x : Pry[C(x)y = ry] ≥ ε} is of size at most K. We

think of r as a received word obtained by corrupting all

but an ε fraction of symbols in some codeword. The list-

decodability property says that there are not too many mes-

sages x that could have led to the received word r. The

goal in constructing list-decodable codes is to optimize the

tradeoff between the agreement ε and the rate ρ, which are

typically constants independent of the message length n.

Both the alphabet size M and the list-size K should be rel-

atively small (e.g. constant or poly(n)). Computationally,

we would like efficient algorithms both for computing C(x)
given x and for enumerating the messages in LIST(r, ε)
given a received word r.

The classic Reed-Solomon codes were shown to achieve

these properties with polynomial-time list-decoding in the

seminal work of Sudan [29]. The tradeoff between ε and ρ
was improved by Guruswami and Sudan [9], and no better

result was known for a number of years. Recently, Par-

varesh and Vardy [22] gave an ingenious variant of Reed-

Solomon codes for which the agreement-rate tradeoff is

even better, leading finally to the optimal tradeoff achieved

by Guruswami and Rudra [8] (namely, ρ = ε − o(1)).
Our expanders are based on the Parvaresh-Vardy codes.

Specifically, for a left-vertex x ∈ [N] and y ∈ [D], we

define the y’th neighbor of x to be Γ(x, y) = (y,C(x)y),
where C : [N] → [M]D is a Parvaresh-Vardy code with a

somewhat unusual setting of parameters. (Note that here

we take the right-hand vertex set to be [D]× [M].) To prove

that this graph is an expander, we adopt a ‘list-decoding’

view of expanders. Specifically, for a right-set T ⊆ [D] ×
[M], we define

LIST(T)
def
= {x ∈ [N] : Γ(x) ⊆ T}.

Then the property of Γ being a (K,A) expander can be re-

formulated as follows:

for all right-sets T of size less than AK, we have

|LIST(T)| < K.

Let us compare this to the standard list-decodability

property for error-correcting codes. Notice that for a re-

ceived word r ∈ [M]D,

LIST(r, ε) = {x : Pr
y

[C(x)y = ry] ≥ ε}

= {x : Pr
y

[Γ(x, y) ∈ Tr] ≥ ε},

where Tr = {(y, ry) : y ∈ [D]}. Thus, the two list-

decoding problems are related, but have the following key

differences:

• In the coding setting, we only need to consider sets T
of the form Tr. In particular, these sets are all very

small — containing only D of the possible DM right

vertices.

• In the expander setting, we only need to bound the

number of left-vertices whose neighborhood is entirely

contained in T , whereas in the coding setting we need

to consider left-vertices for which even an ε fraction of

neighbors are in Tr.

• In the coding setting, it is desirable for the alphabet

size M to be small (constant or poly(n)), whereas our

expanders are most interesting and useful when M is

in the range between, say, nω(1) and 2n/2.

• In the coding setting, the exact size of LIST(r, ε) is

not important, and generally any poly(n/ε) bound is

considered sufficient. Here, however, the relation be-

tween the list size and the size of T is crucial. A factor

of 2 increase in the list size (for T of the same size)

would change our expansion factor A from (1 − ε)D
to (1 − ε)D/2.

For these reasons, we cannot use the analysis of Parvaresh

and Vardy [22] as a black box. Indeed, in light of the last

item, it is somewhat of a surprise that we can optimize the

bound on list size to yield such a tight relationship between

|T | and |LIST(T)| and thereby provide near-optimal expan-

sion.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

This list-decoding view of expanders is related to the list-

decoding view of randomness extractors that was implicit

in Trevisan’s breakthrough extractor construction [36] and

was crystallized by Ta-Shma and Zuckerman [34]. There

one considers all sets T ⊆ [D] × [M] (not just ones of

bounded size) and bounds the size of LIST(T, µ(T)+ ε) =

{x : Pry[Γ(x, y) ∈ T] ≥ µ(T) + ε}, where µ(T)
def
=

|T |/(DM) is the density of T . Indeed, our work began

by observing a strong similarity between a natural ‘univari-

ate’ analog of the Shaltiel–Umans extractor [27] and the

Guruswami–Rudra codes [8], and by hoping that the list-

decoding algorithm for the Guruswami–Rudra codes could

be used to prove that the univariate analog of the Shaltiel–

Umans construction is indeed a good extractor (as conjec-

tured in [15]). However, we were only able to bound

|LIST(T, ε)| for “small” sets T , which led to constructions

of lossy condensers, as in the preliminary version of our

paper [10]. In this version, we instead bound the size of

LIST(T) = LIST(T, 1), and this bound is strong enough

to yield expanders with expansion (1 − ε) · D and thus di-

rectly implies lossless condensers, as discussed above. (We

still consider lossy condensers in Section 5 of this paper for

the purpose of getting improved bounds on some other pa-

rameters.)

It is also interesting to compare our construction and

analysis to recent constructions of extractors based on al-

gebraic error-correcting codes, namely those of Ta-Shma,

Zuckerman, and Safra [35] and Shaltiel and Umans [27].

Both of those constructions use multivariate polynomials

(Reed–Muller codes) as a starting point, and rely on the fact

that these codes are locally decodable, in the sense that any

bit of the message can be recovered by reading only a small

portion of the received word. While the advantage of lo-

cal decodability is clear in the computational setting (i.e.,

constructions of pseudorandom generators [30, 27, 37]),

where it enables efficient reductions, it is less clear why

it is needed in the information-theoretic setting of extrac-

tors, where the ‘decoding’ only occurs in the analysis. In-

deed, Trevisan’s extractor [36] corresponds to the pseudo-

random generator construction of [30], but with the locally

list-decodable code replaced by a standard list-decodable

code. However, the extractor analyses of [35] and [27]

seem to rely essentially on multivariate polynomials and lo-

cal (list-)decodability. Our construction works with univari-

ate polynomials and the analysis does not require any local

decoding – indeed, univariate polynomial codes are not lo-

cally decodable.

2.2 Parvaresh-Vardy codes and the proof
technique

Our constructions are based on Parvaresh-Vardy codes

[22], which in turn are based on Reed-Solomon codes. A

Reed-Solomon codeword is a univariate degree n− 1 poly-

nomial f ∈ Fq[Y], evaluated at all points in the field. A

Parvaresh-Vardy codeword is a bundle of several related de-

gree n−1 polynomials f0, f1, f2, . . . , fm−1, each evaluated

at all points in the field. The evaluations of the various fi at

a given field element are packaged into a symbol from the

larger alphabet Fqm . The purpose of this extra redundancy

is to enable a better list-decoding algorithm than is possible

for Reed-Solomon codes.

The main idea in [22] is to view degree n−1 polynomials

as elements of the extension field F = Fq[Y]/E(Y), where

E is some irreducible polynomial of degree n. The fi (now

viewed as elements of F) are chosen so that fi = fhi

0 for

i ≥ 1, and a positive integer parameter h. As explained

in Section 2.1, our expander is constructed directly from

Parvaresh-Vardy codes as follows:

Γ(f0, y) = [y, f0(y), f1(y), . . . , fm−1(y)].

In the analysis, our task is to show that for any set T of

size L, the set LIST(T) = {f0 : Γ(f0) ⊆ T} is small. To

do this we follow the list-decoding analysis of [22], which

in turn has the same general structure as the list-decoding

algorithms for Reed–Solomon codes [29, 9]. We first pro-

duce a non-zero polynomial Q : F
1+m
q → Fq that vanishes

on T . Now, for every f0 ∈ LIST(T), we have

Q(y, f0(y), . . . , fm−1(y)) = 0 ∀y ∈ Fq,

and by ensuring that Q has small degree (which is possi-

ble because T is not too large), we will be able to argue

that the univariate polynomial Q(Y, f0(Y), . . . , fm−1(Y))
is the zero polynomial. Recalling the definition of the

fi, and viewing the fi as elements of the extension field

F = Fq[Y]/E(Y), we observe that f0 is a root of the uni-

variate polynomial

Q∗(Z)
def
= Q(Y,Z, Zh, Zh2

, . . . , Zhm−1

) mod E(Y).

This is because when simplifying the formal polynomial

Q∗(f0(Y)) mod E(Y), we can first take each f0(Y)hi

term modulo E(Y), resulting in fi(Y), and we have just

argued that Q(Y, f0(Y), . . . , fm−1(Y)) is the zero polyno-

mial, so it is still the zero polynomial modulo E(Y). This

argument holds for every f0 ∈ LIST(T), and so we can

upper-bound |LIST(T)| by the degree of Q∗.

3 Expander Graphs

We first formally develop the list-decoding view of ex-

panders described in Section 2.1.

Definition 3.1. For a bipartite graph Γ : [N]× [D] → [M]
and a set T ⊆ [M], define

LIST(T) = {x ∈ [N] : Γ(x) ⊆ T}.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

The proof of the next lemma follows from the defini-

tions:

Lemma 3.1. A graph Γ is a (K,A) expander iff for every

set T of size at most AK − 1, LIST(T) is of size at most

K − 1.

3.1 The construction

Fix the field Fq and let E(Y) be an irreducible polyno-

mial of degree n over Fq. We identify elements of F
n
q with

univariate polynomials over Fq with degree at most n − 1.

Fix an integer parameter h.

Our expander is the bipartite graph Γ : F
n
q ×Fq → F

m+1
q

defined as:

Γ(f, y)
def
= [y, f(y), (fh mod E)(y), (fh2

mod E)(y),

· · · , (fhm−1

mod E)(y)]. (1)

For ease of notation, we will refer to (fhi

mod E) as “fi.”

Theorem 3.2. The graph Γ : F
n
q × Fq → F

m+1
q defined

in (1) is a (≤ Kmax , A) expander for Kmax = hm and

A = q − (n − 1)(h − 1)m.

Proof. Let K be any integer less than or equal to Kmax =
hm, and let A = q − (n − 1)(h − 1)m. By Lemma 3.1, it

suffices to show that for every set T ⊆ F
m+1
q of size at most

AK − 1, we have |LIST(T)| ≤ K − 1. Fix such a set T .

Our first step is to find a nonzero “low-degree” polyno-

mial Q(Y, Y1, . . . , Ym) that vanishes on T . Specifically, Q
will only have nonzero coefficients on monomials of the

form Y i
Mj(Y1, . . . , Ym) for 0 ≤ i ≤ A − 1 and 0 ≤ j ≤

K −1 ≤ hm −1, where Mj(Y1, . . . , Ym) = Y j0
1 · · ·Y jm−1

m

and j = j0 + j1h + · · · + jm−1h
m−1 is the base-h repre-

sentation of j. (For simplicity, one may think of K = hm,

in which case we are simply requiring that Q has degree at

most h − 1 in each variable Yi.) For each z ∈ T , requiring

that Q(z) = 0 imposes a homogeneous linear constraint on

the AK coefficients of Q. Since the number of constraints

is smaller than the number of unknowns, this linear sys-

tem has a nonzero solution. Moreover, we may assume that

among all such solutions, Q is the one of smallest degree

in the variable Y . This implies that if we write Q in the

form Q(Y, Y1, . . . , Ym) =
∑K−1

j=0 pj(Y) · Mj(Y1, . . . , Ym)
for univariate polynomials p0(Y), . . . , pK−1(Y), then at

least one of the pj’s is not divisible by E(Y). Otherwise

Q(Y, Y1, . . . , Ym)/E(Y) would have smaller degree in Y
and would still vanish on T (since E is irreducible and thus

has no roots in Fq).

Consider any polynomial f(Y) ∈ LIST(T). By the def-

inition of LIST(T) and our choice of Q, it holds that

Q(y, f0(y), f1(y), . . . , fm−1(y)) = 0 ∀y ∈ Fq.

That is, the univariate polynomial Rf (Y)
def
=

Q(f0(Y), . . . , fm−1(Y)) has q zeroes. Since the de-

gree of Rf (Y) is at most (A − 1) + (n − 1)(h − 1)m < q,

it must be identically zero. So

Q(Y, f0(Y), . . . , fm−1(Y)) = 0

as a formal polynomial. Now recall that fi(Y) ≡ f(Y)hi

(mod E(Y)). Thus,

Q(Y, f(Y), f(Y)h, . . . , f(Y)hm−1

)

≡ Q(Y, f0(Y), . . . , fm−1(Y)) ≡ 0 (mod E(Y)) .

So if we interpret f(Y) as an element of the extension field

F = Fq[Y]/E(Y), then f(Y) is a root of the univariate

polynomial Q∗ over F defined by

Q∗(Z)
def
= Q(Y,Z, Zh, Zh2

, . . . , Zhm−1

) mod E(Y)

=

K−1
∑

j=0

(pj(Y) mod E(Y)) · Mj(Z,Zh, . . . , Zhm−1

)

=

K−1
∑

j=0

(pj(Y) mod E(Y)) · Zj .

Since this holds for every f(Y) ∈ LIST(T), we deduce

that Q∗ has at least |LIST(T)| roots in F. On the other

hand, Q∗ is a non-zero polynomial, because at least one of

the pj(Y)’s is not divisible by E(Y). Thus, |LIST(T)| is

bounded by the degree of Q∗, which is at most K − 1.

3.2 Setting parameters

The following theorem differs from Theorem 1.1 only by

allowing α to be non-constant (and then making the depen-

dence of D on α explicit).

Theorem 3.3 (Thm. 1.1, generalized). For every N ∈ N,

Kmax ≤ N , and ε, α > 0, there is an explicit (≤Kmax , (1−
ε)D) expander Γ : [N] × [D] → [M] with degree D =
22+α((log N)(log Kmax)/ε)1+1/α and M ≤ D2 · K1+α

max
.

Moreover, D is a power of 2.

Proof. Let n = log N and k = log Kmax. Let h =
⌈(nk/ε)1/α⌉ and let q be the power of 2 in the interval

(h1+α, 2h1+α].
Set m = ⌈(log Kmax)/(log h)⌉, so that hm−1 ≤

Kmax ≤ hm. Then, by Theorem 3.2, the graph Γ :
F

n
q × Fq → F

m+1
q defined in (1) is a (≤hm, A) expander

for A = q− (n− 1)(h− 1)m. Since Kmax ≤ hm, it is also

a (≤Kmax, A) expander.

Note that the number of left-vertices in Γ is qn ≥ N , and

the number of right-vertices is

M = qm+1 ≤ q2 · h(1+α)·(m−1) ≤ q2 · K1+α
max .

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

The degree is

D
def
= q ≤ 2h1+α ≤ 2(2(nk/ε)1/α)1+α = 22+α(nk/ε)1+1/α

≤ 22+α · ((log N)(log Kmax)/ε)1+1/α .

To see that the expansion factor A = q − (n − 1)(h −
1)m ≥ q − nhk is at least (1 − ε)D = (1 − ε)q, note that

nhk ≤ ε · h1+α ≤ εq,

where the first inequality holds because hα ≥ nk/ε.

Finally, the construction is explicit because a represen-

tation of Fq for q a power of 2 (i.e. an irreducible poly-

nomial of degree log q over F2) as well as an irreducible

polynomial E(Y) of degree n over Fq can be found in time

poly(n, log q) = poly(log N, log D) [28].

Remark 1. In this proof we work in a field Fq of character-

istic 2, which has the advantage of yielding a polynomial-

time construction even when we need to take q to be super-

polynomially large (which occurs when ε(n) = n−ω(1)).

When ε ≥ 1/poly(n), then we could use any prime power

q instead, with some minor adjustments to the construction

and the parameters claimed in the theorem.

4 Lossless condensers and extractors

We now interpret the expanders constructed in the previ-

ous section as lossless condensers (see Definition 1.4). This

connection, due to Ta-Shma, Umans, and Zuckerman [33],

is based on viewing a function C : {0, 1}n × {0, 1}d →
{0, 1}m as the neighbor function of a bipartite graph with

2n left-vertices, 2m right-vertices, and left-degree 2d. It

turns out that this graph has expansion close to the degree if

and only if C is a lossless condenser.

Lemma 4.1 ([33]). C : {0, 1}n → {0, 1}d → {0, 1}m is a

k →ε k+d condenser iff the corresponding bipartite graph

is a (2k, (1 − ε) · 2d) expander.

Thus the following is an immediate consequence of The-

orem 3.3.

Theorem 4.2 (Theorem 1.3, generalized). For every n ∈
N, kmax ≤ n, and α, ε > 0, there is an explicit function C :
{0, 1}n ×{0, 1}d → {0, 1}m with d = (1+1/α) · (log n+
log kmax + log(1/ε) + α + 2) and m ≤ 2d + (1 + α)kmax

such that for all k ≤ kmax , C is a k →ε k + d (lossless)

condenser.

Once we have condensed almost all of the entropy into

a source with entropy rate close to 1 (as in Theorem 4.2),

extracting (most of) that entropy is not that difficult. All

we need to do is to compose the condenser with an extrac-

tor that works for entropy rates close to 1. The following

standard fact makes the composition formal:

Proposition 4.3. Suppose C : {0, 1}n × {0, 1}d1 →
{0, 1}n′

is an k →ε1
k′ condenser, and E : {0, 1}n′ ×

{0, 1}d2 → {0, 1}m is a (k′, ε2)-extractor, then E ◦
C : {0, 1}n × {0, 1}t1+t2 → {0, 1}m defined by (E ◦
C)(x, y1, y2)

def
= E(C(x, y1), y2) is a (k, ε1+ε2)-extractor.

For the best dependence on the error parameter ε, the

extractor we will use is due to Zuckerman:

Theorem 4.4 ([40]). For all constants α, δ > 0: for all pos-

itive integers n, k and all ε > exp(−n/2O(log∗ n)), there

is an explicit construction of a (k = δn, ε) extractor E :

{0, 1}n×{0, 1}d → {0, 1}m
with d = O(log n+log(1/ε))

and m ≥ (1 − α)k.

We now prove our main extractor theorem, restated here:

Theorem 4.5 (Thm. 1.2, restated). For every constant

α > 0, and all positive integers n, k and all ε >
exp(−n/2O(log∗ n)), there is an explicit construction of a

(k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m
with

d = O(log n + log(1/ε)) and m ≥ (1 − α)k.

Proof. Consider the condenser of Theorem 4.2, with its pa-

rameter ε set to one half the present ε, and its parameter α
set to 1. Its seed length is d1 = O(log(n/ε)), and its out-

put length is n′ ≤ 2d1 +2k, while its output min-entropy is

k′ ≥ k+d1. Applying Proposition 4.3 to this condenser and

the extractor of Theorem 4.4 (with its parameter ε set to half

the present ε, and δ = 1/2) gives the claimed extractor.

In the fairly common case that ε is a constant, we can use

the much simpler “expander-walk” extractor which extracts

almost all of the entropy for entropy rates close to 1 (in place

of the extractor of Theorem 4.4). Note that our condenser

from Theorem 4.2 achieves a constant entropy rate arbitrar-

ily close to 1, and so can be combined with any extrac-

tor for such high min-entropy rates. A standard construc-

tion achieving this is based on expander walks [6, 40, 41].

Specifically, such an extractor can be obtained by combin-

ing the equivalence between extractors and ‘averaging sam-

plers’ [40], and the fact that expander walks are an averag-

ing sampler, as established by the Chernoff bound for ex-

pander walks [6].3

Theorem 4.6. For all constants α, ε > 0, there is a con-

stant δ < 1 for which the following holds: for all posi-

tive integers n, there is an explicit construction of a (k =
δn, ε) extractor E : {0, 1}n × {0, 1}t → {0, 1}m

with

t ≤ log(αn) and m ≥ (1 − α)n.

For completeness, we present the short proof:

3The papers [13, 4] prove hitting properties of expander walks, and

observe that these imply objects related to (but weaker than) extractors,

known as dispersers.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

Proof. Let m = ⌈(1 − α)n⌉, and for some absolute con-

stants c > 1 and λ < 1, let G be an explicit 2c-regular

expander on 2m vertices (identified with {0, 1}m) and sec-

ond eigenvalue λ = λ(G) < 1. Let L be the largest power

of 2 at most (n − m)/c (so L > (n − m)/(2c)), and let

t = log L ≤ log(αn). The extractor E is constructed as

follows. Its first argument x is used to describe a walk

v1, v2, . . . , vL of length L in G by picking v1 based on the

first m bits of x, and each further step of the walk from the

next c bits of x — so in all, L must satisfy n = m+(L−1)c.

The seed y is used to pick one of the vertices of the walk at

random. The output E(x, y) of the extractor is the m-bit

label of the chosen vertex.

Let X be a random variable with min-entropy k = δn.

We wish to prove that for any S ⊆ {0, 1}m, the probability

that E(X,Ut) is a vertex in S is in the range µ ± ε where

µ = |S|/2m. Fix any such subset S. Call an x ∈ {0, 1}n

“bad” if
∣

∣

∣

∣

Pr
y

[E(x, y) ∈ S] − µ

∣

∣

∣

∣

> ε/2.

The known Chernoff bounds for random walks on ex-

panders [6] imply that the number of bad x’s is at most

2n·e−Ω(ε2(1−λ)L) = 2n·e−Ω(ε2(1−λ)αn/c) = 2n·2−Ω(ε2αn)

(since c, λ are absolute constants). Therefore the probability

that X is bad is at most 2−δn · 2n · 2−Ω(ε2αn), which is

exponentially small for large enough δ < 1. Therefore

|Pr[E(X,Ut) ∈ S] − µ| ≤ ε/2 + 2−Ω(n) ≤ ε,

implying that E is a (k, ε)-extractor.

Combining Theorem 4.2 with Theorem 4.6 via Propo-

sition 4.3, as in the proof of Theorem 4.5, we obtain the

following extractor, which has the advantage that its proof

is short and self-contained (except for the Chernoff bound

for expander walks [6]):

Theorem 4.7. For every constant α > 0, for all positive

integers n, k, and all constant ε > 0, there is an explicit

construction of a (k, ε) extractor E : {0, 1}n × {0, 1}d →
{0, 1}m

with d = O(log n + log(1/ε)) and m ≥ (1− α)k.

5 Lossy condensers

In this section we show how minor modifications to the

proof allow us to optimize the seed length or the output en-

tropy. We also show that a small modification to the con-

struction yields condensers from Reed-Solomon codes. The

price for both of these modifications is that the resulting ob-

jects are no longer lossless condensers, but instead just or-

dinary (lossy) condensers.

5.1 The list-decoding viewpoint

First, we record some standard facts about min-entropy:

Proposition 5.1. For K ∈ N, a distribution D has min-

entropy at least log K iff D is a convex combination of flat

distributions on sets of size exactly K.

Proposition 5.2. For any k > 0, the distance from a dis-

tribution D to a closest distribution with min-entropy k is

exactly
∑

a:D(a)≥2−k(D(a) − 2−k).

Proposition 5.3. A distribution D with min-entropy

log(K − c) is c/K-close to some distribution with min-

entropy log K.

Proof. By Proposition 5.2, the distance from D to the clos-

est distribution with min-entropy log K is
∑

a:D(a)≥1/K

(D(a) − 1/K) ≤ 1 − (K − c) · 1/K = c/K.

The next lemma gives a useful sufficient condition for a

distribution to be close to having large min-entropy:

Lemma 5.4. Let Z be a random variable. If for all sets

T of size K, Pr[Z ∈ T] ≤ ε then Z is ε-close to having

min-entropy at least log(K/ε).

Proof. Let T be a set of the K heaviest elements x (under

the distribution of Z). Let 2−ℓ be the average probability

mass of the elements in T . Then ε ≥ Pr[Z ∈ T] = 2−ℓK,

so ℓ ≥ log(K/ε). But every element outside T has weight

at most 2−ℓ, and with all but probability ε, Z hits elements

outside T .

Now we can develop a ‘list-decoding’ view of lossy con-

densers, analogous to the one we have used for expanders

(Lemma 3.1) and the one known for extractors [34]. The

following definition should be compared to Definition 3.1:

Definition 5.1. For a function C : {0, 1}n × {0, 1}d →
{0, 1}m and a set T ⊆ {0, 1}m, define

LIST(T, ε)
def
=

{

x : Pr
y

[C(x, y) ∈ T] > ε

}

.

Similar to the situation with expanders, if we can bound

the size of LIST(T, ε) for all sets T that are not too large,

then we have a condenser:

Lemma 5.5. Fix a function C : {0, 1}n × {0, 1}d →
{0, 1}m. If for every set T ⊆ {0, 1}m of size at most L,

we have |LIST(T, ε)| ≤ H , then C is a

log(H/ε) →2ε log(L/ε) − 1

condenser.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

Proof. We have a random variable X with min-entropy

log(H/ε). For a fixed T of size at most L, the probability

that X is in LIST(T, ε) is at most ε; if that does not happen,

then the probability C(X,Ut) lands in T is at most ε. Al-

together the probability C(X,Ut) falls in T is at most 2ε.

Now apply Lemma 5.4.

5.2 An analysis for minimizing the seed
length

The condenser of Theorem 4.2 is lossless and achieves

an entropy rate of 1/(1 + α) for any desired α > 0, but its

seed length is (1 + 1/α)(log(n/ε) + log k + O(1)). By

picking α to be large, say α = 1/γ for a small constant

γ > 0, we can reduce the seed length to (1+γ)(log(n/ε)+
log k+O(1)), at the expense of a worse output entropy rate

of Ω(γ).
We now show how one can improve the seed length fur-

ther, to (1 + γ)(log(n/ε) + O(1)) — that is, save the log k
term. The new condenser, while not lossless, still retains a

fraction (1 − O(1/ log(n/ε))) of the input entropy, and the

entropy rate is Ω(γ).
The improved analysis that permits us to optimize the

seed length is in the following theorem, which exploits the

“multiple-roots” idea in [9] (compare to Theorem 3.2):

Theorem 5.6. Define Γ : F
n
q × Fq → F

m+1
q as in (1) and

define LIST(T, ε) with respect to Γ as in Definition 5.1. Fix

positive integer parameters s ≥ 1, H ≤ hm. Then for every

set T ⊆ F
m+1
q of size at most

L =

⌊

AH − 1
(

m+s
s−1

)

⌋

,

we have |LIST(T, ε)| ≤ H − 1, where A = εsq − (n −
1)(h − 1)m.

Some intuition about the parameters above may be in or-

der. In Theorem 3.2, the lower bound on q (implicit in the

demand that A > 0) needed in order to ensure expansion by

a (1 − ε)q factor was q ≥ nmh/ε. In the above theorem,

the lower bound requirement is weaker by a factor s, and

this turns into an improvement in the seed length (which is

log q). When viewed as a condenser, the price we pay is

that the input entropy is larger by about log
(

m+s
s−1

)

(which

is Θ(m) when we pick s = m) than the output entropy, and

thus the condenser incurs an entropy loss.

Proof. Let T ⊆ F
m+1
q be an arbitrary set of size at most

L = ⌊(AH − 1)/(
(

m+s
s−1

)

)⌋. The proof follows along the

lines of the proof of Theorem 3.2, with the main change

being that we make sure that the interpolated polynomial

Q(Y, Y1, Y2, . . . , Ym) has a root of multiplicity at least s at

each element α = (α0, α1, α2, . . . , αm) ∈ S. By a “root of

multiplicity at least s,” we mean that that the polynomial

Qα(Y, Y1, . . . , Ym)
def
= Q(α0 + Y, α1 + Y1, . . . , αm + Ym)

has no monomials of degree s − 1 or smaller with nonzero

coefficients, which amounts to
(

m+s
s−1

)

homogeneous lin-

ear constraints on the coefficients of Q. The polynomial

Q will only have nonzero coefficients on AH monomials

of the form Y i
Mj(Y1, . . . , Ym) for 0 ≤ i ≤ A − 1 and

0 ≤ j ≤ H − 1, where Mj(Y1, . . . , Ym) = Y j0
1 · · ·Y jm−1

m

and j = j0 + j1h + · · · + jm−1h
m−1 is the base-h repre-

sentation of j. Since AH > |T |
(

m+s
s−1

)

, we have more un-

knowns than the number of homogeneous linear constraints

and such a nonzero polynomial Q exists. In the following,

we fix Q to be any such nonzero polynomial, and if several

such polynomials exist, we choose the one with smallest Y -

degree.

Suppose f(Y) ∈ LIST(T, ε). Let y ∈ Fq be such that

Γ(f, y) ∈ T . Then, by the choice of Q,

Q(y, f0(y), f1(y), . . . , fm−1(y)) = Q(Γ(f, y)) = 0.

In fact, since Γ(f, y) is a root of multiplicity s, we can show

that the the polynomial

Rf (Y)
def
= Q(Y, f0(Y), f1(Y), . . . , fm−1(Y))

has a root of multiplicity s at y. To see this, note that

Rf (y + Y) = Q(y + Y, f0(y + Y), . . . , fm−1(y + Y))

= Q(y + Y, f0(y) + Y g0(Y), . . . , fm−1(y) + Y gm−1(Y))

= QΓ(f,y)(Y, Y · g0(Y), Y · g1(Y), . . . , Y · gm−1(Y))

for some polynomials g0,. . . ,gm−1. Since every mono-

mial in QΓ(f,y) has degree at least s, when we substitute

Y · gi(Y) for the variables we get a univariate polynomial

divisible by Y s. Thus Y s|Rf (y + Y), i.e. Rf has a root

of multiplicity s at y. Equivalently, (Y − y)s|Rf (Y). We

conclude that if f(Y) ∈ LIST(T, ε), i.e., if

Pr
y

[Q(y, f0(y), f1(y), . . . , fm−1(y)) = 0] > ε ,

then Rf (Y) has more than εsq roots counting multiplicities.

On the other hand the degree of Rf (Y) is at most (A−1)+
(n− 1)(h− 1)m. Therefore, since εsq exceeds this degree,

we must have Rf (Y) = 0.

From this point on, the proof proceeds identically to that

of Theorem 3.2 (with H playing the role of K), leading to

the desired conclusion |LIST(T, ε)| ≤ H − 1.

5.3 Setting parameters

Picking parameters suitably we obtain the following con-

denser:

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

Theorem 5.7. For every n ∈ N, ℓ ≤ n such that 2ℓ is

an integer, and α, ε > 0, there is an explicit function C :
{0, 1}n × {0, 1}d → {0, 1}n′

that is a

(k = ℓt + log(1/ε)) →3ε k + d − (2ℓ + log(1/ε) + O(1))

condenser with d ≤ (1 + 1/α)t and n′ ≤ (1 + 1/α)k + d,

where t = ⌈α log(4n/ε)⌉, provided ℓ(t − 2) ≥ log(2/ε).

Proof. Set h = 2t and note that h1/α ≥ 4n/ε. Let q be the

power of 2 in (h1+1/α/2, h1+1/α]. Set m = s = ℓ. Note

that

A
def
= εsq − (n − 1)(h − 1)m ≥ εsq − nhm ≥ εsq/2,

because q ≥ h1+1/α/2 ≥ 2hn/ε, and s = m.

Consider the function Γ : F
n
q × Fq → F

m+1
q defined in

(1). By Theorem 5.6, for every T ⊆ F
m+1
q of size at most

L =

⌊

Ahm − 1
(

2m
m+1

)

⌋

,

we have |LIST(T, ε)| ≤ hm − 1. Applying Lemma 5.5, we

find that Γ is a

log((hm − 1)/ε) →2ε log(L/ε) − 1

condenser. Now

L ≥ Ahm − 1

22m
− 1 ≥ Ahm

22m
− 2 .

By Proposition 5.3, the output distribution of the condenser

Γ is within statistical distance

22m+1

Ahm
≤ 22ℓ+1

2tℓ
≤ ε (2)

of a distribution with min-entropy at least

log(Ahm/22m+1) + log(1/ε), where we used the hy-

pothesis ℓ(t− 2) ≥ log(2/ε) to conclude the last inequality

in (2). Together with the lower bound A ≥ εℓq/2, we can

conclude that Γ is a

ℓt + log(1/ε) →3ε log q + log ℓ + ℓt − 2ℓ − 2

condenser. This is the claimed condenser; the upper bounds

on d and n′ follow from the fact that q ≤ 2(1+1/α)t.

Finally, the construction is explicit because a represen-

tation of Fq for q a power of 2 as well as an irreducible

polynomial E(Y) of degree n over Fq can be found in time

poly(n, log q) [28].

In the previous theorem, α may be subconstant, and in

the following corollary we show that it can be set to pro-

duce a seed length of d = log n + O(1) (for constant ε),

which would be optimal up to an additive constant if our

condenser produced an output that is almost perfectly con-

densed (i.e., if the output length exceeded the output min-

entropy by only an additive O(1) bits). We can achieve

such a short seed at the expense of an output entropy rate of

Ω(1/ log(n/ε)), which is subconstant, but still quite good.

Corollary 5.8. For every constant integer c ≥ 2, and for

every n ∈ N, k ≤ n, and ε ≥ 2−k+3, there is an explicit

construction of a

k →3ε (1 − 2/c)k + d − log(1/ε) − O(1)

condenser C : {0, 1}n × {0, 1}d → {0, 1}n′

with d =

log(n/ε) + O(1) and n′ =
(

1 + log(4n/ε)
c

)

k + d.

Proof. Set α = c/ log(4n/ε) in Theorem 5.7.

5.4 Extractors with short seed length

We now combine the condenser of Theorem 5.7 with

Zuckerman’s recent extractor. (This extractor in turn starts

by applying a condenser due to Raz [24] that has constant

seed length and can increase the entropy rate from δ to 1−δ
for any constant δ > 0, while retaining a constant fraction

of the min-entropy.)

Theorem 5.9 ([41]). For all constants α, δ, ε > 0: for all

positive integers n, there is an explicit construction of a

(k = δn, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = log n + O(1) and output length

m ≥ (1 − α)k.

Combining Theorem 5.7 with Theorem 5.9 via Propo-

sition 4.3, as in the proof of Theorem 4.5, we obtain the

following extractor, which has a near-optimal seed length:

Theorem 5.10. For all constants α, γ, ε > 0: for all posi-

tive integers n, k, there is an explicit construction of a (k, ε)

extractor E : {0, 1}n × {0, 1}d → {0, 1}m
with seed

length d = (1 + γ) log n + log k + O(1) and output length

m ≥ (1−α)k, provided k ≥ cd/α for a universal constant

c.

6 Reed-Solomon version

We use one of the main ideas from [8] to argue that a

small modification to our construction gives a good con-

denser from Reed-Solomon codes, answering a question

raised in [15].

Let q be an arbitrary prime power, and let ζ ∈ Fq be a

generator of the multiplicative group F
∗
q . Then the polyno-

mial E(Y) = Y q−1− ζ is irreducible over Fq [16, Chap. 3,

Sec. 5]. The following identity holds for all f(Y) ∈ Fq[Y]:

f(Y)q ≡ f(Y q) ≡ f(Y q−1Y) ≡ f(ζY) (mod E(Y)) .

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

seed length d output length output entropy Thm.

(1 + 1/γ) (log(n/ε) + log k) + O(1) (1 + γ)k + 2d k + d 4.2

(1 + γ) (log(n/ε) + log k) + O(1) (1 + 1/γ)k + 2d k + d 4.2

(1 + γ) log(n/ε) + O(1) (1 + 1/γ)k + d (1 − O(1/ log(n/ε))) k + d 5.7

log(n/ε) + O(1) (1 + γ log(4n/ε)) k + d (1 − 2γ)k + d − O(log(1/ε)) 5.7

Figure 1. Condensers in this paper for k min-entropy. Above, γ > 0 is an arbitrarily small constant.

Note that the first two constructions condense all entropy thresholds less than k simultaneously.

In this case, if we modify our basic function Γ (see (1))

slightly so that we raise f to successive powers of q rather

than h, we obtain the function C : F
n
q ×Fq → F

m+1
q defined

by:

C(f, y)
def
= [y, f(y), (fq mod E)(y), (fq2

mod E)(y),

· · · , (fqm−1

mod E)(y)]

= [y, f(y), f(ζy), · · · , f(ζm−1y)]. (3)

In other words, our function interprets its first argument

as describing a univariate polynomial over Fq of degree at

most n−1 (i.e., a Reed-Solomon codeword), it uses the seed

to select a random location in the codeword, and it outputs

m successive symbols of the codeword, together with the

seed. This is precisely the analog of the Shaltiel-Umans q-

ary extractor construction [27], for univariate polynomials

rather than multivariate polynomials.

With a minor modification to the proof of Theorem 3.2,

we show that this is good condenser:

Theorem 6.1. Define C as in (3) and LIST(T, ε) with re-

spect to C as in Definition 5.1. Then for every T ⊆ F
m+1
q

of size at most L = Ahm − 1, we have

|LIST(T, ε)| ≤ (h − 1) · qm − 1

q − 1
,

where A = εq − (n − 1)(h − 1)m.

Proof. Let T ⊆ F
m+1
q with |T | ≤ Ahm − 1. The proof

follows along the lines of Theorem 3.2. We interpolate a

nonzero polynomial Q(Y, Y1, Y2, . . . , Ym) that vanishes on

T , and and has degree at most A−1 in Y and at most (h−1)
in each Yj . The number of coefficients of such a Q equals

Ahm which exceeds |T |, and therefore such a nonzero poly-

nomial Q indeed exists. We can also ensure that E(Y) does

not divide Q. For every f(Y) ∈ LIST(T, ε), the poly-

nomial Rf (Y)
def
= Q(Y, f(Y), f(ζY), . . . , f(ζm−1Y)) has

more than εq roots, and degree at most (A−1)+(n−1)(h−
1)m, and therefore must be the zero polynomial. We define

Q∗ slightly differently:

Q∗(Z)
def
= Q(Y,Z, Zq, Zq2

, . . . , Zqm−1

) mod E(Y).

As before, Q∗ is a nonzero polynomial over the exten-

sion field F = Fq[Y]/(E(Y)). Further, every f(Y) ∈
LIST(T, ε), viewed as an element of the extension field F,

is a root of Q∗. It follows that |LIST(T, ε)| ≤ deg(Q∗).
The degree of Q∗ is at most

(h − 1)(1 + q + q2 + · · · + qm−1) = (h − 1) · qm − 1

q − 1
,

and this proves the claimed bound.

By picking parameters suitably in the above construc-

tion, we obtain the following condenser. Unlike our basic

condenser (Theorem 4.2), this condenser is no longer loss-

less. Instead, the ratio of the input and output min-entropies

is roughly d/t ≈ (1 + 1/α), which means that we retain

only a α/(1+α) fraction of the min-entropy (compare with

Theorem 5.7).

Theorem 6.2 (Reed-Solomon condenser). For every n ∈
N, ℓ ≤ n such that 2ℓ is an integer, and α, ε > 0, there is an

explicit function C : {0, 1}n × {0, 1}d → {0, 1}n′

defined

in (3) that is a

(1 + 1/α)ℓt + log(1/ε) →3ε ℓt + d − 2

condenser with d ≤ (1 + 1/α)t and n′ ≤ (1 + 1/α)ℓt + d,

where t = ⌈α log(4nℓ/ε)⌉, provided ℓt ≥ log(1/ε).

Proof. Set h = 2t and note that h1/α ≥ 4n/ε. Let q be the

power of 2 in (h1+1/α/2, h1+1/α]. Set m = ℓ. Note that

A
def
= εq − (n − 1)(h − 1)m ≥ εq − nhm ≥ εq/2,

because q ≥ h1+1/α/2 ≥ 2nhℓ/ε, and m = ℓ.

Consider the function C : F
n
q × Fq → F

m+1
q defined in

(3). By Theorem 6.1, for every T ⊆ F
m+1
q of size at most

L = Ahm − 1 we have |LIST(T, ε)| ≤ qm − 1. Applying

Lemma 5.5, we find that C is a

log

(

qm − 1

ε

)

→2ε log

(

Ahm − 1

2ε

)

condenser. By Proposition 5.3, the output distribution of the

condenser C is within statistical distance 1
Ahm ≤ 2−ℓt ≤ ε

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

of a distribution with min-entropy at least

log

(

Ahm

2ε

)

≥ log q + ℓt − 2 = ℓt + d − 2 .

We can thus conclude that C is a

(1 + 1/α)ℓt + log(1/ε) →3ε ℓt + d − 2

condenser. This is the claimed condenser; the upper bounds

on d and n′ follow from the fact that q = 2d ≤ 2(1+1/α)t.

Finally, the construction is explicit because a representa-

tion of Fq for q a power of 2 as well as a generator of F
∗
q

can be found in time poly(log q) [28].

6.1 Limitation of the Reed-Solomon con-
denser

For the Reed-Solomon-based construction, a relatively

simple argument shows that the entropy rate must in general

be a constant less than 1. The example below comes from

[7, 34]:

Lemma 6.3. Define C as in (3). For every positive inte-

ger p < n such that p|(q − 1), there is a source X with

minentropy at least ⌊n/p⌋ · log q for which the support of

C(X,Ulog q) is entirely contained within a set of size wm,

where w = (q − 1)/p + 1.

Proof. Take the source to be p-th powers of all degree

⌊(n − 1)/p⌋ polynomials. Every output symbol of C is

an evaluation of such a polynomial, and therefore must be

a p-th power, or 0. There are thus only w = (q − 1)/p + 1
possible output symbols, so the output is contained within a

set of size wm.

For such a source X, the output minentropy of C is at

most m log w and the output length is m log q. Thus the

entropy rate is at most

log w

log q
≈ 1 − log p

log q
.

So for example, for a source obtained when p ≈ √
n, the

Reed-Solomon condenser C has a constant entropy rate less

than 1 unless the seed length log q is ω(log n).
This implies that the entropy rate obtained in Theorem

6.2 is not an artifact of the analysis. That is, it is not possible

to improve the entropy rate (e.g., to 1) simply by giving a

different, improved analysis for the generic Reed-Solomon

construction.

7 Conclusions

The “list-decoding” view of expanders and condensers

used in this paper seems to be quite powerful, leading to

constructions that are more direct, achieve improved param-

eters. It is thus natural to ask how far this approach can

be pushed. Constructing unbalanced expanders with expan-

sion close to the degree where the degree and/or size of the

right-hand side are within constant factors of optimal is a

natural next goal. This is closely related to question of con-

structing truly optimal extractors, ones that are optimal up

to additive constants in the seed length and/or output length.

Towards this end, we wonder if there is some variant of our

construction with a better entropy rate – the next natural

threshold is to have entropy deficiency only ko(1). Another

interesting question is whether some variant of these con-

structions can give a block-wise source directly. Depending

on the actual parameters, either of these two improvements

have the potential to lead to extractors with optimal output

length (i.e. ones extract all the min-entropy). Alternatively,

if we can find an extractor with optimal output length for

high min-entropy (say .99n), then, by composing it with

our condenser, we would get one for arbitrary min-entropy.

We also wonder whether these new techniques can help

in other settings. For example, can we use them to argue

about computational analogues of the objects in this pa-

per – pseudorandom generators and pseudoentropy gener-

ators? Or, can variants of our constructions yield so-called

“2-source” objects, in which both the source and the seed

are only weakly random?

Acknowledgements. This paper began with a conversa-

tion at the BIRS workshop “Recent Advances in Computa-

tion Complexity.” We would like to thank the organizers for

inviting us, and BIRS for hosting the workshop. We also

thank Oded Goldreich, Prahladh Harsha, Farzad Parvaresh,

Jaikumar Radhakrishnan, Omer Reingold, Ronen Shaltiel

and Dieter van Melkebeek for helpful comments.

References

[1] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and

S. Venkatesh. Are bitvectors optimal? SIAM Journal on

Computing, 31(6):1723–1744 (electronic), 2002.

[2] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson.

Randomness conductors and constant-degree expansion be-

yond the degree/2 barrier. In Proceedings of the 34th Annual

ACM Symposium on Theory of Computing, pages 659–668,

2002.

[3] B. Chor and O. Goldreich. Unbiased bits from sources

of weak randomness and probabilistic communication com-

plexity. SIAM Journal on Computing, 17(2):230–261, Apr.

1988.

[4] A. Cohen and A. Wigderson. Dispersers, deterministic am-

plification, and weak random sources (extended abstract). In

Proceedings of the 30th Annual IEEE Symposium on Foun-

dations of Computer Science, pages 14–19, 1989.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

[5] O. Gabber and Z. Galil. Explicit constructions of linear-

sized superconcentrators. Journal of Computer and System

Sciences, 22(3):407–420, June 1981.
[6] D. Gillman. A Chernoff bound for random walks on ex-

pander graphs. SIAM J. Comput., 27(4):1203–1220 (elec-

tronic), 1998.
[7] V. Guruswami, J. Hastad, M. Sudan, and D. Zuckerman.

Combinatorial bounds for list decoding. IEEE Transactions

on Information Theory, 48(5):1021–1035, 2002.
[8] V. Guruswami and A. Rudra. Explicit capacity-achieving

list-decodable codes. In Proceedings of the 38th Annual

ACM Symposium on Theory of Computing, pages 1–10,

2006.
[9] V. Guruswami and M. Sudan. Improved decoding of Reed-

Solomon and Algebraic-Geometry codes. IEEE Transac-

tions on Information Theory, 45(6):1757–1767, 1999.
[10] V. Guruswami, C. Umans, and S. Vadhan. Extractors and

condensers from univariate polynomials. Technical Report

TR06-134, Electronic Colloquium on Computational Com-

plexity, October 2006.
[11] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and

their applications. Bull. Amer. Math. Soc. (N.S.), 43(4):439–

561 (electronic), 2006.
[12] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors

and pseudo-random generators with optimal seed length. In

Proceedings of the 32nd Annual ACM Symposium on Theory

of Computing, pages 1–10, 2000.
[13] R. Impagliazzo and D. Zuckerman. How to recycle random

bits. In Proceedings of the 30th Annual IEEE Symposium on

Foundations of Computer Science, pages 248–253, 1989.
[14] N. Kahale. Eigenvalues and expansion of regular graphs.

Journal of the ACM, 42(5):1091–1106, Sept. 1995.
[15] S. Kalyanaraman and C. Umans. On obtaining pseudoran-

domness from error-correcting codes. In S. Arun-Kumar and

N. Garg, editors, FSTTCS, volume 4337 of Lecture Notes in

Computer Science, pages 105–116. Springer, 2006.
[16] R. Lidl and H. Niederreiter. Introduction to Finite Fields and

their applications. Cambridge University Press, 1986.
[17] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Ex-

tractors: Optimal up to constant factors. In Proceedings of

the 35th Annual ACM Symposium on Theory of Computing,

pages 602–611, 2003.
[18] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs.

Combinatorica, 8(3):261–277, 1988.
[19] G. A. Margulis. Explicit constructions of expanders. Prob-

lemy Peredači Informacii, 9(4):71–80, 1973.
[20] G. A. Margulis. Explicit group-theoretic constructions

of combinatorial schemes and their applications in the

construction of expanders and concentrators. Problemy

Peredachi Informatsii, 24(1):51–60, 1988.
[21] N. Nisan and D. Zuckerman. Randomness is linear in space.

Journal of Computer and System Sciences, 52(1):43–52,

1996.
[22] F. Parvaresh and A. Vardy. Correcting errors beyond the

Guruswami-Sudan radius in polynomial time. In Proceed-

ings of the 46th Annual IEEE Symposium on Foundations of

Computer Science, pages 285–294, 2005.
[23] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers,

extractors, and depth-two superconcentrators. SIAM Journal

on Discrete Mathematics, 13(1):2–24 (electronic), 2000.

[24] R. Raz. Extractors with weak random seeds. In Proceedings

of the 37th Annual ACM Symposium on Theory of Comput-

ing, pages 11–20, 2005.

[25] O. Reingold, R. Shaltiel, and A. Wigderson. Extracting

randomness via repeated condensing. SIAM J. Comput.,

35(5):1185–1209, 2006.

[26] R. Shaltiel. Recent developments in explicit constructions

of extractors. Bulletin of the European Association for The-

oretical Computer Science, 77:67–, June 2002. Columns:

Computational Complexity.

[27] R. Shaltiel and C. Umans. Simple extractors for all min-

entropies and a new pseudorandom generator. Journal of the

ACM, 52(2):172–216, 2005. Conference version appeared in

FOCS 2001.

[28] V. Shoup. New algorithms for finding irreducible poly-

nomials over finite fields. Mathematics of Computation,

54(189):435–447, 1990.

[29] M. Sudan. Decoding of Reed Solomon codes beyond

the error-correction bound. J. Complexity, 13(1):180–193,

1997.

[30] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom

generators without the xor lemma. J. Comput. Syst. Sci.,

62(2):236–266, 2001.

[31] A. Ta-Shma. Storing information with extractors. Inform.

Process. Lett., 83(5):267–274, 2002.

[32] A. Ta-Shma and C. Umans. Better lossless condensers

through derandomized curve samplers. In Proceedings of

the 47th Annual IEEE Symposium on Foundations of Com-

puter Science, 2006. To appear.

[33] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less con-

densers, unbalanced expanders, and extractors. In Proceed-

ings of the 33rd Annual ACM Symposium on Theory of Com-

puting, pages 143–152, 2001.

[34] A. Ta-Shma and D. Zuckerman. Extractor codes. IEEE

Transactions on Information Theory, 50(12):3015–3025,

2004.

[35] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from

Reed-Muller codes. J. Comput. Syst. Sci., 72(5):786–812,

2006.

[36] L. Trevisan. Extractors and pseudorandom generators. Jour-

nal of the ACM, 48(4):860–879, 2001.

[37] C. Umans. Pseudo-random generators for all hardnesses. J.

Comput. Syst. Sci., 67(2):419–440, 2003.

[38] A. Wigderson and D. Zuckerman. Expanders that beat the

eigenvalue bound: Explicit construction and applications.

Combinatorica, 19(1):125–138, 1999.

[39] D. Zuckerman. Simulating BPP using a general weak ran-

dom source. Algorithmica, 16(4-5):367–391, 1996.

[40] D. Zuckerman. Randomness-optimal oblivious sampling.

Random Struct. Algorithms, 11(4):345–367, 1997.

[41] D. Zuckerman. Linear degree extractors and the inapprox-

imability of max clique and chromatic number. In Proceed-

ings of the 38th Annual ACM Symposium on Theory of Com-

puting, pages 681–690, 2006.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00 © 2007

