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In order to assess possible influences of occlusion on motor performance, we studied
by functional magnetic resonance imaging (fMRI) the changes in the blood oxygenation
level dependent (BOLD) signal induced at brain level by a finger to thumb motor task
in a population of subjects characterized by an asymmetric activation of jaw muscles
during clenching (malocclusion). In these subjects, appropriate occlusal correction by
an oral orthotic (bite) reduced the masticatory asymmetry. The finger to thumb task
was performed while the subject’s dental arches were touching, in two conditions: (a)
with the teeth in direct contact (Bite OFF) and (b) with the bite interposed between the
arches (Bite ON). Both conditions required only a very slight activation of masticatory
muscles. Maps of the BOLD signal recorded during the movement were contrasted with
the resting condition (activation maps). Between conditions comparison of the activation
maps (Bite OFF/Bite ON) showed that, in Bite OFF, the BOLD signal was significantly
higher in the trigeminal sensorimotor region, the premotor cortex, the cerebellum, the
inferior temporal and occipital cortex, the calcarine cortex, the precuneus on both
sides, as well as in the right posterior cingulate cortex. These data are consistent with
the hypothesis that malocclusion makes movement performance more difficult, leading
to a stronger activation of (a) sensorimotor areas not dealing with the control of the
involved body part, (b) regions planning the motor sequence, and (c) the cerebellum,
which is essential in motor coordination. Moreover, the findings of a higher activation
of temporo-occipital cortex and precuneus/cingulus, respectively, suggest that, during
malocclusion, the movement occurs with an increased visual imagery activity, and
requires a stronger attentive effort.
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INTRODUCTION

There is a debate as to whether trigeminal sensorimotor signals
may affect posture and movement. In particular, postural control
seems to be influenced by the occlusal condition (Ohlendorf et al.,
2014; Julià-Sánchez et al., 2015; see, however, Perinetti, 2006),
temporomandibular joint (TMJ) disorders (Chaves et al., 2014)
and orofacial motor activity (Kushiro and Goto, 2011; Ringhof
et al., 2015). These data are consistent with the observation
that sensorimotor signals elicited during isometric clenching are
very effective in increasing the excitability of spinal motoneurons
(Miyahara et al., 1996). On the other hand, correction of TMJ
disorders by splints does not seem to affect motor performance
(McArdle et al., 1984), while there is evidence that changes in
the occlusal condition may affect locomotion (Okubo et al., 2010;
Maurer et al., 2015) and the associated postural stabilization in
normal subjects (Ohlendorf et al., 2014), as well as the overall
motility in Parkinsonian patients (Nomoto et al., 2013). Finally,
recent evidence indicates that in subjects showing an unbalance
in sensorimotor orofacial activity (consisting in an asymmetric
activation of left and right masseter muscles during clenching)
the reestablishment of a symmetric condition by bite wearing
enhances the speed of execution in a complex sensorimotor task
(De Cicco et al., 2016).

If the occlusal condition does affect body movements, it is
reasonable to assume that it will also modify also the movement-
elicited local changes in cerebral blood. So far, the effects of
occlusal condition on the movement-elicited changes in cerebral
blood flow have been investigated only for orofacial movements.
In particular, wearing a splint during jaw tapping movements
decreased bilaterally the blood oxygenation level dependent
(BOLD) signal in the primary and secondary sensorimotor areas,
putamen, inferior parietal/prefontal cortex and anterior insula,
thus indicating a decrease in the blood flow to these regions
during the task. At variance, the BOLD signal increased in the
prefrontal, temporal, parietal, and occipital lobes, as well as in the
cerebellar network (Lotze et al., 2012).

The purpose of the present investigation was to document
whether correction of an unbalanced occlusal condition may
modify the pattern of brain activation induced by finger
movements. For this purpose, we have analyzed, in a group of
subjects showing an unbalance in sensorimotor orofacial activity
during clenching, the changes in the BOLD signal elicited by a
typical finger to thumb task (Shibasaki et al., 1993) and their
modulation by occlusal correction.

MATERIALS AND METHODS

Subjects
Eight subjects (4 females) of age between 49 and 69 were
enrolled in the study. At maximal jaw opening, clicking sounds
were present in all the subjects and two of them were also
reporting pain. In two subjects, clicks appeared also at the
beginning of jaw lowering. None of them was affected by
neurological or psychiatric disorders. Subjects were asked to
avoid caffeine containing drinks and smoking at least 2 h prior

the experimental session. The study was carried out in accordance
with the recommendations of the Ethical Committee of the
University of Pisa. According to the Declaration of Helsinki,
each subject signed an informed consent, approved by the local
Ethical Committee.

MR Acquisition Protocol
All MR exams were performed using a 1.5T MR system
(MAGNETOM Avanto, Siemens Healthcare, Erlangen,
Germany) equipped with 45 mT/m gradients and a
quadrature head coil.

The examination protocol included (a) axial high resolution
contiguous 3D T1-weighted images that were obtained with
a MPRAGE sequence [repetition time (TR) = 1.900 ms,
echo time (TE) = 3.4 ms, inversion time (TI) = 1100 ms,
flip angle = 15◦, slice thickness = 0.9 mm, field of view
(FOV) = 256 mm × 256 mm, matrix size = 256 × 256, number
of excitations (NEX) = 2] and (b) axial T2-weighted images
that were obtained with a fluid attenuated inversion recovery
(FLAIR) sequence (TR = 9.000 ms, TE = 88 ms, TI = 2.500 ms,
slice thickness = 3 mm, FOV = 230 mm × 172.5 mm, matrix
size = 256 × 154, turbo factor = 16, NEX = 1). Functional
images were collected using a T2∗- weighted echo-planar imaging
(EPI) sequence (TR = 3000 ms, TE = 50 ms, FA = 90, slice
thickness = 4 mm; FOV = 256 mm × 256 mm, matrix size
64 × 64; number of slices = 37). The slices were oriented along
and parallel to the bi-commissural plane and centered to cover
the entire brain.

The task consisted of a self-paced continuous finger to thumb
task, performed with the right hand, without visual feedback, that
the subjects, laying supine within the scanner, repeated before
data acquisition until they were able to perform correctly. The
subjects were visually monitored throughout the scanning time
and no gross change in performance could be observed.

The functional magnetic resonance imaging (fMRI) sequences
were acquired while the subjects performed the task while their
dental arches were touching in two different conditions: (a) with
the teeth in direct contact (Bite OFF) and (b) with an orthotic
(bite) interposed between the arches (Bite ON). Both conditions
required only a very slight activation of masticatory muscles.
A block design was used, where four blocks of finger to thumb
task (T) were alternated with four blocks of rest (R) according
to the sequence RTRTRTRT, for each condition. Start and end
of each block were instructed by delivering “go” and “stop”
auditory signals. Each block, in which 10 scans were acquired,
lasted 30 s, for a total of 80 scans/run in 4 min. Before each run,
two dummy volumes were acquired and discarded from analysis
to avoid T1-related relaxation effects. The first condition tested
(Bite OFF or Bite ON) was changed from subject to subject in
pseudorandom order. In order to minimize head movements,
head pads and forehead straps were used. The subjects were
visually monitored throughout the scanning time also for non-
task related movements.

fMRI Data Analysis
Functional data were analyzed using FSL 4.1.4 software [Oxford
Center for Functional Magnetic Resonance Imaging of the Brain

Frontiers in Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 499

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00499 May 16, 2019 Time: 14:39 # 3

Tramonti Fantozzi et al. Malocclusion, Movement and Brain Activity

(FMRIB) software library1], one of the two major and most
widely employed neuroimaging analysis tools (Jenkinson et al.,
2012). The following pre-statistics processing were applied to the
80 fMRI scans: motion correction using MCFLIRT (Jenkinson
et al., 2002), non-brain removal using BET (Smith, 2002), spatial
smoothing using a 8 mm FWHM Gaussian kernel, grand-mean
intensity normalization of the entire 4D data set by a single
multiplicative factor and high-pass temporal filtering. For each
subject, the mean (across voxels) voxel absolute displacement
(each time point with respect to the reference image, i.e., to
the middle-time point rsfMRI image) calculated by MCFLIRT
was less than 1 mm (equal to 1/4 the voxel dimension)
and, for this reason, none of the subjects was excluded for
excessive head motion. The high resolution T1-weighted images
were co-registered in a standard space [Montreal Neurological
Institute (MNI) 152 Brain]. This allowed assessment of activation
areas in terms of the MNI coordinate system. Registration of
EPI functional images to the individual high resolution T1-
weighted image and standard space was carried out using affine
transformation with 12 degrees of freedom (Jenkinson and
Smith, 2001). Registration from high resolution structural to
standard space was then further refined using FNIRT non-
linear registration (Andersson et al., 2007a,b). The FMRIB’s
improved linear model (Woolrich et al., 2001) was adopted for
statistical analysis in order to determine the activation maps
of signal changes between active vs. rest periods. Single-subject
cluster analysis was performed on voxels having Z (Gaussianised
T) > 3.1 and a (cluster-based corrected) significance threshold
of p = 0.05 (Worsley, 2001). In each Bite ON and the Bite
OFF condition, a within-group analysis was carried out using
one-sample t-test to assess the differences between the active
and passive blocks and a fixed effects model using FLAME
(FMRIB’s Local Analysis of Mixed Effects) (Beckmann et al., 2003;
Woolrich et al., 2004) by forcing the random effects variance to
zero (Woolrich, 2008). The Z-statistical maps derived from the
within-group analyses underwent a cluster thresholding with a Z
threshold of 3.1 and a cluster p threshold of 0.05.

To assess possible differences in the BOLD activation pattern
between the Bite ON and Bite OFF condition, a between-
conditions analysis was carried out using paired t-test and
a fixed effects model. Z (Gaussianised T/F) statistic images
were thresholded using clusters determined by Z > 3.1 and a
(corrected) cluster significance threshold of p = 0.05. We inserted
the subject’s age as covariate variable in both within-group and
within-condition models.

The coordinates of the local activation maxima observed
in the present study within the clusters with a significant
condition effect were inserted in the Brain Map Sleuth2

and in the NeuroSynth Database3, so to retrieve similarly
localized activations reported in previously studies during
different sensorimotor and cognitive tasks. The Yale Brain
Map4 and the automated anatomical labeling (AAL) atlas

1http://www.fmrib.ox.ac.uk/fsl
2http://brainmap.org/sleuth
3http://neurosynth.org
4http://sprout022.sprout.yale.edu/mni2tal/mni2tal.html

(Tzourio-Mazoyer et al., 2002) were utilized in order to define the
position of the local activation maxima within the Brodmann
areas (BA) and within the different cortical/subcortical/cerebellar
regions, respectively.

Electromyographic Evaluation and Cusp
Bite Manufacturing
The evaluation of the electromyographic (EMG) activity of jaw
muscles during clenching was performed in a separate session,
before fMRI acquisition. Only subjects with an asymmetry
in EMG activity [200(EMGleft−EMGright)/(EMGleft+EMGright)]
higher than 15% were enrolled in the study. They were submitted
to a transcutaneous electrical nerve stimulation (TENS) of
trigeminal motor branches (Noaham and Kumbang, 2008) for
15 min. Jaw muscles stimulation was made by means of four
couples (cathode/anode) of electrodes (1600 mm2 of surface)
positioned on both side at the level of incisura sigmoidea and
of the submental region. Repeated contractions of masseters
and mandible depressor muscles were obtained by means of
biphasic (cathodal/anodal) current pulses (0.54 ms duration,
21–25 mA intensity), delivered by two I.A.C.E.R. stimulators
(Martellago, Venice, Italy). The intensity of the left and
right stimuli was adjusted in order to obtain a symmetric
muscle activation (evaluated by EMG recording), while the
frequency corresponded to 40 and to 0.618 Hz for mandible
depressor and elevator muscles, respectively. These patterns
led to an alternated contraction/relaxation of masseters and to
a tonic contraction of depressor muscles, resulting in small
amplitude mandibular movements (1 mm). Following TENS,
the mandibular resting posture was lowered and a dental
impression was obtained in the new relative position of dental
arches by placing a self-hardening material between them. This
dental impression was used to manufacture a cusp bite (Dao
et al., 1994) modeled on the inferior dental arch. Cusp bite
placement reduced the myoelectric asymmetry observed during
clenching (Figure 1), which decreased to less than 15% in
all the subjects.

Comparison of EMG activities during clenching in Bite ON
and Bite OFF was performed by paired t-test.

RESULTS

EMG Asymmetries
During biting with normal (uncorrected) occlusion (Bite OFF),
all subjects showed an evident left-right asymmetry in the
activity of the masseter (see Figure 1), whose absolute value
corresponded to 64.3 ± 49.2 µV (mean ± SD of the difference
between the two sides). As shown in Figure 1, wearing a cusp
bite (Bite ON) reduced the asymmetry in EMG activity, which
reached, on the average, the value of 12.3 ± 4.13 µV (paired
t-test, p < 0.022). The reduction in the EMG asymmetry was due
to a significant increase in the activity of the hypotonic masseter
muscle, which raised from 35.8± 27.1 to 70.1± 23.6 µV (paired
t-test, p < 0.009) joined to a non-significant activity decrease on
the hypertonic side (from 100.0 ± 56 to 73.1 ± 30.1 µV: paired
t-test, p < 0.101).
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FIGURE 1 | Asymmetries in EMG activity: effects of the bite. Scatter plot of
left-right differences observed in masseter in EMG activity during clenching
with (Bite ON, in ordinates) and without (Bite OFF, in abscissas) occlusal
correction by bite wearing. The insets represent the EMG raw data recorded
in a representative subject (indicated by the black arrow). Note the narrow
range of the EMG asymmetry following occlusal correction.

Comparison Between Bite ON and Bite
OFF Conditions
In both Bite OFF and Bite ON conditions, the finger to thumb
task modified significantly the BOLD signal with respect to rest in
several cortical and subcortical structures. As shown in Figure 2,
within the different regions recruited by the task the extent of
activated voxels was larger in Bite OFF with respect to Bite ON.

Comparison of activation maps (task minus resting condition)
obtained in Bite OFF and Bite ON indicated the presence of
clusters of voxels showing a significantly higher task-related
activation in Bite OFF, while the opposite behavior has never

FIGURE 2 | Activation maps (task-rest) obtained during finger to thumb task in
Bite ON and Bite OFF conditions. The red areas indicate regions characterized
by significant activation during finger to thumb task in Bite ON and Bite OFF
conditions. Right and left side are indicated in the section at Z 24, in the Bite
ON column (the images are depicted from a bottom view). Upper row:
cerebellum. Lower row: regions around the central sulcus. Z coordinates in
mm in the MNI standard space are indicated under each section.

been observed. All these clusters are shown in Figure 3, while
the MNI coordinates of the corresponding centers of gravity
(GOGs) are indicated in Table 1, together with the number
of significant voxels. Data about the localization of the local
activation maxima are given in Table 2 for each of the significant
clusters. Three clusters (two on the right and one on the left side)
were located in the lower part of the precentral gyrus, in an area
corresponding to the trigeminal sensorimotor region (Penfield
and Boldrey, 1937). An additional cluster lied within the post
central gyrus, at the level of the body somatotopic area above
the hand region. In the precentral gyrus, the clusters included
BA 4 and 6, while postcentral activation interested the primary
somatosensory region and BA 40 on the right side.

Within the cerebellum, three clusters were observed. One of
them was centered in paravermal region of the lobule VI on the
right side. The second one, was limited to Crus II in the left
hemisphere. Finally, the third cluster encompassed the vermal
cortex of lobule VI and, to some extent of lobule VII, as well
as the paravermal cortex of Crus I on the right side and that of
lobule VI on the left.

Finally, two roughly symmetrical clusters could be found
at the level of right and left inferior temporal/occipital lobes,
while, caudally on the inner brain surface, a cluster of significant
voxel extended bilaterally from the calcarine cortex down to
the precuneus, expanding in the posterior cingulate region
of the right side.

DISCUSSION

Difference in BOLD Signal Between Bite
OFF and Bite ON: General
Considerations
The present data indicate that the increase in cerebral blood
flow elicited by a motor task involving the fingers can be
influenced by the occlusal condition. In fact, when subjects
wore a bite that balanced the occlusion, the increase in BOLD
signal elicited by finger movements was significantly reduced
at the level of frontoparietal sensorimotor regions, cerebellum,
temporo-occipital, and midline posterior regions.

So far the effect of malocclusion was tested only on jaw-
related brain activation, which was enhanced (Lotze et al.,
2012), similarly to what observed for hand movements-related
activation in the present study. It is known that cortical
activation decreases with increasing skill and automaticity (see
Saling and Phillips, 2007, for ref) of the performed movement,
probably due to a higher coupling between sensorimotor regions
(Wu et al., 2008). So, a higher Bite OFF activation indicates
that malocclusion may be detrimental to motor performance,
imposing a higher attentive effort (see Wu et al., 2008) and,
possibly, leading to a decoupling of the areas involved in the task.

Fronto-Parietal Sensorimotor Regions
As shown in Table 2, three clusters (1,2,4) were located
in the fronto-parietal sensorimotor regions of both sides.
They largely overlapped with the trigeminal regions of the
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FIGURE 3 | Clusters with significant condition effect (Bite OFF>Bite ON). Red areas indicate clusters with significant differences between the activations maps
(task-rest) obtained in Bite OFF and Bite ON conditions during finger to thumb task. The letter R indicates the right side (the images are depicted from a bottom
view). Z coordinates in mm in the MNI standard space are indicated under each section.

primary motor and somatosensory cortex, which have been
defined by stimulation experiments in humans (Penfield and
Boldrey, 1937) and show activation during different types of
orofacial sensorimotor and speaking tasks (Watanabe et al.,
2004; Grabski et al., 2012; Iida et al., 2012; Lotze et al., 2012;
Quintero et al., 2013). Since the cortical activation elicited
by movement of a given body part spreads outside of the

corresponding sensorimotor representation (Stippich et al.,
2007), the larger activation of the sensorimotor trigeminal
region in Bite OFF could be to a less selective recruitment
of somatotopic map and/or to an increased recruitment of
inhibitory interneurons which suppress the output of the
regions inappropriate for the motor task in execution. In
the former case, the higher activation in Bite OFF observed

TABLE 1 | Cluster of voxels showing a significant condition effect (Bite OFF>Bite ON).

Number Activated volume
(voxels)

Z Max X (mm) Y (mm) Z (mm) Localization of the
center of gravity

Side

1 296 4.88 −58 −9 30 Postcentral gyrus Left

2 171 5 61 −7 25 Postcentral gyrus Right

3 91 5.85 18 −44 81 Postcentral gyrus Right

4 71 4.46 52 −8 36 Postcentral gyrus Left

5 149 4.92 −5 −70 −17 Cerebellum lobule VI, Left

6 93 4.52 −10 −86 −39 Cerebellum Crus II Left

7 53 4.36 18 −61 −17 Cerebellum lobule VI Right

8 74 4.41 −57 −65 −13 Occipital Inferior gyrus Right

9 62 4.94 57 −70 −11 Temporal Inferior gyrus Left

10 275 4.94 0 −61 29 Precuneus Left

The localization (according to the AAL atlas) of clusters of voxels showing a significant condition effect is given together with the Z Max value and the MNI coordinates of
their center of gravity.
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TABLE 2 | Coordinates and localization of local activation maxima observed within each of the ten clusters showing a significant condition effect.

Cluster Z Max Local maxima x (mm) Local maxima y (mm) Local maxima z (mm) Localization Side

1 4.88 −66 −16 20 Postcentral gyrus Left

4.82 −56 −6 30 Precentral gyrus Left

4.63 −64 −2 22 Postcentral gyrus Left

4.31 −62 −16 18 Postcentral gyrus Left

4.28 −56 −16 36 Postcentral gyrus Left

4.03 −52 −16 36 Postcentral gyrus Left

2 5 64 2 28 Precentral gyrus Right

4.84 62 −14 16 Postcentral gyrus Right

4.65 62 −12 22 Postcentral gyrus Right

4.03 58 4 38 Precentral gyrus Right

3.96 60 −12 30 Postcentral gyrus Right

3.93 60 −14 36 Postcentral gyrus Right

3 5.84 14 −42 80 Postcentral gyrus Right

3.71 26 −44 76 Postcentral gyrus Right

4 4.46 52 −8 36 Postcentral gyrus Right

3.71 46 −10 36 Postcentral gyrus Right

3.59 56 −8 42 Precentral gyrus Right

3.49 60 −4 38 Postcentral gyrus Right

5 4.92 4 −72 −10 Vermis lobule VI –

4.36 −14 −62 −20 Cerebellum lobule VI Left

4.36 −2 −78 −18 Vermis lobule VII –

4.24 6 −82 −18 Cerebellum Crus I Right

4.1 2 −80 −16 Vermis lobule VI –

3.64 −2 −74 −12 Vermis lobule VI –

6 4.51 −12 −86 −36 Cerebellum Crus II Left

3.58 −12 −86 −48 Cerebellum Crus II Left

7 4.36 20 −64 −16 Cerebellum lobule VI Right

4.22 16 −58 −16 Cerebellum lobule VI Right

8 4.41 −54 −66 −8 Temporal inferior gyrus Left

4.06 −60 −66 −14 Occipital inferior gyrus Left

9 4.94 58 −70 −12 Temporal inferior gyrus Right

4.02 52 −74 −12 Occipital Inferior gyrus Right

3.94 56 −60 −8 Temporal Inferior gyrus Right

10 4.94 2 −46 18 Precuneus Right

4.3 2 −62 14 Calcarine Right

4.07 2 −70 34 Precuneus Right

4.03 0 −72 40 Precuneus –

3.85 −6 −64 16 Calcarine Left

3.81 0 −66 44 Precuneus –

The localization (according to the AAL atlas) and the MNI coordinates of local activation maxima included in each of the clusters of voxels with a significant condition effect
is given together with the corresponding Z Max value.

within the primary somatosensory cortex could be due to (a)
a stronger orofacial input elicited by activation of masticatory
muscles during finger movements and/or (b) to a stronger
reactivation by efference copies from the trigeminal motor region
(Cui et al., 2014).

Sensorimotor clusters extend from the primary motor region
(BA 4) to BA 6 that, in monkey, controls not only orofacial, but
also finger movements (Rizzolatti et al., 1988). If this region has
the same function in monkeys and humans, its higher activation
in Bite OFF could reflect a more difficult planning of the finger
to thumb sequence. Indeed, fMRI experiments in humans have
shown that regions overlapping with the significant clusters in BA

6 are activated during planning and execution of finger and hands
movements (Jankowski et al., 2009; Plata Bello et al., 2015).

Postcentral clusters extend into the right parietal associative
cortex (area 40), whose lesion impairs language function in
humans (Sakurai et al., 2010). However, networks located in the
corresponding areas of the brain monkey are involved in the
control of finger movements (Vingerhoets, 2014). If this is the
case also in humans, the higher activation of these regions in
Bite OFF condition could reflect a higher attentive cost and a
reduced skill of the performed finger movements (see Saling and
Phillips, 2007). This hypothesis is in agreement with the fact that,
in humans, these areas are activated not only during orofacial

Frontiers in Neuroscience | www.frontiersin.org 6 May 2019 | Volume 13 | Article 499

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00499 May 16, 2019 Time: 14:39 # 7

Tramonti Fantozzi et al. Malocclusion, Movement and Brain Activity

(Watanabe et al., 2004; Quintero et al., 2013) but also during
hand sensorimotor activities, such as imagery and execution
of hand movements (de Vries et al., 2009) and active tactile
discrimination (Stoeckel et al., 2003).

A fourth cluster (cluster 2, see Table 1) was confined to the
trunk-arm region (Penfield and Boldrey, 1937) of the primary
somatosensory cortex and to the neighboring BA 5 and 7. Its
higher activation in Bite OFF could reflect a higher feedback from
the trunk and arm during finger movements, possibly due a less
focalized postural adjustment (Caronni and Cavallari, 2009).

Cerebellar Structures
Within the cerebellum a significant cluster included the vermal
cortex of lobules VI and VII, together with the paravermal cortex
of right lobule VI and left Crus I. A second cluster was formed
by left Crus II and a third one by the paravermal cortex of
the right lobule VI. It is known that in humans, lobule VI is
connected with the motor and premotor cortical regions, lobule
VII with parietal and prefrontal regions while Crus I and Crus
II with the lateral prefrontal cortex (Stoodley and Schmahmann,
2018). In all these regions, during finger to thumb task, the
Bite OFF condition requires a higher cerebellar involvement for
correctly driving fronto-parietal circuits. Since the cerebellum
is particularly involved in motor coordination (Manto and
Bastian, 2007), this increased activation is in agreement with the
hypothesis that movement performance deteriorates in Bite OFF
imposing an heavier computational burden on cerebellar circuits
(Wu et al., 2008).

fMRI studies indicate that these cerebellar areas are activated
during orofacial sensorimotor activity (Eldeghaidy et al., 2011;
Thürling et al., 2011; Wong et al., 2011; Grabski et al., 2012;
Quintero et al., 2013; Shoi et al., 2014), hand movements planning
and execution (Jankowski et al., 2009; Callan et al., 2012), as
well as during sensory and cognitive performances that may
take place during the finger to thumb task, with particular
reference to its spatial and temporal aspects (Diedrichsen et al.,
2006; Majerus et al., 2007; O’Reilly et al., 2008; Grahn and
McAuley, 2009; Mullally and Maguire, 2011; Brown and Stern,
2014; Onuki et al., 2015).

In summary, the higher cerebellar activation observed during
Bite OFF can be the expression of the need of a higher
coordinative and planning effort; moreover, some of the
trigeminal related regions such as left and right lobule VI may
be sensitive to the higher activity of the trigeminal sensorimotor
cortical regions to which they are coupled.

Temporooccipital Regions
As shown in Table 2, two significant clusters were located
at the inferior temporal/occipital cortex of both sides. These
areas belong to the “ventral streaming” regions, where neuronal
activation leads to recognition of the seen objects and persons
(Goodale, 1998). fMRI studies are consistent with these findings
(Ardila et al., 2016). On these basis, it could be proposed
that, during a finger to thumb task performed in Bite OFF,
subjects have to produce a larger imagery effort in order
to perform the movement, leading to a higher activation of
structures involved in visual image recognition. According to

this hypothesis, significant clusters described in the present study
are activated during visual imagery (Nakao et al., 2011), visual
memory load (Rahm et al., 2014), but also during visuospatial
processing (Grabner et al., 2009; King and Miller, 2014), hand
movement (Macaluso et al., 2007), trajectory prediction (Olsson
and Lundström, 2013) and discomfort perceptions (Ogino et al.,
2007). Finally, on the left side, activity has been observed also
during clenching (Wong et al., 2011). All these activations
might be justified by recruitment of circuits related to the visual
recognition of actual/imaged objects and body parts during
specific behaviors, such as the finger to thumb task.

Midline and Limbic Structures
Significant clusters were found bilaterally on the inner faces of
the hemispheres, from the calcarine cortex to the precuneus,
with an extension into the right posterior cingulate gyrus.
The calcarine cortex represents visual processing area (Ffytche
and Catani, 2005) and its larger activation during Bite OFF
suggests that, in this condition, a higher imaginative effort
occurs during finger movements. The precuneus (Cavanna and
Trimble, 2006) is one of the brain regions more active at
rest and contribute to the so-called “default mode of brain
function” (DMF) (Raichle et al., 2001): these structures are
hypoactive in conditions of reduced or abolished consciousness,
such as sleep, pharmacological sedation and vegetative state
and are likely contributing to overall alertness and attention
(see Cavanna and Trimble, 2006, for ref.). Accordingly, the
precuneus regions enlightened in the present study changes are
activated during many sensorimotor and cognitive operations,
such as eye movements (Simon et al., 2002), pointing (Astafiev
et al., 2003), planning of finger movements (Jankowski et al.,
2009), orofacial movement execution and learning (Arima et al.,
2011), covert shift of attention to relevant spatial locations
(Nagahama et al., 1999; Beauchamp et al., 2001), action
observation and execution of observed actions (Chaminade
et al., 2005), motor imagery (Ogiso et al., 2000; Malouin
et al., 2003), visual memory tasks (Suchan et al., 2002),
rhythm generation (Stevens et al., 2007). We may propose that,
during malocclusion the performance of a sequence of finger
displacements requires a higher attentive effort, possibly related
to the spatial shift of the moving fingers and to the development
of their visual image.

Significant clusters were also found in the posterior cingulate
cortex on the right side. This region belong to DMF and is
strongly coupled to the precuneus: its level of activation seems
to increase with the level of arousal (Leech and Sharp, 2014).
It has been proposed that it is involved in internally directed
mental activity, in controlling the balance between internal and
external attention and in the detection of environmental changes.
The more simple explanation of the higher posterior cingulate
activation during movement in Bite OFF is that this condition
requires a higher mental and attentive effort. In effect, the region
corresponding to the significant cluster in the posterior cingulate
region has been also implicated in rhythm generation (Stevens
et al., 2007), motor imagery (Malouin et al., 2003), planning of
finger movements (Jankowski et al., 2009) and eye movements
(Alvarez et al., 2010).
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Final Considerations
Why should a trigeminal unbalance lead to a cortical activation
pattern indicating a larger effort in task performance and in
the associated processes? A possibility is that the asymmetric
discharge of muscle spindles, periodontal and, possibly, TMJ
receptors induced by malocclusion leads to an unbalance
in hemispheric excitability. There is indeed evidence that
a hemispheric unbalance may deteriorate neural functions
(Lomber and Payne, 1996). Moreover, unilateral stimulation
of sensory afferents may relapse the symptoms induced by
asymmetric brain lesions (Vallar et al., 1993). What could
be the pathways involved in the postulated tonic control
of trigeminal afferents on brain excitability? Neurons in the
mesencephalic trigeminal nucleus are chemically (Luo et al.,
1991) and, possibly, electrically (Fujita et al., 2012) coupled
with the noradrenergic locus coeruleus (LC) neurons, which
project to the whole brain (Samuels and Szabadi, 2008),
controlling sensorimotor and cognitive processes (Berridge
and Waterhouse, 2003). So, an unbalance in trigeminal
afferents may leads to an unbalance in LC activity and, as a
consequence, in brain excitability, since LC projections show
an ipsilateral dominance. According to this hypothesis, it
has been documented that trigeminal unbalance associated to
malocclusion leads to an asymmetry in pupil size (De Cicco
et al., 2014, 2016), which is a reliable indicator of LC discharge
(Kihara et al., 2015), while occlusal correction reduces both
trigeminal and pupil size asymmetry (De Cicco et al., 2014,
2016) and boost performance in complex sensorimotor tasks
(De Cicco et al., 2016).

We must acknowledge that these results were obtained on
a limited number of subjects and this can lower the statistical
power of the study (Costafreda, 2009) and prevent a further
generalization to a random population. A low statistical power
increases the risk of a type II error and lowers the ability of
discriminating whether non-significant results are due to a true
absence of the hypothesized effect or to a limited number of
subjects with respect to their standard deviation (Mumford,
2012). However, the occurrence of significant differences within
several brain regions between Bite ON and OFF conditions
in spite of the small number of subjects analyzed, suggests
that the occlusal condition modulates brain activation elicited
by skilled fingers movements and prompt the use of the Bite
ON/Bite OFF paradigm for further investigate the issue in a
larger population.
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